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ABSTRACT

Selecting appropriate buffer sizes for the transport systems of
automated manufacturing systems is a complex task that must
account for random fluctuations in production rates by individual
machines as well as the transport delays that are a part of the
material handling system. I the buffer sizes are too large then the
transport delays are excessive and more in-process inventories
must be loaded into the system to accomodate the large buffer
sizes, If the buffer sizes are too small then small processing delays
will cause the buffers to fill and upstream workstations will be
blocked from releasing completed workpieces. This paper
integrates an extension of the simulated annealing algorithm used in
combinatorial optimization with a discrete event simulation of the
manufacturing system to find optimal buffer sizes for
asynchronous assembly systems which involve antomated
inspection as well as automated assembly. ‘

L_INTRODUCTION

I.1. Automatic Assembly Systems

An Automatic Assembly System (AAS) is an array of
workstations, and a transfer mechanism to convey the assemblies
from one workstation to the next one. The assemblies are
transported by work carriers or pallets that hold the assemblies.
The workstations usually consist of automatic part-feeders and
workheads to perform assembly operations. In most of the AASs,
the workheads remain stationary and the workcarriers are
transferred intermittently (Boothroyd et al. 1982). The
workstations are generally arranged in a closed circular fashion,
and a fixed number of pallets perpetually circulate in the system to
link the workstations. Simple insertion, nut and screw running,
and welding are some examples of typical assembly operations.

According to the transfer systems used, AASs can be
categorized as synchronous and asynchronous systems. In the
former category, the transfer of all assemblies occurs at fixed time
intervals and the whole system is paced by the speed of the
transport mechanism. On the other hand, in the latter category, the
assembly is transported on a pallet which is moved by a transfer
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chain/conveyer. In asynchronous systems pallets
independently. As a result of this, to a certain extent, workstations
can operate independently.

Some AASs have test (inspection) stations, and repair loops.
At the test stations, assemblies are tested according to a sampling
plan, and those which are found to be nonconforming (e.g. those
with improperly assembled components) are diverted into a
secondary loop where the defects are corrected at a repair station
and the workpiece is again allowed into the main loop. Throughout
this paper, we shall be discussing about the asynchronous
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automatic assembly systems that have test stations and repair loops.
1.2. Parameters that Affect the Performance of an AAS

Performance of an AAS depends on various parameters. These
parameters should be considered at the design stage. The major
parameters are the cycle times of the workstations, the rate of
occurence of parts jams for each workstation, the distribution of
random amount of time to clear jams, the buffer sizes between the
pairs of workstations, the unit transport time for the pallets, the
total number of pallets on the line, the average fraction of defective
parts produced, and the sampling policy for the quality control of
the finished assemblies (however, different quality control policies
can be employed at the various stages of the production). In
general, the cycle times of workstations are deterministic, But jams
or misassembled parts, due to their random clear times, introduce a
randomness to the cycle times (see section 1.4). The jam
occurrences, which make the analysis of an AAS more difficult,
tepresent the first key factor reducing the line efficiency. In an
AAS, the parts jams may occur whenever a defective part is
assembled or there is a bad positioning of the part being assembled.
An other example of the parts jam can be given for a robotic
assembly station when the robot drops the part accidently and
moves back to the original position to pick a new part (Liu and
Sanders 1986). The second key factor affecting the line efficiency
is the starvation and the blocking effects. If the preceding buffer
of a particular workstation is empty, the workstation is starved and
if the following buffer of the workstation is full, then it is blocked.
In both cases, the workstation cannot operate. Starvation and
blocking are often caused by the insufficient buffer sizes between




the stations, and the total number of pallets in the system.
Mismatches in the sampling time requirements required for
reasonably complete system tests compared to production cycle
times constitute the third key factor which reduces the line
efficiency. Due to the very high production rates of AASs, the
problem of congestion caused by the final test station must be
faced. This congestion could be overcome again by the appropriate
allocation of buffers, and employing looser sampling plans. Looser
sampling plans reduce the Average Outgoing Quality (AOQ) of the
product where AOQ is defined as percent defective product going
to inventory. A clear tradeoff exists between AOQ and the
production rate (Sanders 1985, Bulgak and Sanders 1987a, Bulgak
and Sanders 1987b).

