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ABSTRACT

Selection of items to fill customer orders from systems of
pallet rack or shelving arranged in rows with access by means of
narrow aisles is becoming commonplace in many distribution
centers.

Such systems offer significant advantages in terms of
space savings and utilization of the "cube" in distribution
facilities. Narrow-aisle high-density order selection systems
may tend, however, to have an adverse effect on selection
productivity if not planned properly.

This paper is a case study in the use of simulation as a
tool for making informed decisions about the design of a
narrow-aisle order selection system. Using hypothetical data,
and a set of models developed in the SIMAN simulation
language for one of the world’s largest parts distribution
centers, it examines the effect on selection productivity of three
key factors in the design of a selection system:

System Configuration
Stocking policy
Selection policy

1. DESIGN ISSUES

A company has decided to consolidate the small parts in
its distribution center in a high-density storage system with
10,000 bins. Given the sizes of the parts involved, a bin size of
12" high x 36" wide x 24" deep has been selected. The system is
being installed in an existing warehouse, and since the clear
height in this building is just over 25, the shelving system is
being limited to 25 levels (Figure 1).
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Figure 1: Bay Height and Bin Dimensions

Figure 2: System Configuration Alternatives

There are two candidate locations for the shelving
system. One of these locations is a long, narrow area that
would accommodate 10,000 bins in four aisles, each 150’ long,
while the other is more nearly square, and would permit eight
75’ aisles (Figure 2). For convenience of reference, we will call



these alternative system configurations the long-aisle and the
short-aisle layouts. One of the objectives of our simulation was
to assess what effect, if any, system configuration (aisle length)
has on picking productivity.

Orders for parts held in the shelving system will be
picked by two wire-guided orderpickers (Figure 3). These
vehicles are driven by human operators, and move from one
aisle to another under manual control. Once an orderpicker
enters an aisle, the operator switches to automatic control. This
enables guidance from a wire embedded in the floor of the aisle
which keeps the vehicle centered. The operator therefore
needs only to control the vertical movement of the carriage, and
the horizontal travel of the vehicle down the aisle.
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Figure 3: An Orderpicker

An orderpicker is capable of raising an operator and
payload to a height of 20’ or more, but as the carriage moves up
in this range, the danger increases that the vehicle or load will
topple over in the event of a sndden stop. To avoid this, an
orderpicker has a control system that senses the height of the
carriage, and limits horizontal speed accordingly: the higher
the carriage, the lower the top horizontal speed. ‘

Because an orderpicker can move faster with its carriage
down than with its carriage up, it may be advantageous in some
systems to concentrate fast-moving parts in the lower levels of
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the shelving structure. In other systems, however, the extra
effort required by this discipline may yield little or no
improvement in picking productivity. ,

Hereafter, we will refer to this policy as sweet-zone
stocking. Figure 1 shows the sweet-zone stocking arrangement
contemplated, where 80% of the picks are made from the lower
20% of the shelving structure. An alternative to sweet-zone
stocking is random stocking, in which the level where a part is
kept is independent of the frequency or size of orders for that
part. The second objective of our simulation analysis was to
determine whether the sweet-zone stocking policy offers
significantly greater picking productivity than random stocking.

The sequence of operations for picking an order is as
follows:

1. Drive to a dispatch location and get a pick list and empty
container.

2. Pick the items on the pick list, in the order in which they
appear.

3. Deliver the on-board container to a drop station
whenever it fills up, or when all picks on the list have
been completed.

Activities 1 and 3 in this sequence may be considered
overhead: order selection productivity tends to increase if the
time spent dropping containers and getting dispatch lists can be
minimized.

To reduce the risk of collisions, an operator is not
allowed to enter an aisle that is already occupied. This fact,
together with the requirement that picks be made in the order
given on the pick list, brings about an additional overhead
factor: If operator A’s next pick is in an aisle currently
occupied by operator B, then A cannot enter and begin picking
in that aisle until B departs.

One way to eliminate waiting for aisles is to divide the
shelving system into zones of approximately equal size, one for
each orderpicker, as shown in Figure 2. Since all aisles in a
zone are assigned exclusively to a single operator, an operator is
always assured immediate entry into the aisle containing the
next pick.

Though zoned picking eliminates competition for aisles,
it may increase the time spent delivering full containers and
fetching new pick lists: In a zoned system with two operators,
each one is responsible for picking only about half of each
order. On completing a pick list that is only half as long as
before, the operator must deliver a partially filled container to a
drop station and go get another pick list.

