Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Simulation modeling of JUST-IN-TIME assembly systems
using an information-based methodology
‘ Michael G. Ketcham

Dept. of Industrial Engineering &
Operations Research
University of Massachusetts, Amherst
Ambherst, Massachusetts

ABSTRACT

This paper describes the application of an information-
based modeling methodology to assembly systems in manufac-
turing. This approach defines information relationships among
objects in a simulated system. A dynamically maintained data-
base is explored as a simulation runs to control entity flow and
requests sent from one entity to another. This allows a simula-
tion to represent multi-product, mulii-level assembly relation-
ships, and to represent "pull" production scheduling as a special
case of a more generalized request mechanism. In addition to
manufacturing applications, assembly relationships characterize
a large class of systems where the system logic depends on the

. simultaneous coordination of multiple entity flows and control
depends on request messages.

1. Introduction

Assembly systems are among the most difficult to model in
conventional simulation languages for manufacturing, since the
product flow and assembly points for each part need to be
separately modeled for each subassembly. Adding a new pro-
duct or changing a bill of materials can mean significant repro-
gramming. Similarly, if several products with different require-
ments are assembled at the same location, the modeling net-
work can become extremely complex. ‘Assembly systems, how-
ever, constitute a significant portion of the U.S. manufacturing
base, and assembly relationships characterize a larger class of
systems, including communications systems, where the system
logic depends on the simultaneous coordination of multiple en-
tity flows and the control of systems based on requests to ini-
tiate an operation.

The basic information needed to represent an assembly sys-
tem is quite simple. Representing such a system requires a list
of work stations in the system (that is, a list of locations at
which operations can be performed), a list of operations, and a
list of entities involved in each operation, along with a bill-of-
materials to represent product assembly requirements, and in-
ventory control policies used to manage the availability of pro-
duct subassemblies. A "bill-of-materials” is simply a hierarchi-
cally organized tree indicating which entities need to be simul-
taneously available before an operation can take place. By
having a simulation read directly from an information model
implemented as a database, we can easily model complex as-
sembly systems along with related control policies, such as
just-in-time (JIT) production scheduling.

This paper describes a modeling methodology we have
called "information-based" modeling that defines relationships
among objects in a simulated system using a dynamically main-
tained database. The database can be flexibly explored as a
simulation runs to control entity flow and control requests sent

624

from one entity to another. This allows a simulation to
represent multi-product, multi-level assembly relationships in
manufacturing, and also to represent "pull” production schedul-
ing as a special case of a more generalized request mechanism.

This methodology is implemented in a system called IBIS.
In the user’s view, the IBIS database has a form similar to that
of a production database that specifies bill-of-material and bill-
of-resources relationships, product routing, product processing
requirements, and work station configurations. The user’s view
of the database overlays highly flexible data structures that in-
corporate capabilities similar to those in object-oriented pro-
gramming. These include class and inheritance relationships,
request messages, and flexibly defined attributes that can be
specified for any object in the system.

The paper briefly discusses the characteristics of flexible as-
sembly systems and presents a hypothetical assembly systemn,
and then discusses (1) the structure of the bill-of-materials, (2)
modifications to queuing disciplines and and queue modeling
used to synchronize entity flow, and (3) the request mechanism
used to maintain inventory levels. Finally, the paper discusses
elements of the simulation output and their implications for sys-
tem control.

2. Problem Domain
2.1. Just-In-Time Flexible Assembly Systems

In many assembly facilities, assembly operations are ac-
companied by flexible assembly techniques and by demand pull
production scheduling.

In flexible assembly systems, as found in electronics assem-
bly, for example, multiple products may share assembly work
stations but may require different types and numbers of
subassemblies. Assembly requirements for multiple products
can, of course, be specified using information relationships
defined in a database schema. The schema can be defined to
represent multi-level bills-of materials, and product routings for
multiple products and subassemblies. Furthermore, by incor-
porating class relationships in the database design, the database
can hold production requirements for classes of products in ad-
dition to requirements for specific products.

With demand-pull scheduling, such as just-in-time, produc-
tion is initiated and subassemblies are drawn from inventory
based on product demands, not material arrivals. In a tradition-
al "push" production environment, subassemblies are "pushed"
from operation to operation until they are either combined with
a product or moved into inventory. In a "pull” environment,
subassemblies are “"pulled" from operation to operation in
response to requests generated elsewhere in the system. Re-

quests can be enchained backwards from one operation to
another until, eventually, subassembly materials are drawn from
external suppliers.