1.3. Test and Repair Stations, Inspection Policies, the
Effect of the Counter-Flow Loop

The assemblies are circulated through the workstations in the
main loop and finally enter the test station where they are inspected
according to a sampling policy. After the inspection, the assemblies
split into two groups. While the non-defective assemblies go to the
inventory, those which are identified to be defective are diverted
into the counter-flow loop for repair. Naturally, the cycle times of
the repair stations are relatively much bigger than those of the
workstations on the main loop. Although, in general, the incoming
fraction defective (p' ) coming to the test station is small, a
bottleneck may occur due to the bigger repair times. The repaired
assemblies are then taken back to the main loop where they merge
with the assemblies in the main loop for inspection. As is the case
in many AASs, in our examples the workstation right before the
inspection station in the main loop handles the merging
phenomenon. Since this station is fed by two sources, the buffer
sizes preceding, and succeeeding the station become more crucial.

Depending on our objectives and policies, we can employ
various sampling plans in the test station. These plans are the ones
for continuous production. As well as 100% inspection, the
sampling plans suggested by Dodge (1943), Wald and Wolfowitz
(1945), and Girschick (Duncan 1974) are good examples of
rectifying inspection plans for continuous production. Because of

their wide applications in industry, we chose to use Dodge CSP-1
plans in our examples. Obviously, 100% inspection yields the best

AOQ while reducing the line efficiency of the AAS. Dodge CSP-1
plans, on the contrary, cannot guarantee an equally good AOQ but
improve the line efficiency.

At the start of the CSP-1 plan all product is inspected 100
percent. As soon as i consecutive units of product are found to be
free of defects, 100 percent inspection is discontinued and only a
fraction f of the units are inspected. These individual sample units
are to be selected one at a time at random from the flow of the
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product. If a sample unit is found defective, reversion is
immediately made to 100 percent inspection and cycle is completed
(Duncan 1974), The three important parameters of a Dodge CSP-1
plan are f, i, and Average Quigoing Quality Limit (AOQL). AOQL
is defined as the maximum possible value of AOQ which cannot be
exceeded no matter what the value of p' is. There may be
associated with each CSP-1 plan an overall AOQL, the specific
value depending on the values of i and f combinations.

I.4. The AAS Model

In this study, an AAS with M workstations in the main loop
and 1 repair station in the counter-flow loop is discussed as an
example. Figure 1 shows a scheme of the AAS under study. The
workstation number 1 is the load/unload station. The workstation
number M-2 is the one which handles the merging of the
assemblies coming from main and repair loops. Station number
M-1 is the inspection and test station, and number M is the repair
statian, All other workstations perform various assembly
operations which are immaterial in this study (Figure 1).

As examples, either 6 station or 10 station AASs are used in
the buffer size optimization problem. Some stations in these AASs
are subject to jam with a 5% jam rate. Taking the random jam
occurences into consideration, we model the station cycle times (T)
in terms of two components as follows.

T=D+XR

where D is the deterministic cycle time and XR is the random
component due to the random jam occurences. In the expression

XR, R is the time required to clear a jam, and X is an indicator
variable that takes the value of 1 if a jam occurs, and 0 otherwise.

