Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Bridging the gap: Transferring logic from a
simulation into an actual system controller

Roger McHaney
Control Engineering Company
Harbor Springs,

ABSTRACT

The use of simulation in the design stages
of complex control systems has warranted the
development of new methodology for
to

system., This paper emphésizes the importance

transferring logic from model actual

of maintaining simulation integrity during

actual system implementation and presents
four methods to aid in accomplishing this.
These four methods of 1logic transfer are

discussed and compared using the example of

an AGV system simulation.

1.0 INTRODUCTION

Discrete event simulation in manufacturing

has traditionally been used as a tool for
studying the behavior of dynamic real-world
1986; 1984; Christy
1983; 1984).

common applications use simulation to prove

systems (Law, Lajeunesse,

and Watson, Schriber, Some

that proposed systems or system changes are
feasible. Following development, validation,
and verification of a simulation, some

questions such as these can be answered

How Many 7?7

a) How many machines, conveyors, pallets,
carts, AGVs, and stands are needed for
the system to operate.

How many men are required for desired
production.

How many shifts should be operated.

b)
c)
Khich ?

station is a bottleneck.
process flow is best.

schedule is best.
product mix is best.

a) Which
b) Which
c¢) Which
d) Which

What ?
a) What is the maximum through-put possible

in the system.
b) What is the expected average through-put.

583

Michigan 49740

Another growing area
the

complex

of application for
of

materials

simulations is modeling control

handling
it is essential that

algorithms for
systems.
the

the logic used in the simulation.

In these cases,

actual system logic closely duplicates
Otherwise,
the simulation results will not be accurate

and the actual

system will not perform as
expected. Often, after a model is developed
and a proposed system is proven to work, the
simulation phase is over. Control system
development will then be turned over to a
group of software design engineers who
reformulate the control algorithms. The
result can be changes in the operating

characteristics of the system. Steps can be
taken to minimize this potential pitfall and

its effects. Examples of measures that can be

taken to preserve the integrity of the
algorithms developed with simulation are
explored in this paper, as well as several

different methods of transferring simulation

logic.

2.0 PERFORMING A LOGIC TRANSFER

in this
They
actual

The simulations being dealt with

paper are used as design tools.
> to the
It is the goal of the simulation
all to
controller In
the nust
communicate its
to the

This insures that the required logic is

are
typically precursors system
being built.
team to

identify logic

the

necessary

implement a for system,

addition, simulation team

effectively developed and

debugged algorithms system design

team.
incorporated into the actual controller. Four
methods of facilitating logic transfer have
been devised. These are Philosophic Transfer,
Pseudocode Transfer,

Actual Code

Data Base Transfer, and

Transfer. These four transfer



methods are not completely independent,
rather they can be thought to exist on a

continuum such as this

i—->Actual Code
->Philosophic ->Pseudocode -!
i->Data Base

simulation
falls
on the

to utilize a
that

in between two categories

It
logic

is possible

transfer methodology
somewhere
continuum. To better understand what these
categories entail, a detailed description of

each is presented.

2.1 Philosophic Transfer

The most common and perhaps least efficient
method of transporting simulation logic into
is termed
this
is based on
the

is presented to

logic
Under
logic for the real-world system
the

simulation.

actual system control a

philosophic transfer. scenario,

key ideas and assumptions used in

This information
the system design team either verbally or in

the form of a written report. The design team

then evaluates the simulation findings and
uses them as a guide or criterion in
implementing the actual system software.

In many simple cases, the philosophic
transfer works quite well. However, there are
some inherent shortcomings that can cause
inefficiencies. One of these inefficiencies

is duplication of effort. The system software

is designed, coded, debugged, and tested.
This same process has already been used in
the development of the simulation. Another

potential shortcoming is the possibility that
a piece of information was not communicated
properly resulting in either a misinterpreted
omitted of A subtle

difference in logic can produce a discrepancy

or portion logic.

that renders the simulation results invalid.
The philosophic transfer method tends to make
1986) a more

softwares

simulation validation (Carson,
task.
developed in a somewhat independent fashion,
the to
Whether the simulation accurately depicts the

complex Since the two were

differences become harder identify.

actual system becomes a difficult question

with an answer that is hard to prove.