These issues are closely related, since combining flexible
assembly with "pull" scheduling offers significant benefits to in-
dustry by reducing work-in-process and increasing utilization
for production resources. They also raise general issues in sys-
tem modeling, such has the synchronization of multiple entity
flows, flexibly defined "fan-in" for entity flow, and event
scheduling based on demand.

2.2. Example

A hypothetical (and simplified) assembly facility will illus-
trate an information-based approach to modeling flexible assem-
bly systems. The example facility assembles three types of
products into housings. It is divided into six departments: a
warehouse, three production lines for subassemblies, a main as-
sembly spine, and an inventory for finished products. The pro-
duction lines prepare panels, braces, and facings for product
housings. The main spine includes twelve assembly and finish-
ing operations needed to produce finished products. The three
products require different types and numbers of subassemblies.

Scheduling for the final products is established by a daily
production list, as will be explained later. Scheduling for
subassemblies, and ultimately orders for raw materials, esta-
blished based on just-in-time production policies. Subassem-
blies of different types will be pulled from various points in a
production line, and requests can be enchained backwards as
required to maintain inventory status. Requests are controlled
by restrictions on queue levels and on the number of requests
outstanding at any point.

Figure 1 shows the system layout for the sample facility.
Parts flows are shown by solid arrows. Request flows are
shown by dashed arrows. The details of its operation are ex-
plained in the sections that follow.

L
=] Brace Production Line PR
—>Warehouse — Assembly
] 2 Panel Production Line PR Station
= Top Production Line 7
T Rt Finished
Product

Y

Figure 1. Assembly Plant Layout

3. Basic Information Structure
3.1. Representing the Overall System in IBIS

To represent the example system, IBIS maintains a list of
work stations, a list of operations to be performed, and a list of
entities involved in each operation. There is a many-to-many
relationship between stations and operations, since each opera-
tion may be potentially performed at many stations, and each
station may perform many operations. Similarly, there is a
many-to-many relationship between operations and the entities
that participate in those operations, so that information rela-
tionships between stations, entities, and operations are actually
defined by an information network. An IBIS display showing
the work stations for the sample problem and the basic data
elements for the assembly station is given in Figure 2.

StaName Class Parent

AssySta ~ Plant

BraceSta - Plant

PanelSta - Plant

Plant - -

ProdDelivery - Plant

TopSta - Plant
WAREHOUSE - Plant

File: Entity

EntName Class Type Fixed
FacePlate MATERIAL Temporary No
Fastener MATERIAL Temporary No
MATERIAL - Temporary No
PanelEdging MATERIAL Temporary No
Prodl PRODUCT Temporary No
ProdlBrace Brace Temporary No
ProdlPanel Panel Temporary No
ProdlTop Top Temporary No
Prod2 PRODUCT Temporary No
Prod2Brace Brace Temporary No
Prod2Panel Panel Temporary No
Prod2Top Top Temporary No
Prod3 PRODUCT Temporary No
Prod3Brace Brace Temporary No
Prod3Panel Panel Temporary No
Prod3Top Top Temporary No
PRODUCT - Temporary No
worker - Permanent Yes

File: Initiallocation

Entity Station Number Status
ProdlBrace AssySta 24 Active
ProdlPanel AssySta 24 Active
ProdlTop AssySta 6 Active
worker AssySta 4 Passive

L]
File: Operation
OprName

AttachFacePlate
AttachPanelEdging
AttachPanels
AttachTop

Finishl

Finish2
FinishPrep
InsertFasteners

Figure 2. Basic Data

As can be seen from Figure 2, the Plant is the parent for
each department in the facility. For all stations, the Class is
left undefined since each station has a distinct production se-
quence. Entities, however, are grouped into classes with simi-
lar production requirements. IBIS will operate both on indivi-
dual entity types and on classes of entities, and class relation-
ships may be extended to any level. The Entity file also distin-
guishes temporary from permanent entities, as indicated by the
entity Type. The field indicates specifies whether or not 4n en-
tities is fixed to a specific station. For example, several drill
presses are used to prepare subassemblies at different produc-
tion lines with each drill press fixed to a specific line.