In some examples R is assumed to be a deterministic quantity of 15
time units, and in some others, it is assumed to be a random
variable with geometric distribution having a mean of 15 time units.
Cycle time for station number M-2 (where merging occurs) is 1
time unit. Cycle times for test and repair stations are 7 and 20 time
units respectively. All other workstations have the deterministic
components (D) of cycle times of 5 time units. The fraction
defective p' is considered to be 5% in all the runs. Buffer sizes in
the system are numbered according to the numbers of workstations
preceding them, Since workstation M-2 is fed by two sources, and
therefore having two buffers that precede it, these buffers are called
b(M-2), and b(M-2)'. b(M-2)' is the buffer preceding station M-2
on the repair loop (Figure 1).



LS. Buffer Size Allocation in AASs as a Combinatorial
Problem

As noted above, in asynchronous automatic assembly systems
the assembly is transported on a pallet where the pallets ride or float
on a transfer chain/conveyer. This transfer mechanism is called a
free-transfer mechanism. The free-transfer mechanisms permit
pallets to move independently and to be queued in front of a
workstation. The buffer size determines the number of pallets that
can be queued in front of a particular workstation. In other words,
it is the spacing between the pairs of workstations where a finite
number of pallets can fit. To a certain extent, an autonomy from
workstation to workstation could be achieved in an AAS due to the
buffers. In many cases, this autonomy is important in the context
of line efficiency. Reductions in line efficiency caused by the
random jam occurrences, and the blocking and starvation effects
can largely be avoided or considerably be reduced by the careful
allocation of buffers.

Practically, the possible buffer configurations of an AAS are
finite. If N is the total number of pallets that perpetually circulate
through the AAS, then any buffer size in a real world system
should be in the interval [1,N]. Provided that we have M buffer
spacings between each pair of workstations, then NM different
buffer configurations are possible. NM, which constitutes the size
of the configuration space, is a big number even for small AASs.
For example, a 10 station AAS with 11 buffer spacings in Figure
1, NM js 4.1943*1017 for a total of 40 pallets in the system, and
3.62797*1019 for a total of 60 pallets in the system. In general,
industrial AASs have more workstations and hence buffer spacings
and more total number of pallets than that in our example. The
problem is to find the buffer configuration which yields the best
performance value (e.g. throughput) for a given AAS. Hence, we
view the buffer size allocation problem as a combinatorial, discrete,
and multivariate Monte Carlo optimization problem.

1. PREVIOUS WORK

Optimization by simulated anpealing was independently
presented by Kirkpatrick et al. (1983) and Cerny (1985). It was
successfully implemented for various deterministic optimization
problems and some theoretical studies regarding its convergence
characteristics have been done. This section contains a brief review
in the area.

Kirkpatrick, Gelatt, and Vecchi (1983) introduced optimization
by simulated annealing. They describe a detailed analogy between
annealing in solids and multivariate combinatorial optimization that
provides a framework for optimization of the properties of large
and complex systems. They discuss the Metropolis procedure
(Metropolis et al. 1953) in statistical mechanics which is the analog
of the optimization method they propose. They also discuss
implementation of the algorithm. They provide examples of various
optimization problems that are all very complex and difficult to
solve due to their sizes. Those problems include physical design of
computers, and the travelling salesman problem. They conclude
that simulated annealing may be a better model when compared to
iterative improvement in combinatorial optimization. Vecchi and
Kirkpatrick (1983) applied simulated annealing to global wire
routing for both idealized and actual designs of realistic size and
complexity. They conclude that simulated annealing results are
better than those obtained by the conventional heuristic methods.
Hence, they use them as a standard against which to compare
several sequential or greedy strategies commonly employed in
automatic wiring programs. Cerny (1985) presented a Monte Carlo
algorithm to find approximate solutions of the travelling salesman

problem. The algorithm generates randomly the permutations of the
stations of the travelling salesman trip, with probability depending

on the length of the corresponding route. Reasoning by the analogy
with statistical thermodynamics, he uses the probability given by
the Boltzmann-Gibbs distribution. He states that by using this
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Figure 1. Scheme of an assembly system with a counter-flow repair loop
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simple algorithm, it is possible to get very close to the optimal
solution or find the true optimum. He demonstrates several
examples. He conjectures that his thermodynamical approach to
travelling salesman problem can offer a new insight into
optimization problems and can suggest efficient algorithms for
solving them.

