Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

A development methodology for adding map-based
graphics to the theater war exercise

Darrell A. Quick
Mark A. Roth

Air Force Institute of Technology
Department of Electrical and Computer Engineering
Wright-Patterson AFB, OH 45433-6583

ABSTRACT

The Theater War Exercise (TWX) is a computer-assisted, the-
ater level airpower employment exercise conducted by the Air
Force Wargaming Center. Its primary purpose is to give se-
nior level military officers a feel for the intricacies of high level
decision-making in a combined air/land conventional warfare sit-
uation. Until recently, output from TWX consisted of a large
number of tabular hard-copy reports which were difficult to un-
derstand and cumbersome to use. This paper discusses the de-
velopment of a map-based graphical interface to TWX which
provides a much more user-friendly interface to the information
and provides a baseline for the development of new techniques for
user interaction with the exercise. The methodology and toolset
developed for this project are of particular interest because of
their applicability to a wide variety of other wargaming and sim-
ulation systems.

1. THE THEATER WAR EXERCISE

TWX was developed by the Air War College between 1976
and 1977 in response to a directive by the USAF Chief of Staff
to develop courses to train senior military officers “in the threat
and application of force” (Theater Warfare, 1987). In order to
avoid the constraints imposed upon projects involving classified
information, the data and algorithms used were taken from un-
classified sources. Even so, TWX provides a useful forum for
senior officers to study the application of air warfare principles
in a simulated environment. Particular attention was given to the
goal of allowing students to gain some familiarity with the appli-
cation of USAF airpower employment strategies and doctrine in
a theater level combined air/land conflict. In addition, emphasis
was given to simulating the difficulties of coordination between
U.S. and allied forces in a credible manner, and of planning and
providing logistics support. Finally, the exercise is designed to
instill in the participant an understanding of the problems in-
volved in obtaining and processing the information necessary for
timely and informed decision-making in a wartime environment
(Theater Warfare, 1987).

From its inception in 1977 until last year, TWX was run on
a Honeywell 6000 series mainframe computer using application-
specific files to hold the database. It was heavily revised last year

723

by two students at the Air Force Institute of Technology (Brooks,
Kross and Roth, 1987). The revisions included rehosting the sys-
tem from the Honeywell to a DEC MicroVAX using Zenith Z-158
microcomputers as remote terminals. In addition, Brooks de-
signed and implemented a relational database management sys-
tem (DBMS) using the commercial INGRES database product
(Brooks, 1987), and Kross developed an interactive menu-driven
front end system using the INGRES fourth generation language
(4GL) facility (Kross, 1987). These revisions, besides improving
the flexibility and maintainability of the system, provided a much
friendlier input interface for the user than the hardcopy termi-
nals which had been used previously, and sped up data entry by
allowing interactive editing of input.

Unfortunately, output from the system still consisted entirely
of a large number of massive, hard-to-decipher reports. The tac-
tical overview, or FLOT (Forward Line Of Troops) Plot, was
particularly difficult to use; it consisted of a number of hardcopy
sheets which could be separated and laid side-by-side on a table
and overlaid with a clear plexiglass sheet marked with country
boundaries. The hardcopy sheets were marked with crude sym-
bols indicating the current position and affiliation of military
units and bases. To get additional information about a base or
unit, or weather status in a country, a player had no recourse but
to dig through voluminous reports. These activities were awk-
ward and detracted from the primary goal of the exercise, which
was to allow students to make high-level decisions and evaluate
the impact of those decisions. The graphical interface described
in this paper was developed specifically to counter these short-
comings of the system and to allow the players to concentrate on
decision-making and analysis.

TWX is generally conducted over a four-day period as part of
the Combined Air Warfare Course at the Center for Aerospace
Doctrine, Research, and Education (CADRE). It is also used
at the Air War College, Air Command and Staff College, and
by the Canadian Forces Command and Staff College and the
Royal Air Force Staff College. The Air Force Wargaming Center
(AFWC) maintains the exercise and provides run-time support.
Two player teams are involved: the Red team, composed of fac-
ulty and AFWC personnel familiar with Warsaw Pact doctrine
and strategies, and the Blue team, consisting of eight to ten stu-
dents representing NATO forces. In addition, a third group, the
White (or Control) Team, consists of a faculty game director




and data processing personnel who oversee the conduct of the
exercise.