The number and location of entities in the system is defined
in an Initiallocation file. The Status value Passive for per-
manent entities indicates that they are awaiting requests for
their services when the simulation begins.

Finally, the Operations file identifies the operations that oc-
cur in the facility.

In the example facility, the flow of entities is quite simple,
since there is only one sequence of stations visited by each pro-
duct or subassembly type and only one sequence of operations
performed in each station. These are defined by a routing list
showing the flow of entities from station to station, and a pro-
cessing list showing the sequence of operations at each station.
‘While "push” routings are simple, however, production requests
are fairly complex and will be discussed in detail.

4. Request Mechanism

Production flow is controlled in two ways: by product as-
sembly requirements and by inventory control policies associat-
ed with system queues.

4.1. Product Assembly Requirements

The requirements for each IBIS operation are defined by an
KeyComponent file that identifies the products that initiate an
operation and control its timing, and by an OprComponent file
that identifies entities required before an operation can begin.
The details of OprComponent entries specify where the re-
quired components for an operation are stored, the sequence in
which they are requested, and the priority for each request,
along with the number of entities required as inputs to the
operation and the number of entities released (or generated) as
outputs. An assembly operation may require several types of
operation components, including both permanent resources and
subassemblies that will be consumed during the assembly pro-
cess. Before an operation begins, a key component will request
operation components either simultaneously or in sequence, and

will wait to begin the operation until all required operation
components are available.

As an illustration, Figure 3 shows the key component and
operation component entries for the AttachPanels operation.
Prodl, Prod2, and Prod3 will all initiate the operation Atta-
chPanels, but with different assembly requirements and
different assembly times. Since panels and braces are joined to
a product as subassemblies, and therefore consumed during
operation, the number output is zero. Panels and braces are re-
quested simultaneously, based on their ReqSequence number.
A worker, however, will be requested with a higher request se-
quence value, guaranteeing that a worker will not be allocated

626

to the operation until all of the required subassemblies are

available.

File: KeyComponent

Operation Entity ProcTime

AttachPanels Prodl NORMAL (.0350,.0035)
AttachPanels Prod2 NORMAL (.0330,.0033)
AttachPanels Prod3 NORMAL (.0333,.0033)

File: OprComponent

Operation RegSequence KeyComponent
AttachPanels 0 Product
Entity: Brace

NumInput: 2

SourceQue: AlProd2BraceQue
NumOutput : 0

AttachPanels 0 Prodl
Entity: ProdlPanel
NumInput: 4

SourceQue: ProdlPanelQue
NumOutput : 0

AttachPanels 0 Prod2
Entity: Prod2Panel
NumInput: 2

SourceQue: Prod2PanelQue
NumQutput: 0

AttachPanels O Prod3
Entity: Prod3Panel
NumInput: 2

SourceQue: Prod3PanelQue
NumOutput: 0

AttachPanels 1 Product
Entity: worker

Figure 3. Assembly Requirements
4.2. Quene Specifications

Whereas the OprComponent file defines a bill-of-materials,
the Queue file specifies the characteristics of storage locations
and inventory control policies in the Plant.

Queues can serve two purposes in IBIS. They serve as in-
termediate storage locations for work-in-process and as invento-
ry points for parts awaiting production requests. The distinc-
tion is that between "push" production scheduling in which
WIP is pushed from operation to operation, and “pull” schedul-
ing in which parts remain in inventory until requested.. The
ENDProd1Que as shown in Figure 4, for example, serves as an
inventory point for finished Prodl units from which units will
be pulled to meet customer demand. Before being stored in the
ENDProd1Que, each Prodl moves through several intermediate
queues in the Assembly Department that serve as WIP storage
points as products are process through a series of assembly
operations.

As Figure 4 shows, the Queue file specified the queue
reorder point. When needed, it also holds the queue review cy-
cle for inventory management. For example, the
ENDProd1Que has a reorder point of 2, and is assumed to be
under continuous review. The Reorder file holds detailed
specifications for parts reorders.