Hajek (1988) establishes cooling schedules for optimal
annealing. He states that simulated annealing is a randomized
algorithm where the level of randomization is determined by a
control parameter T, called temperature. T converges to zero
according to a deterministic "cooling schedule". In this theoretical
study, he gives a simple necessary and sufficient condition on the
cooling schedule for the algorithm state to converge in probability
to the set of globally minimum cost configurations. Sasaki and
Hajek (1986) used simulated annealing for the problem of finding a
maximum cardinality matching in a graph. Mitra, Romeo, and
Sangiovanni-Vincentelly (1986) developed a theoretical analysis of
simulated annealing based on its precise model, a
time-inhomogeneous Markov chain. They analyzed the finite-time
behaviour of simulated annealing and obtained a bound on the
departure of the probability distribution of the state at finite time
from the optimum. This bound gives an estimate ‘of the rate of
convergence and insights into the conditions on the annealing
schedule which gives optimum performance. Wilhelm and Ward
(1987) present an application of the simulated annealing method to
solve the quadratic assignment problem. They test the performance
on a set of standard and newly created problems and compare the
results of simulated annealing with the results from other known
heuristics. They conclude that simulated annealing can yield better
solutions at comparable CPU times under certain conditions.

III, A _MODIFIED SIMULATED ANNEALING
ALGORITHM

Simulated annealing is a randomized algorithm which has been

developed for the deterministic multivariate combinatorial
optimization problems. In this paper, we present a modified

version of this algorithm in an attempt to extend its application to
the domain of Monte Carlo optimization. Simulated annealing has
proved to be a useful and reasonably general purpose tool for
(deterministic) combinatorial problems. As with many other general
purpose tools, its efficiency is not always as great as one might
hope. However it does provide a general purpose approach for a
wide class of difficult problems. Unfortunately when one extends
the problem class to stochastic combinatorial problems where the
value of the objective functional can only be estimated, there are
few methods which offer one any hope of solving the complex
real-world optimization problems that arise. The objective of this
paper is to integrate an extension of the simulated annealing
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algorithm used in combinatorial optimization with discrete event
simulation of the manufacturing system to find optimal buffer sizes
for asynchronous assembly systems which involve automated
inspection and repair as well as automated assembly.

The basic idea in the modified version of simulated annealing
is to make the comparisons based on whether or not the values of
the objective functionals indicate statistically significant differences
at each iteration. The differences between the values of objective
functionals are decided to be statistically significant or not based on
the confidence intervals set for these values. Each confidence
interval is set based on a minimum of two independent replications
of the discrete event simulation, In a comparison of the current
value of the objective functional with the previous one, if the
current value is not smaller and yet not significantly greather than
the previous one, one more simulation replication is conducted, the
confidence interval is updated, and another comparison is made.
This process is repeated until these two values of the objective
functionals are found to have a statistically significant difference or
a maximum allowed number of replications is achieved. If they
have a significant difference then the proposed configuration is
accepted. Otherwise, the iteration is ignored, the temperature is not
updated, and a new iteration is started based on the previous
configuration with the current temperature. If the value of the
objective functional of the proposed configuration is smaller (not
necessarily significantly smaller) than the current one, this
configuration is accepted with a certain probability which is a
function of the values of the objective functionals compared and the

current temperature.

In section I we made a brief introduction to automatic
assembly systems, and described the discrete event simulation
mode] used as well as the buffer size allocation as a combinatorial
problem, and in section II we reviewed some of the previous
studies in simulated annealing, The rest of the paper is organized as
follows. In section III, the new version of the simulated annealing
algorithm is proposed which permits its extension to Monte Carlo
combinatorial optimization problems. In section V the applications
of the algorithm to the problem stated above will be demonstrated.