A typical cycle of play consists of the player teams analyzing
the current scenario, revising their strategy in response to the sit-
uation, and entering their responses into the database. The batch
portion of the system is then run. The batch system extracts the
information from the database and processes it to deterniine the
outcome. The database is then updated with the new scenario
and reports are generated.

The TWX algorithms use a highly aggregated approach, deter-
mining the outcomes of conflicts based largely upon the relative
strengths of the forces involved. In addition, the land battle por-
tion of the game is largely deterministic, since the emphasis in
this exercise is upon airpower employment. The students’ inter-
action with the land game consists exclusively of their support of
ground forces through Offensive Air Support and Air Interdiction
missions.

The remainder of this paper is divided into three sections. Sec-
tion 2 describes the functional capabilities of a proposed graph-
ical interface for TWX. The third section examines the environ-
ment in which the project was conducted and the issues involved.
This includes identification of major decisions and the rationale
behind these decisions. In the fourth section we describe the
prototype as it currently exists. The final section presents con-
clusions and recommendations for further work.

2. The Graphical Interface

As mentioned in the last section, the old system for displaying
the tactical situation was very awkward. This section describes
the features of the proposed graphical interface.

The revised output system will display a computer-generated
on-screen map of the European theater showing such dekails as
country boundaries, rivers, locations of military bases, and the
Forward Edge of Battle (FEBA), or FLOT, on the system’s re-
mote terminals. Military bases and military units in the field
are represented using symbols color-coded to indicate their affil-
iation. Locations of graphical items are maintained in the TWX
database using a Cartesian Coordinate system, with each item’s
position being stored as a matched pair of z and y coordinates. A
grid is superimposed over the map to assist users in determining
their position in terms of these coordinates.

Other features include a method of indicating the weather fore-
cast on the screen and the ability to zoom in and out and pan
across the display. A keyboard menu display is shown on the
screen to select amongst user desires. A mouse-driven cursor al-
lows the user to select between different keys on the display. As
an example of this, consider the use of the “Zoom” button; the
user moves the mouse to position the cursor over this button,
and then pushes the right or left mouse button to indicate his
desire to zoom in on or out from the picture.

724

A number of user-selectable reports, such as a pop-up display
of sortie status for a particular base, could be added to the system
and made callabie also from the keyboard menu. The system will
allow multiple windows to be displayed at once, giving the user
the ability to simultaneously view the status of two or more bases
for comparison purposes. An advanced version of the system will
include the ability to use the position of the cursor on the display
to input position data into the database (for target selection, for
example).

Figure 1 shows the envisioned final display, complete with an
on-screen. keyboard showing the user’s options. The user will
be able to turn on and off the visibility of various classes of
items, such as the two different allied air forces, 2ATAF and
4ATAF. Weather conditions in various zones will be indicated
by a pattern fill within each zone, which can also be toggled on
and off. After selecting a particular base by placing the mouse
cursor over it and pressing a button, the user can select between
a number of reports (sortie summary, logistics status, ete.). This
figure also shows the buttons which allow the user to indicate his
desire to zoom in on the display.

The display will include a message area which gives feedback
to the user in the form of instructions and error messages, and
a status area indicating his current situation. Also included is
a “Notes” option, which allows the user to submit a free-form
critique at any point during the game. The ability to submit
suggestions for improvements as they occur to the user should
provide better feedback to the individuals who maintain and en-

hance the system.

The primary purpose behind these enhancements is to simplify
the user’s view of the interface with the computer system. This
apparent ability to operate directly upon the symbols represent-
ing units and bases makes it easier and more intuitive for the
user to find the exact information he needs.

3. DEVELOPMENT ISSUES

There are a number of issues involved in the development of a
graphical interface that have to be dealt with. These include the
identification of development constraints, the selection of an ap-
propriate methodology, a number of decisions about how graph-
ical objects are to be represented, stored, and displayed, and the
selection and acquisition of needed hardware and software, The
resolution of these issues is addressed in detail in this section.