QueName Station Discipline
ENDProdlQue ProdDelivery FIFO
ReorderPt: 2

Entity SourceStation SourceQue
Prodl WAREHQUSE ProdlQue
Number : 1

DestStation: ProdDelivery

DestQue: ENDProdlQue

Condition: if: IVAL("REORDER:*;-NR") < 2

Figure 4. Queue and Reorder Specifications

Specifying reorder points, reorder quantities, and review cy-
cles will define many inventory management policies. They are
not sufficient, however, to defining kanban levels for JIT pro-
duction. A kanban represents an authorization to produce a
part or batch of parts. WIP is maintained so that the number of
parts in process for each part type plus the number of parts in
inventory is kept equal to the maximum kanban level for that
part type. This restriction on WIP can be modeled using the
queue reorder point and the value "-NR," which is used to indi-
cate the number of reorders outstanding at any point in time.
By setting the reorder point for a queue equal to the kanban
level, and allowing a reorder to be issued any time the value of
-NR is less than the reorder point, IBIS duplicates JIT controls
using simple quening specifications.

As an example the EndProd1Que has a reorder point of
two. In other words, when the number of Prodl units drops
below two, an order to release one Prodl unit for production is
sent to the Prod1Que in the Warehouse. As a result, there will
never be more than two Prodl units in process or in finished
products inventory. Using JIT terminology, there are two kan-
bans associated with Prod1.

Another adaptation of its queuing specifications allows IBIS
to model the releases of parts waiting for requests to be filled.
By specifying a queuing discipline as "POOL,"” entities that
enter a queue will be removed from it once all of their pending
requests have been satisfied, regardiess of the order in which
they have entered the queue. This allows several parts with
different assembly requirements to reside in the same queue.
Multiple requests can be pending simultaneously and parts will
not be blocked even if parts ahead of them are starved for
subassemblies.

5. Controlling Production Scheduling

Controlling product scheduling involves several issues.
One has to do with setting working kanban levels and establish-
ing other inventory policies to insure that subassemblies are
avajlable. A second has to do with establishing the sequence
of job releases for product units. A third issue involves the in-
troduction of new products, which will place new demands on
the production schedule. All of these issues can be modeled
through the IBIS information structures.

IBIS includes a set of output variables that allows a user to
trace inventory status and product levels through the entire pro-
duction sequence. These include the queue status values -NQ
used to monitor the number of items in queue; -TNQ used to
monitor item time in queue; and -PCTO used to monitor the

627

percentage of time a queue is completely empty. -PCTO is
valuable in tracking subassembly levels to detect points at
which an assembly process may be starved for components.

IBIS records similar statistics to monitor reorder status.
These include -NR to indicate the number of reorders outstand-
ing at any one time; ~TNS to indicate the time a reorder
remains in the system before delivery is completed; and
~-TMBR to hold the time between reorders. Reorder statistics
allow a user to trace requests backward through the production
sequence in much the way that queue statistics show parts flow
forward through the system.

Finally, the values -TNS and -UTL record entity time in
system and utilization. Because of its internal structure, IBIS
can record utilization for both permanent and termporary enti-
ties, Utilization for temporary entities shows the percentage of
time an entity is actually being operated on rather than remain-
ing idle as WIP or in inventory.

As Figure 5 shows, in one 8 hour sample run, Prodl units
remain in the system 0.43 hours and are actually in process ap-
proximately 40% of that time. The inventory queue for
finished Prodl units is completely empty 8% of the time. Re-
quests for Prodl wait 0.04 hours on average before they are
filled.

In experiments with the example system, utilization for pro-
duct units and consequently utilization for worker resources is
extremely sensitive to kanban levels and inventory control poli-
cies. Worker allocation levels, inventory reorder policies, and
kanban levels, however, can all be controlled by changing en-
tries in the simulation database. Lowering the reorder point for
finished product queues, for example, has the effect of remov-
ing a kanban from the system. Control over production se-
quence can also interact more indirectly with the database
through programming code that calls IBIS database routines.
As currently formulated, the simulation does not schedule pro-
duct releases strictly in the order they amrive. Instead, when
more than one customer order is pending, a separate scheduling
module sorts requests in an order that will level-out production
requests for different subassembly types. That is, the kanban
levels control the amount of work-in-process; the scheduling
module controls the order in which product units are released
for production. To establish snbassembly requirements, the
scheduling module directly reads the bill-of-materials from the
OprComponent file.