584

The best way to insure that these problems
do not occur when employing the philosophic
transfer method is to form a system design
of both

software engineers, A common design can be

team consisting simulators and

arrived at and ideas can be tested with a
When the design is finalized and
the
If the project has
the
transfer of the philosophy contained in the

simulation.
the

software can be written.

simulation is complete, system

emphasized communication and structure,

simulation should be successful. Duplication

of effort has been minimized by doing the

initial design work collectively. The ideal
philosophic transfer approach to implementing
a simulation in the real world is

characterized by team work and communication.

2.2 Pseudocode Transfer

The second method of transferring data from
to
controller is the pseudocode transfer method.
This to the
philosophic transfer but it takes the 1level
of detail a step further. It evolved from the
to that all

incorporated into a simulation were addressed

a simulated controller an actual

approach is very similar

need insure assumptions
and made apparent to the actual system design
In this (Page-

94-96)

personnel as a method of documenting what has

team. scenario, pseudocode

Jones, is generated by simulation

been implemented. This pseudocode is analyzed

and rewritten for the actual controller by

system software engineers.

The pseudocode method of transfer offers
of detailed.

number omissions

the
Therefore,

advantage being
the of

oversights occuring are expected to be fewer

more

and

than would be seen when using the philosophic
method.

also made easier.

transfer Simulation validation is
The logic rules used in the
control system can be examined and verified
to those in the

Differences identified

as being identical

simulation. are
readily and the pseudocode provides a common
record for both the

software package.

simulation and system



A disadvantage associated with using this
method of of
programming effort. The pseudocode has to be

transfer is duplication
rewritten in the language of the controller,
and tested.

team’s time is also required to rewrite their

debugged, Some of the simulation

logic in the form of pseudocode.

Communication between the simulation team
and the system design team is important under
this but

crucial using

transfer scenario; not nearly as
the

By placing a structured and

as when philosophic
transfer method.

detailed pseudocode document in the hands of

the design team, little additional
interaction will be required of the
simulators. It is not until the verification

when the

completed system software is compared to the

and validation phase of the project,
simulation, that further comnmunication will

be required.

2.3 Data Base Transfer

The third method of transferring simulation
logic to an actual system is known as a data
base transfer. The essence of this transfer
method is to transport a data base, developed
in the simulation, and use it to drive the
actual system controller. It is important to
that this method of data transfer

contingent upon software existing in both the

note is

simulation and controller. This requires that

an initial development project must be
undertaken to define the data base and
delineate how it will be used. After this has
been established and the simulation and
controller software have been developed, the

data base can be transferred and utilized.
This type of transfer will most commonly be
used in cases where many similar systems are
being designed using a generic simulation and

a generic controller.

The to

method are quite apparent.

this
The debugging of
the data base and its testing are all done in

advantages using transfer

the simulation phase.
effort

the initial system has been created).

Nearly all duplication
(after
Changes

of programming is eliminated

585

to the

done

simulation and actual system can be

easily and consistantly. Simulation

become much
and the

passing of abstract concepts become less of

validation and verification

easier. In addition, communication

an issue.

A potential drawback encountered when using
the data base transfer method is the loss of
flexibility. Although data
simplifies logic the
unusual cases and
becone difficult to
this it

important that the data bases be designed in

using a base

and provides system

engineers with a standard,

exceptions more

incorporate. For reason is very

a comprehensive manner.

2.4 Actual Code Transfer

The final method of data transfer to be

examined is transporting actual code from

simulation to system controller. This can be

done either when the simulation has been
written in a conventional language such as
FORTRAN, or when using a specialized

simulation language such as GPSS/H (Henriksen
1983) or GPSS/PC (Cox, 1984) which
of FORTRAN

subroutines contain

and Crane,
the
subroutines.
that will be used
The FORTRAN subroutines can be written either
by the
team

has capability calling

These code

in the system controller.

simulators
to
Duplicated

or by the system design
the

reduced

prior implementation in
effort

logic

simulation. is
the

once in the simulation phase and then reused

because control is written only

in the actual system.