3.1. Development Constraints

The Z-158s used in the current system as remote terminals are
on the low end of the spectrum for graphics work. In addition,
it had been discovered late in last year’s research that the Z-
158 microcomputers were not one-hundred percent compatible
with the INGRES/NET software being used to link them to the
MicroVAX. It is possible to circumvent this problem, but the



~
Airbases

Airbase Stalus

Aireraft

[Type |

Misc

[reea] [wx]

Situation Map

OJ Blue Airbase

Team: Blue I Red Airbase
Seminar: 1 O
Day: 4 Cycle: D O

[ 25% or Less Degraded {J Logistic Shortfall

O 50% Degraded I Blus Corps
O 75% Degraded O Red Corps
O oVERRUN O Targets

Figure 1: Envisioned TWX System Display

solution is awkward and degrades the performance of the system,
as well as making the software more difficult to maintain. In
addition, the system was programmed entirely in FORTRAN and
INGRES 4GL. The graphics facilities provided by FORTRAN
are very rudimentary while the INGRES 4GL is only useful for
forms-based input and output. Fortunately, the users were aware
of these facts already, and were prepared to provide a reasonable
amount of funding for more advanced hardware and graphics
software. It was, of course, desired that existing resources be
utilized wherever possible.

The initial goal is to modify existing software as little as pos-
sible. In particular, no redevelopment is to be done upon the
manner in which the system processed the information; the ini-
tial modifications are to be entirely upon the presentation of the
information to the user. This would involve little or no change
to the existing programs and database, since most of the neces-
sary information was already maintained in the current system’s
Minor additions to the database might be needed
to store graphical attribute information about existing objects,
which might consequently necessitate modest changes to some
programs, but these changes would be relatively trivial.

database.

3.2. Development Methodology

TWX is only one of a number of computer assisted wargaming
exercises conducted by the AFWC. Few of these systems pro-

725

vide map-based graphical interfaces at this time. AFWC per-
sonnel were interested not just in an interface for TWX, but a
complete methodology and set of tools which could be used to
develop flexible map-based graphical interfaces for existing and
new wargaming systems. Therefore, 2 major goal of this research
is to develop a reusable methodoloéy involving procedures and
hardware/software tools for developing graphical interfaces for a
variety of wargaming systems. Although the primary emphasis
was on wargaming graphics, the resulting methodology is general
enough to be used for developing graphical interfaces for most
simulation systems.

At least three popular methodologies offered certain benefits
for this sort of development. Since a limited development time
period is available for the project (as for most projects) a trade-
off exists between incorporating as much functionality as possible
within the allotted time and delivering a production quality sys-
tem. An attractive solution is offered by the iterative design
approach, in which successive versions of the system are built,
each adding new features to the preceding version. This approach
allowed enhancements to be made up to a cutoff date, at which
time the product is finalized and packaged up. By building itera-
tively, there was little risk involved in each version, and there was
always a stopping point readily available. On the other hand, the
iterative approach takes longer to do the same amount of work
because of the additional overhead of tying up loose ends after
each version. It was decided that, for this situation, the bene-




Expanded

wWindow
Leyel

_..Grid Overiay/

= P ey
l ,qff ,,f’ //ﬁj(’;/ﬁf Level
| L Satele S ___Weather
e ,”1 ,4;? f?’?i/;u/’ Ihdicator
; e ; Level
G AT “‘é';‘sl"
‘ "‘J Level
w,m’ﬁ;éfa' O . Map
fg::;” y - Level

A

NN

" Figure 2: Conceptual Model of Display

fits of reduced risk and frequent stopping points outweighed the
detriment of slower development speed, so iterative development
was chosen as the overall framework for the project.

Within the context of iterative development, it is still neces-
sary to settle upon a methodology for developing each version.
The classical software life cycle approach, which involves func-
tional specification, preliminary and detailed design, implemen-
tation, unit testing, integration testing, and system installation,
is relatively standard for software projects and was not too diffi-
cult to tailor to fit within the context of iterative development.
Functional specification and preliminary design are done at the
beginning of the project to provide an overall framework. The
functions to be implemented within each version are then iden-
tified and prioritized. Each version development involves a cy-
cle of detailed design, coding, and testing. While the hybrid of
these two methodologies is adequate for the job, it is also evi-
dent that certain aspects of this project lend themselves to an
object-oriented approach.

Conceptually, it would be nice to think of the display as con-
sisting of a group of objects superimposed upon one another, as
opposed to a single two-dimensional picture in which each pixel
was set to a certain color. Figure 2 shows a conceptual model of
the display in which various graphical objects are aligned in two-

726

dimensional planes according to their categories. These planes
are then superimposed upon one another like a sequence of slides
to present the overall display to the user’s eye.