IIL.1. Problem Formulation
‘We formulate the problem as follows:

max : obj F(x) ; xin X

F(x) = Egf (x, )

where x is the vector of decision variables, X is a set of

constraints, and @ is a random variable belonging to the appropriate
probability space.



IIL2. Notation

In the algorithm and implementation the following additional
notation will be used:

j ¢ iteration number

xj : the vector of decision variables at iteration j

x™ : the current best vector of decision variables

N(x*) : the set of all possible neighboring configurations of x™
C(Xj) : the cardinality of N(xj)

K : the number of decision variables

F(Xj) : the objective functional whose value is estimated by
discrete event simulation at Xj

1 : number of discrete event simulation replications currently
performed

R : maximum number of replications allowed where R is
chosen a priori

Myjr statistical estimate of the mean of F(Xj) based on r
replications

Vxjr : statistical estimate of the variance of F(Xj) based onr
replications

Clxjr © 2 confidence interval defined as [ Myir-ta2, r-1
(vxiD V2 myjrttopn, r1 (o721

u : arandom variable uniformly generated in the interval [0, 1]
¢ : a constant which is greater or equal to the height of the
highest local maximum which is not a global maximum state
Tj : the value of temperature at iteration j.

I11.3. The Algorithm

For a cooling schedule T;=T() that has a parametric form as a
function of j, the algorithm can be stated in terms of the following
steps:

Step 1. Determine Xj arbitrarily at j=0.
Step 2, Assign xj-> x* and compute my*;- where r=R at j=0.

Step 3. Generate another xj configuration randomly where %€
N(x*).

Step 4. Compute myjr and Clyjr based on r replications where
initially =2 at j.

Step Sa. Check whether the interval [ Mixjr, Myjr + ty2, r-1
(vxjp 2] includes my*ie . If it does, go to Step Sb. If it does not,

go to Step 6a.

Step 5b, Setr->1+1. Ifr <R, go to Step 4. If 1=R, go to Step 3.
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Step 63, If Mgir > my*jr, g0 to Step 6b. If Myjr < My*jr, g0 to
Step 6¢.

Step 6b, Accept xj configuration. Assign Xj-> x*.Goto Step 7.

Step 6¢, Generate u. If u < exp( (mxjr -y} / Tj}, then accept Xj
configuration, and assign xj -> x*. Otherwise, reject Xj. In both
cases, go to Step 7.

Step 7. Set j -> j+1, and update Tj (see section IV). Check the
stopping criterion (see section IV). If it is satisfied, go to Step 8.
Otherwise, go to Step 3.

Step 8, Stop.

IV. IMPLEMENTATION AND NUMERICAL

EXAMPLES

The buffer spacing allocation in asynchronous assembly
systems is approached as a combinatorial problem and the
annealing algorithm described in the previous section is
implemented. The AAS under study was described in section I.
The objective function to be maximized is the number of assemblies
produced by the last workstation of AAS per unit time. Any
proposed xj configuration is generated from the set of neighboring
configurations of x* that is (N(x*)). If bx*,k is an individual
buffer size in x* where k=1, 2,....K, and K is the number of
decision variables (buffer spacings) in the system, then the set
N(x*) consists of all possible combinations of by* K+, by* (o +2,
by* k-1, by* -2 for all k's. The probability of generating an Xj
configuration for a given Xj* configuration is simply 1/4K.
However, each buffer spacing generated is constrained by the
interval [1,N/3]. Even though in section L5, we have stated that all
buffer sizes in a real world AAS should be in [1,N], our past
experience on AAS shows that in most cases, in optimal
configurations, the buffer sizes do not exceed N/3. Based on this
heuristic, narrowing the interval to {1,N/3] enables us to save
redundant iterations and avoid generating non-optimal
configurations.