Using this actual code transfer method
requires that the simulators and system
designers work very closely. It may be
advantageous to form one team consisting of
both simulation and design personnel. A
disadvantage inherent when using this method
is the requirement of a more concerted

initial effort and additional time to debug
the model.
with the

designer may not be familiar with the rest of
the When the

The simulator may not be familiar

control algorithm and the system

simulation. model is run and



" debugged, might be

testing and debugging the

some learning time

required. However,
simulation is also testing and debugging the
actual system. Little duplication of effort
will the finished

transported to the actual system software.

occur when software is

3.0 TRANSFER MﬁTHOD COMPARISONS

The following chart compares two aspects of
the methods

described. aspects

transfer
These
and duplication of éffort.
the refers to
communication that will Dbe
successfully implement each transfer method.
The the of

duplication of effort occurring between the

four previously

are communication
The first colunn
the of

required to

in chart level

second column indicates level
simulation group and the system design team.
These levels are rated on a scale from one to
with ten being the greates% amount of
This
scale is to be used only to compare the four
methods

project complexity or any other issue.

ten,
time required and one being .the least.
not consider

of transfer and does

Comparison of Transfer Methods

Table 1
Transfer Communication Duplication
Method of Effort
Philosophy 10 10
Pseudocode 6 5
Data Base 3 3
Actual Code 7 .1

Communication is an important aspect in the
The author wishes
the

related

success of any simulation.
to that

information

demonstrate time spent
to the

system can be reduced using different methods

communicating

of simulation transfer.

4.0 AN APPLICATION INVOLVING THE TRANSFER OF
SIMULATION LOGIC

Most complex systems will use combinations
of different logic transfer types within the
This is due to the nature
the

simulation

same application.
of the

importance

logic
of

being transferred,

maintaining

the

586

time constraints. One
method not
they all
should be
In to

illustrate logic transfers from simulation to

integrity, and

transfer is always
to the

functions

particular

superior others; perform’
used in

better

specific . and

particular instances. order

actual controllers, typical " Automatic
Guided Vehicle (AGV)

The methodology used in this

a
system application will
be referenced.
AGV. simulation is very similar to what has
been descri@ed in past literature (Harmonosky
Sadowski, 1984; Davis, 1986;
1985). It should be noted that in this AGV
system example, of
transfers will be used for different parts of
The method of

simulation not being

and Newton,

several types logic
optimal
data
demonstrated in this paper. Instead a broad

different

system logic.

transferring is

overview illustrating transfer

methods is presentéd.

4.1 What is an AGV System ?

AGVs

driverless vehicles

are generally battery—ppwered,
that travel along paths
which consist of wires buried in the floor.
A

empty vehicles,

They are used for materials handling tasks.
central computer dispatches
inhibits

prevents system gridlocks, and provides empty

optimizes routing, collisions,
vehicle management. Part of the mechanism for

performing these tasks is magnet codes (or
telsor cards) located in the floor at regular
intervals and prior to ihtersections. These

codes (alsc known as control points) maintain

vehicle separation and identify vehicle
location to the central computer. Vehicles
will often have sonic or optic sensors to

prevent collisions with path obstructions and
other AGVs.
will
radios or transmitted through the guidepath
in the 1987;

Communications with the central

computer usually be implemented with
buried

1987).

wires floor (Sadowski,

Quinn,

of AGV

several major parts. These are:

Simulations systems consist of

1) Floor Logic
2) Vehicle Programming Algorithms
3) Through-put Modeling



The

algorithms are both areas of logic that need

floor logic and vehicle programming

to be transferred from the simulation to the
actual system controller. The third category,
is a constraint used to

It

through-put modeling,

help derive a vehicle count. is also

instrumental in determining the floor logic

and vehicle programming algorithms.

4,.1.1 Floor Logic

be

vehicle routing,

three
control
Each

area represents some data which needs to be

Floor logic can broken into
destinct categories:
and gridlock avoidance.

point layout,

incorporated into the system controller.

4,1.2 Control Points

facilitate
The
idea is to allow vehicles to travel as freely
at the

collisions with other AGVs.
of

segments.