The natural hierarchy existing between symbols further sup-
ports an object-oriented approach. Conceptually, for example,
the unit and base symbols can be thought of as a class of graphi-
cal objects, all possessing certain common characteristics such as
a square outline. This class can possess subclasses each having
common characteristics above and beyond those of the parent
class. These subclasses will all, by default, inherit the character-
istics of the parent class unless they specifically supercede them.
This property, called inheritance, is one of the central charac-
teristics of an object-oriented design. Inheritance will greatly
simplify the design of this system, and if a programming lan-
guage can be found which directly supports it, coding becomes
much easier. Manipulation of graphical objects will be facilitated
by the ability to perform operations upon complex objects, as
opposed to individual pixels. Because of these benefits, it was
decided to tailor the life cycle approach with certain character-
istics of object-oriented design, including the identification of a
hierarchy of types and inheritance of attributes. Thus, the fi-
nal methodology was a medley composed of elements from the




i Yersion h
s Version 3
- Version 2 #]
Preliminary Version |
System Design .
Specification | (Define getglled Unit and | Install
(Concurrently | Hierarchy of ([?sxg? Coding System | @nd
Identify Objects| Modules and A]e“’e1?ﬁ and Testing | Maintain
And Functions) | Interfaces . goEr }m Debugging
Between Them) | 0" F8Ch
Module)

Figure 3: Integrated Development Methodology

classical life cycle approach and object-oriented design within a
framework of iterative design (see Figure 3).

3.3. Software/Hardware Issues

Settling upon a methodology did not address all the issues.
There were a number of questions very specific to this sort of
undertaking that still needed to be answered. Many of these
dealt with how to develop the map image upon which everything
else was to be superimposed. Would map data have to be cre-
ated specifically for this project, or was there a suitable source
of cartographic data already available? How would the data be
translated into an image? Would any sort of mapping transfor-
mations (such as a Mercator projection) have to be performed
upon the data before generating the image? Hov would the po-
sitions of geographic locations on the map be associated with the
cartesian coordinate system used by the existing system? How
would panning and zooming be accomplished?

Fortunately, a ready source of data for the proposed environ-
ment is available. Microworld Data Bank II (MWDB II) is an
extract of the digital map database produced by the Central In-
telligence Agency; it includes data and code placed in the public
domain by Fred Pospeschil and Antonio Riveria {Pospeschil), Af-
ter close examination, we determined that MWDB II contained
exactly the level of detail of information needed for this project.
A simple routine can be written to extract only the information
pertaining to the theater of interest. The data was stored us-
ing latitude and longitude coordinates, which are converted to
screen locations via some relatively simple computations in the
display routine. It was found (based on a simple trial run) that
the data could be translated directly to the display without sig-

727

nificant distortion (projection was not necessary). Base locations
from the cartesian coordinate system in the TWX database are
cross-referenced with their longitude and latitude coordinates to
develop a set of transformation routines for the two systems.
Finally, we decided that the implementation of the zoom and
pan capabilities would be postponed until after the selection of
hardware and graphics software, since these might handle these
features for the programmer.

Another issue was how the graphical data was to be stored and
represented. In particular, the representation of the hierarchy of
classes of objects might have proved to be difficult; however, this
consideration was taken care of by the graphics software package
selected. This will be discussed in more detail later.

Besides the difficulties of maintaining the hierarchical relation-
ships of objects, there was some question of whether it was ap-
propriate to store the graphical data in the main TWX database,
or to store it locally on the microcomputers. Advances in tech-
nology over the last decade have made moderately fast displays
available and affordable, but speed of display update is still a
significant factor in most graphics systems. Although the need
for animated display effects are not anticipated for TWX, other
exercises dealing with movement and combat of individual units
might be unduly constrained by the inability to perform ani-
mation. Storing and retrieving graphical data in the central
database on the host computer would probably introduce a rather
large delay in response time due to network overhead. However,
it might be feasible (if a suitable representation could be found)
to store graphical data in the main database for long-term stor-
age, and download it to local storage on the microcomputer when
the interface is first invoked. Although this will involve some de-
lay in the initial display, subsequent interaction can proceed at




an acceptable pace. In addition, graphical representations will
exist in a single, centralized repository. If a change is made to
the map, for example, the data will only.have to be changed in
one place.