In our runs, we used a cooling schedule such that a single
comparison is made at a certain temperature after which the
temperature is reduced according to a certain function for the next
comparison. The function that we use for updating the temperature
has the parametric form of Tj=c/log(I+j) is the one proposed by
Hajek (1988). Hajek defines ¢ as a constant which is greater or
equal to the depth of the deépest local minimum which is not a

global minimum configuration, If ¢ is greater or equal to the depth
mentioned above, the necessary and sufficient condition on the

cooling schedule for the algorithm state to converge in probability
to the set of globally minimum (maximum) configurations is




satisfied. Proofs of convergence for deterministic optimization
cases are provided in (Hajek 1985). Even though the original
convergence proofs do not apply to applications of simulated
annealing for the optimization of stochastic systems, our
experimental results indicate that this cooling schedule gives us
better results as opposed to others such as Tj=afT0 where O<a<l.
In the cooling schedule Tj=c/log(1+j) , the value of ¢ is determined
emmpirically.

In stochastic optimization problems, stopping criteria are
generally difficult to determine. In practice, one generally decides
to stop either when there is no more or very small improvements in
the values of the objective functional or when a maximum number
of iterations is achieved. We decided to stop after reaching a
maximum number of iterations, hence a very low temperature
where we can regard that the system is "frozen".

Discrete event simulation is used to observe the performance
of the AAS described in detail in the previous section for the given
buffer configuration. The following tables show a summary of our
simulated annealing runs and results. A single comparison is
performed at a certain temperature for each of the runs. R (the
maximum number of replications allowed at each iteration) is
chosen a priori to be 10. The iteration numbers do not include the
cases where the interval [ myjr, Mxjr + toy2, r.1 (vxjr)l/z] includes
my*jr . The elements of x™ vector are the buffer sizes denoted by
b1, by, b3, b4, bs, bg, bs for 6 station AAS examples, and by
bi, by, b3, by, bs, bg, by, bg, by, by, bg: for 10 station AAS
examples respectively (figure 1),

Table 1. A 6 station AAS with 24 pailets where statons 1, 2. and 3 are subject to jam. Time

required to clear a jam is deterministic. A Dodge CSP-1 plan with AOQL: 6.5%, f: 0.20.1: 10
is employed. ¢: 0.001

{iteration I x* mx®5e | r | 80% coafidence intervals |

1 1(3,3333.L1) 1013071 1 101 i
2 11441512 § 043194 1 2} [0.1313,0.1326] |
I3 13262231 f 01337271 2 | [0.1332,0.1342] |
t4  1(5181852) 1 Q13326 1 2 [0.1323,0.13421 |
s 1(6272,713) ) 013543 1 2 | [0.1349,0.1359] !
{25 1(5,55475,1) 1043874 1 3 1 [0.1365,0.1410] i
130 106775842 1 014102 1 3 | [0.1395,0.1426] !
I 50 1(8,86.637.4%) 1 014186 | 3 | [0.1406,0.1431} |
99 1(8,7,7.4,8,65) 1014163 1 3 | [0.1402,0.1430]
I 380 1(7,855857) 1 014068 | 2 | [0.1399,0.1415] I
1 388 1(83,38,5388.7) 1014186 1 3 | [ 0.1406,0.1431] 1
1 399 1(8828,5838,7D 1014186 | 3 1 [0.1406,0.1431] |

Table 2. A 6 station AAS with 24 pallets where stations 1, 2, and 3 are subject to jam. Time
required to clear a jam is 2 random variable with a g ic diserit A Dodge CSP-1 plan
with AOQL: 6.5%, f: 0.20, iz 10 is employed. c: 0.001