Finally, changing production demands by adding new pro-
ducts or changing the bill of materials involves simple changes
to the database. A new product is defined by creating a Entity
entry of the class Product, defining its bill-of-materials, and the
production sequence for each subassembly. The simulation au-
tomatically adjusts to modifications in the database and au-
tomatically understands the processing requirements for entities
in a known entity class.

6. IBIS Implementation and Object-Oriented Constructs in
the IBIS Database

IBIS has been implemented in C. Certain features of
object-oriented programming, however, have been particularly
important in developing the IBIS database. These include the
ability to add data fields as attributes to most IBIS records, the
definition of class relationships and inheritance of processing

Experiment Run StopTime
PLANT 14 8.0000
Record: Entity:EntName=Prodl
Attribute: ~TNS
CurxValue: 0.8744
Average: 0.4302
StdDev: 0.2510
Maximum: 1.1392
Minimum: 0.0010

Count: 47

Record: Entity:EntName=Prodl
Attribute: ~UTL
CurrValue: 1.0000
Average: 0.3689
StdDev: 0.6747
Maximum: 2.0000

Record: Entity:EntName=worker

Attribute: ~UTL

CurxValue: 4.0000
Average: 0.7924
StdDev: 1.4439
Maximum: 4.0000

Record: Queue:QueName=ENDProdlQue,
Station=ProdDelivery

Attribute: ~-NQ

Average: 0.4409
Stdbev: 0.7403
Maximum; 2.0000

Recoxd: Queue:QueName=ENDProdlQue,
Station=ProdDelivery

Attribute: -PCTO

Average: 0.0826
StdDev: 0.2753
Maximum: 1.0000

Record: Reorder:Entity=Prodl,
SourceStation=ProdDelivery

Attribute: -NR

Average: 0.2459
StdDev: 0.5855
Maximum: 3.0000

Record: Reorder:Entity=Prodl,
SourceStation=ProdDelivery

Attribute: —-TNS
Average: 0.0419
StdDev: 0.0705
Maximum: 0.2604
Count: 47

Figure 5. Sample Simulation Results

628

specifications through class hierarchies, the ability to write C-
code procedures within a data field, and the ability to pass IBIS
records as "messages” to simulation procedures. The statistics
variables -NQ, -NR, -UTL, etc., are in fact attributes that are
optionally appended to queue, reorder, or entity records as
special-purpose data fields. IBIS allows users to expand the at-
tribute list for almost all database entries and will monitor the
values of -user-defined attributes for statistics collection.

IBIS allows the simulation to access and manipulate data-
base entries of any type as distinct objects. The IBIS request
mechanism, for example, is part of the underlying object-
oriented structure of the IBIS software. Each request is main-
tained as an entry in the IBIS database that can be created, ac-
cessed, and manipulated through IBIS data management com-
mands. As data fields, each request holds a pointer to a record
specifying the entity being requested, a pointer to the source of
the requested entity, a pointer to the destination for the request-
ed entity, and a pointer to a "control" record, which is either an
OprComponent or Reorder entry that holds specifications for
the current request, along with a value indicating the number
requested from the source, and a value indicating the number
being expected by the destination. Because requests are struc-
tures maintained independently of the requested entity, a re-
quest can be pending while the entity is moved through any
number of intermediate processing step. This allows for ex-
tremely flexible system control policies to be modeled by the
simulation and represented simply by specifications entered in
the IBIS database.

7. Conclusion

In conclusion, an information-based methodology provides
one strategy for representing the complex system control issues
raised by multi-product jnst-in-time assembly systems. The ap-
propriate information model will define production
specifications. Implementing this information model using
object-oriented constructs allows for a flexible request mechan-
ism that can be modeled independently of the principal forward
flow for products and subassemblies.

BIOGRAPHY

Michael G. Ketcham

Department of Industrial Engineering &
Operations Research

University of Massachusetts, Amherst

Amherst, Massachusetts 01003

(413) 545-2851

Michael Ketcham’s research has concentrated on advanced
simulation techniques for manufacturing and incorporation of
simulation into integrated decision support environments. Elis
recent research includes the development of techniques for
information-based simulation, a study of relationships between
simulation modeling and database design, the development of
parametric models for simulating electronic assembly systems,
an/d application of artificial intelligence to simulation modeling.