It may be possible to reduce this disadvantage of zoned
picking by subdividing the on-board container, and picking a
batch of several orders on each pass through a zone, rather
than picking only one order at a time. The dividers in the on-
board container provide a way to maintain separation between
goods belonging to different orders. Figure 4 shows a picking
container divided into 16 compartments for batch picking, as
well as a container without dividers for use in picking single
orders.

The third objective that we hoped to accomplish with
our simulation analysis, then, was to determine whether the
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Figure 4: Picking Container Alternatives

selection policy of zoned picking of batched orders yielded
higher picking productivity than full-range picking of single
orders. (In this case study, each batch consisted of four orders.)

We have now identified three design factors: system
configuration, stocking policy, and selection policy. For each
design factor, two alternatives are under consideration, giving a
total of eight distinct system designs to be testedina2x2x2
full factorial experimental design.

The primary performance measure used in our analysis
was picking productivity, measured as pieces picked per man-
hour. The model was also structured to keep track of the
utilization of the operators, ie. the percentage of their time
spent in the aisles picking orders.

2. ASSUMPTIONS

In order to develop a model of an order selection system
and measure the number of pieces picked per man-hour, one
must make a number of assumptions not implied by a particular
choice of values for the three design factors. This section Jays
out the assumptions made in this case study.

First, one must make some assumptions about the size
of the orders (and the parts) to be picked. Table 1 defines the
order characteristics assumed in this paper. Note that the
volume of the part being picked, together with the number of
pieces found in each location, affects the number of locations
an operator must visit in order to fill a given line item. The
number of line items on an order, and the number of locations

visited to fill a line item, in turn affects the frequency of trips to
drop off completed orders and pick up new pick lists.

Table 1: Order Characteristics

Order Type of
characteristic distribution
Line items Triangular;

per order min. 1, mode

6, max. 18

Pieces per Triangular;

line item min. 1,mode

12, max. 38

Cu. in. per Exponential;
piece mean 216

A pick list is a list of the locations that must be visited to
pick a given (batch of) customer order(s). A location is defined
in terms of four variables: an aisle, a bay, a level, and the side
of the aisle from which pieces are to be picked. Aisle side was
assumed to have no significant effect on the time required for
picking and was excluded from the models.

Table 2 defines the probability distributions used in
selecting the aisle, bay, and level for a given pick. Four points
deserve comment. First, we assume that the quantity of parts
required for each line item can be picked from a single aisle.
Second, sweet-zone stocking was distinguished from random
stocking by the probability distribution used to determine the
level for a pick location. Random stocking made all levels
equally probable, whereas sweet-zone stocking applied a kind
of "80-20" rule when assigning levels to picks, i.e. 80% of the
picks were made from the lower 20% of the levels in the
shelving system.

Table 2: Pick Locations

Dimension Probability distribution
Aisle All aisles equiprobable
Bay All bays equiprobable
Level

(random) All levels equiprobable
Level

(sweet Levels 1- 5: 0.8

zone) Levels 6-25: 0.2

Third, pick lists were sorted by aisle, bay, and level, so
that all picks in an aisle were together in ascending sequence by
bay, and all picks from the same bay in an aisle were in
ascending sequence by level. Finally, we assumed that every bin
was 80% full. Given the volume of the item being picked (see
Table 1), and the size of the bins (see Figure 1), this made it
possible to calculate the number of pieces available at each pick
location, and hence the number of location visits needed to fill a
given line item. In the vast majority of cases, a single bin
location contained all the pieces needed to complete a line
item.



Table 3: Operating Characteristics

Orderpicker
speed

Carriage
elevation

gr- 60" 7.0 fps

60"-150" 3.5 fps

> 150"

1.0 fps

Orderpicker

acceleration: 1 fpss
(vertical
aswell as
horizontal)

Time

Operator Activity required

Pick one piece 5.0 sec.

Drop a container 3.5 min.

Get a new pick list 5.2 min.

The assumptions given in Tables 1 and 2 enabled us to
determine how many picks there were on each pick list, and
where those picks were located. To complete this overview of
model assumptions, we need to describe the operating
characteristics of the orderpickers and operators. The models
used these characteristics in calculating the time required to
travel from one pick location to another, pick the required
number of pieces, deliver the completed order to a drop
station, and visit the dispatcher to get a new pick list. Table 3
defines these assumptions about the characteristics of the
operators and their equipment.