Iiteration 1 x* I mg*e | r | 80% confidence istervals !
1 1(333331L]) 1 6.12557 | 10 | |
12 §(1,44,1512) 1012898 | 2§ [0.1277,0.1302] |
I 3 1(326273.1) 1 0.13064 § 3§ [0.1271,0.1342] !
I 5 104383652 1013061 1 3 1 {0.1294,0.1318] |
I 10 1(548154.4) 10133911 2 1 [ 0.1288, 0.1390 ] |
120 1(4.672762) 1013348 | 4 | [0.1302,0.1367] |
1 25 1{648L5%+% 1013344 1 4 1§ [0.1300,0.1369] ¢
I 50 1(838,62384.3) 10139711 2 1 [0.1328,0.14661 1
1 417 |(8,8,62,384.8) 10139711 2 1 {0.1328,0.1466] |
1499 1(8.8,6,2,848) 10139714 2 1 {0.1328,0.1466] 1
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Table 3. A 6 station AAS with 24 pallets where stations 1, 2, and 3 are subject 10 jam. Time
required to clear a jam is deterministic. A Dodge CSP-1 plan with AOQL: 6.5%, f: 0.066, i: 19
is employed. c: 0.001

{iteration | x* | me*e | r | 80% confidence intervals |
1 13333311 I 0.13298 | 10 ! I
6 1(0,44.1,512) 1 013278 | 2 1} [0.1267,0.1388 ] I
I 10 1(1,44.1,512) 1013278 1 2 1| {0.1267,0.1388 } !
20 1(1,5524,2,]) 1013277 1 5 1 [0.1298,0.1358 ] |
127 1(44854,1L1) 1013699 1 2 1 [0.1307, 0.1427 ] i
30 1(3,674,533) 1 0.13656 | 6 1 [0.1344, 0.1387 ] |
I 34 1(5755,62,5) 1013907 1 2 1 [0.1329,0.1452 } )
I 40 1(6,8,4,8,3,1,4) 1 0.14i51 1 3 1 £0.1381,0.1449 } |
| 100 |(6.8,4,838,1,.4) 1 014151 1 3 | {0.1381,0.1449 ] |
I 399 168483814 } 014151 1 3§ {0.1381,0.1449 ) i

Table 4. A 10 station AAS with 40 pallets where stations 2, 4, 6 and 7 are subject to jam.
Time required to clear a jam is a random variable with a geometric distribution. A Dodge
CSP-1 plan with AOQL: 6.5%, f: 0.20, i: 10 is employed. c: 0.001

literation]x* I mx*iz 1 r | 30% confidence intervals |
1 1(3,3,3,3,3,3,3,3,3,1,1) 1 0.12146 | 10 | |
I 6 (44542542423 10125061 2 | [0.1196, 0.1305 ] !
127 1(567.54451532) 1013187 1 2 | [0.1213,0.1425] 1
1 43 1(,796334,1353) | 013184 1 6 | {0.1283,0.1354 ] ]
I 45 1(99,10,7,1,253,574) | 013176 1 6 | [0.1283, 0.1352] |
| 46 1(838,8.8.23,7,4355) ! 013692 | 3 1 [0.1322,0.1417 ] !
t 116 1(9,7,993,56653,4) 1013684 | 3 | [0.1319,0.1418 ] 1
I 128 1(109,10,8,1,7,5,5,6,4.5) 1 0.13656 | 6 1 [0.1331,0.1400 ] I
I 132 1(13,511,11,3,3,9.9.7,3,5( 0.13933 | 4 1 [0.1356, 0.1431 ] 1
1 499 1(13,5,11,11,3,3,9,9,2,3,5)f 0.13933 | 4 1 [0.1356,0.1431]) !

In this study we have made an attempt to extend the application
of simulated annealing to the domain of Monte Carlo optimization.
As an example, we discussed buffer size allocation problem in
asynchronous assembly systems, and presented some preliminary
experimental results. Simulated annealing is known to yield "high
quality" solutions to deterministic optimization problems. We
conjecture that simulated annealing has the potential in providing
"g00d" solutions of not only deterministic but also stochastic
combinatorial optimization problems. The convergence
characteristics of simulated annealing in optimization of stochastic
systems is the subject of our ongoing research.
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