Another, less difficult decision was the choice of the most ap-
propriate set of symbols for military units and bases. NATO
map symbols were selected for this project both because of their
almost universal use in military tactical situation displays and in
wargames.

Perhaps the most important decisions to be made involved the
selection of additional hardware and graphics software, These
are addressed together here because the factors involved in the
selection are heavily intertwined. As pointed out earlier, the
Z-158 microcomputers are not completely compatible with IN-
GRES/NET, and they do not provide very sophisticated graph-
ics capabilities. They are equipped with CGA graphics adapters,
which provide a maximum resolution of 640x200 pixels, and they
are slow in performing graphics calculations. Workstations such
as the Sun, the Silicon Graphics IRIS, and the VAXstation GPX,
which provide an order of magnitude leap in graphics capabili-
ties, were briefly considered, but the decision was made to stay
within the personal computer (PC) realm. Potentially available,
the AT-compatible Zenith Z-248 provides EGA graphics, with a
maximum resolution of 640x350 pixels, and is substantially faster
than the Z-158. However, taking into account the rapid pace at
which current capabilities are becoming obsolete, it was decided
to try to get ahead of the game by purchasing hardware which
would not fall behind the state of the art too quickly. A number
of graphics driver boards are available which provide PCs with
almost workstation-level graphics functionality. We determined
that one of these boards, installed in a Z-248 and combined with
an appropriate monitor, would provide the desired graphics ca-
pabilities at minimal cost. It remained to be seen whether the
main memory limitation of 640K bytes would impose too much
of a constraint, since it would be necessary to have INGRES rou-
tines and the appropriate graphics routines resident at the same
time. Selection of a specific graphics driver would depend upon
the graphics software package selected.

While PC compilers for most standard programming languages
provide facilities for graphics programming, these facilities are
typically very low-level primitives dealing with individual pixels.
What is needed is a language which will allow the definition,
storage, and manipulation through high-level function calls of
graphical objects and classes of objects, hopefully with some de-
gree of support for object-oriented characteristics.

There are a number of different categories of graphics software
available commercially. Many of these do not permit interaction,
and many of those that do allow interaction do not allow control
by a user-written program. Thete are several graphics applica-
tion standards and proposed standards which address the sort
of graphics functionality needed for this project, including Core,

728

Graphical Kernel System (GKS), and Programmer’s Hierarchical
Interactive Graphics Standard (PHIGS). Each of these standards
allows the separate modeling and viewing of graphical objects
through high- level function calls. These function calls usually ei-
ther constitute a programming language unto themselves, are im-
plemented as functions or subroutines of another language, or can
be embedded into a standard programming language and trans-
lated by a preprocessor. Unfortunately, most implementations of
these standards are geared towards workstations, and there are
relatively few available for PCs. A graphics application develop-
ment system called Hierarchical Object-Oriented Picture System
(HOOPS) was evaluated which runs on a variety of systems, in-
cluding AT-compatible microcomputers. HOOPS, a PHIGS-like
graphics package, provides many of the desired features. It allows
definition, storage, and manipulation of graphical objects and
classes of objects through calls to a library of C functions or For-
tran subroutines. Inheritance of attributes is directly supported,
as well as high-level functions to change attributes (such as color)
and perform transformations upon objects (such as panning and
zooming)., The PC version of HOOPS supports EGA graphics
as well as several popular graphics drivers. Theoretically, source
code developed with HOOPS is portable across the entire range
of hardware systems supported (limited by the portability of the
host language in which HOOPS routines are imbedded). HOOPS
was given a hands-on evaluation to determine its suitability, and
subsequently chosen for use. The HOOPS Fortran binding was
newly released (and therefore untried), and existing HOOPS doc-
umentation was written entirely for C applications. In light of
these considerations, as well as the fact that the version of IN-
GRES being used only supported a C binding, it was initially
decided to program the graphics subsystem in C using HOOPS
function calls and embedded INGRES commands. Experimenta-
tion with the Z-248 showed that the main memory limitation was
indeed too constraining, so development efforts were switched to
a Vaxstation GPX. Once 0S-2 becomes available, with its abil-
ity to access large amounts of main memory, the system can be
ported back onto microcomputers.