3. RESULTS

Models were prepared for the eight system alternatives
called for by the experimental design, and statistics were taken
from ten replications of each model. Each replication consisted
of a two-hour stabilization period, followed by a ten-hour
statistical reporting period. (Statistics from the stabilization
periods were discarded to avoid contamination from start-up
effects.)

Table 4 gives the performance measure means and
standard deviations over the ten replications for each of the
eight models, while Table 5 reports observations on operator
utilization.

Table 4 shows that zoned picking of batched orders
yields considerably higher productivity than full-range picking
of single orders. Sweet-zone stocking seems conducive to
somewhat higher picking productivity than random stocking,
and long aisles also yield slightly higher picking rates than short
aisles.

Selection policy also has a strong influence on utilization
of the orderpickers (Table 5), but neither stocking policy nor
system configuration seem to have much effect on utilization.
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Table 4: Pieces Picked Per Man-Hour

Full range picking of single orders

Random Sweet-zone
stocking stocking
Short 304.2 316.8 Mean
aisles 8.1 12.3 sD
Long 314.7 321.3 Mean
aisles 9.5 15.4 SD
Zoned picking of orders in batches
Random Sweet-zone
stocking stocking
Short 434.0 447.6 Mean
aisles 6.3 8.2 SD
Long 444.9 452.4 Mean
aisles 7.9 7.9 SD
2L TS E eI MR
Table 5. Operator Utilization
Full range picking of single orders
Random Sweet~zone
stocking stocking
Short 56% 56% Mean
aisles 2% 2% SD
Long 58% 58% Mean
aisles 2% 2% Sb
Zoned picking of orders in batches
Random Sweet-zone
stocking stocking
Short 74% 73% Mean
aisles 1% 2% SD
Long 74% 74% Mean
aisles 1% 1% SD

In Table 6 we quantify these general impressions of
Tables 4 and 5 by giving approximate 90% confidence intervals
for the main effects on productivity and utilization of the three
factors in our experimental design (see Law and Kelton 1982, p.
376; we omitted the confidence intervals for two-way
interaction effects because all these intervals included zero.)

This table shows that the effect of selection policy on
productivity was about 13 times as strong as the effect of
stocking policy, and selection policy’s effect on utilization was
nearly 17 times stronger than that of configuration.



Table 6: Effects of Experimental Factors

Effects on Productivity (Pieces per Man-hour)

Lower 90% Upper 90%
confidence Mean confidence
Factor limit effect limit
Selection +117.7 +130.5 +143.3
Stocking + 1.2 + 10.1 + 19.0
Configuration + 2.6 + 7.7 + 12.8
Effects on Utilization
Lower 90% Upper 90%
confidence Mean confidence
Factor limit effect limit
Selection +16.0% +16.7% +17.4%
Configuration + 0.6% + 1.0% + 1.4%
Stocking ~ 0.5% + 0.1% + 0.7%

4. CONCLUDING OBSERVATIONS

In conclusion, we wish to make two observations
regarding this case study.

First, we have calculated confidence intervals for the
effects of the design factors, but managers may (without
irrationality) make decisions contrary to those one would
recommend on the basis of a narrow interpretation of the
statistics.

For example, use of sweet-zone stocking has a beneficial
effect on productivity, but the cost of developing software to
implement this policy, and the cost of continually updating the
list of "fast movers," and re-stocking parts may outweigh the
benefits of this policy.

Configuration, on the other hand, has a weaker effect on
productivity than stocking policy, but the long-aisle layout also
occupies about 10% less floor space than the short-aisle layout,
so a manager might opt for long aisles in spite of the weakness
of the statistical support for this configuration.

Conway et al. (1987), writing about the application of
statistical hypothesis testing in simulation work, proposed the
following Axiom of Significance in Simulation:

If you can’t see it with the naked eye, forget it.

We believe that a manager faced with the results presented
here would probably do well to act on this advice. In fact, we
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would go further. Even zoned picking of batched orders may
not be justified, though the strength of its effects are obvious to
the naked eye. Under this policy, it might be necessary to
install additional equipment and hire additional personnel to
consolidate the various containers making up each order,
whereas the improvement in picking productivity might not be
large enough to outweigh these additional costs.

Second, the reader would be ill-advised to act on the
results presented in this paper, unless there happens to be an
excellent match between the attributes of the system being
planned and the assumptions presented in sections 1 and 2
above. There is no such thing as a system design that satisfies
every set of requirements in an optimal way.
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