4. PROTOTYPE

An early prototype of the system has been developed already.
The prototype system (see Figure 4) consists of a map of the
NATO Central European Region, showing coastal and country
boundaries, and an asterisk representing a base location. In ad-
dition to being drawn in different colors, coastal and country
boundary lines can be distinguished by their different patterns;
coast lines are solid and country boundaries are dotted. This
use of redundant distinguishing features is especially useful when
looking at a hardcopy of the map, since the laserprinter used ren-
ders only black and white pictures. Asterisks will be used for the
majority of bases and units at the overview level because of the
constraints of space. As the user zooms in on a specific area,




Figure 4: Protolype TWX System Display

these asterisks will be replaced with NATO symbols, beginning
with the higher-level units first.

5. CONCLUSION

In this paper we have proposed an improved interface for the
TWX system, and a reusable approach for adding a map-based
graphical interface to an existing wargaming system. Although
the system is still being implemented as of the writing of this
paper, it seems appropriate to forward some observations and
draw some conclusions on lessons learned.

It is already evident that the hybrid methodology consisting
of elements of iterative design, the classic software life cycle,
and object-oricnted design is a viable approach to this sort of
project. Itach of these approaches imparts certain strengths to
the development.

A number of potential enhancements to TWX suggest them-
selves. The most obvious enhancement addresses the inability to
interactively generate and store new graphical objects. An icon-

729

driven interactive “paint” program, similar to those pioneered
by the MaclIntosh computer, but with the ability to generate
HOOPS-compatible images and store them in the central IN-
GRES database, would be an excellent follow-on to this project.
Another potential area for exploration might be the integration
of the menu-driven INGRES 4GL front end system with the
HOOPS graphical interface. Currently, each subsystem oper-
ales separately, with the 4GL system doing textual input, and
the graphics system handling output. The integration of these
two subsystems would greatly simplify use and maintenance.

ACKNOWLEDGEMENTS

This research is supported by a grant from the Air Force
Wargaming Center, CADRE/WG, Maxwell AFB, AL, 36112.




REFERENCES

Brooks, M. D. (1987) Developing a Database Management Sys-
tem and Air Simulation Software for the Theater War Ex-
ercise. MS Thesis, AFIT/GCS/ENG/87D-6. School of En-
gineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH.

Brooks, M. D., Kross, M. S. and Roth, M. A. (1987), Re-Hosting
a Computer Assisted Wargame Exercise from a Mainframe
to a Micro: Database and User-interface Issues, Proceedings
of teh 1987 Winter Simulation Conference, A. Thesen, H.
Grant, W, David Kelton, eds., 870-875.

Kross, M. S. (1987), Developing New User Interfaces for the
Theater War Exercise. MS Thesis, AFIT/GCS/ENG/87-
19. School of Engineering, Air Force Institute of Technology
(AU), Wright- Patterson AFB, OH.

Pixelworks, Inc. (1987) Clipper Graphics Series. Company
Brochure. Pixelworks, Inc., Hudson, NH.

Pospeschil, Fred. On-line documentation file for Microworld
Data Bank II. Bellevue, NE.

Theater Warfare Ixercise Users’ Handbook (1987). Unpub-
lished Manual. Air Force Wargaming Center, Maxwell ATB,
AL.

AUTHORS’ BIOGRAPHIES

DARRELL A. QUICK 1s an M.S. student in the School of
Engineering at the Air Force Institute of Technology and a Cap-
tain in the United States Air Force. He received a B.S. in com-
puter science from Southwest Texas State University in 1983. His
previous assignments included systems analyst/programmer and
database administrator for Air Training Command. His current
interests include graphics, software engineering, and database

management systems.

Darrell A. Quick

Air Force Institute of Technology
AFIT/ENA

Wright-Patterson AFB, OH 45433-6583

MARK A. ROTILis an assistant professor of computer systems
in the School of Engineering at the Air Force Institute of Technol-
ogy and a Captain in the United States \ir Foree. He received a
B.S. in computer science from Illinois Institute of Technology in
1978, an M.S. in computer systems from the Air Force Institute
of Technology in. 1979, and a Ph.D. in computer science from the
University of Texas at Austin in 1986. His previous assignment
included systems analyst and programmer for Headquarters Air
University, Data Automation Directorate in the area of computer

assisted wargaming exercises. His current research interests in-
clude wargaming simulation and database management systems.
He is a member of ACM and IEEE Computer Society.

Mark A. Roth

Air Force Institute of Technology
AFIT/ENG

Wright-Patterson AFB, OH 45433-6583

730