Control points are placed to

vehicle mbvement throughout the system.

as possible and same time avoid

The guidepath is

reproduced as a system control ©points

connected by line Vehicles move

along one segment at a time. At each control

point they receive instructions to either
stop and wait for the segment (or
intersection) ahead to clear, pick up or drop
off a load, turn a corner, advance to a new

destination, or simply <continue straight

ahead.

4.1.3 Routing

Vehicle
associated with each guidepath intersection.
This logic will enable the AGV to arrive at

routing typically will be logic

its destination in the most efficient manner.

Most often this means taking the shortest
path, however at times it may be advantageous
to take a longer route through a less
congested area.
4.1.4 Gridlock Avoidance

A gridlock occurs when vehicles occupy

consecutive sections of guidepath which form

587

The

that none of the vehicles can advance to the

a connecting loop structure. result is

location because another vehicle is

occupying it.
gridlock might look.

next

Figure #1 illustrates how a

A B
! g 1) 1] »
(&—U == Ny
(= =
U= U=
D c
FIGURE #| DEPICTING GRIDLOCK

AGY A MOVING TO POSITION OCCUPIED BY AGV B
AGY B MOVING TG POSITION OCCUPIED BY AGV C
AGY € MOVING TO POSITION OCCUPIED BY AGV D
AGV D MOVING TO POSITION OCCUPIED BY AGY A

Logic is added to the simulation to inhibit

gridlock conditions. This logic may be of a

preventative nature or may resolve the
gridlock after it occurs. In either case, the
logic must be documented and incorporated

into the actual system.

4.1.5 Transferring the Floor Logic
In this example, the vehicle routing will
be transferred using the philosophic method.
The simulation team identifies any areas of
that
warranting a longer
If this
presence will be relayed to the actual design
the
that
the philosophy of choosing the shortest path

guidepath are congested, therefore

route of travel as a

bypass. condition exists, its

team. In the absence of this condition,

simulation team will only communicate
is the norm to which the
The

vehicle

between two points
should be

implement

system designed.
the

logic based on this criterion.

system

engineers routing

Since control point placements are based on
a documented convention, only the exceptions
found to be necessary in the simulation are
to the

a common philosophy that has

passed on system design team.

Otherwise, been
previously established will be independently

employed by both teams.



The be

incorporated in the system controller using

gridlock avoidance logic can

the pseudocode transfer method. The
simulation team prepares pseudocode detailing
the exact steps to be followed when the
gridlock occurs. An example of pseudocode

which represents resolution of a gridlock is

as follows :

IF
A VEHICLE
TRAVELING

IS
TO

PRESENT AT POINT CP100 AND IS
POINT CP101

AND

A VEHICLE
TRAVELING

IS PRESENT AT POINT CP1l0l1 AND IS

POINT CP102
AND

A VEHICLE
TRAVELING

IS
TO

PRESENT AT POINT CP102 AND IS
POINT CPl00

THEN

CAUSE THE VEHICLE AT POINT CP102 TO TAKE
AN ALTERNATE ROUTE AND GOTO POINT CP103

This pseudocode is then submitted to the
software designers for recoding and
their As be
the pseudocode is a detailed method of
it

translated into virtually any application.

system

inclusion in controller. can
seen,
logic may be readily

representing so

4.2 Vehicle Programming Algorithms

In order for an AGV system to provide peak
it to
optimizing algorithm for moving the product.
This

areas

service, is crucial develop an

algorithm involves two
of
pick up loads and managing empty vehicles in
that deadhead

travel. these

usually major

concern: dispatching vehicles to
minimizes
Often,

concern will be represented

a manner (empty

vehicle) areas of
in the form of
certain logical guidelines. These guidelines

are as follows :

4.2.1 Parking and Polling

Following completion of a load move, a

vehicle at a drop-off point will check for
any loads to be picked up at other qualifying
This is called polling.

stations. process

588

If there are no loads ready to be picked up,
the
parking

assigned an intermediate
Both the

stations and the intermediate destination are

vehicle is

location. qualifying

represented in terms of a data base.

When a vehicle arrives at an intermediate
parking location, polling of pick-up stations

continues. If no loads are ready to be picked

up, the vehicle either advances to the next
intermediate parking location or remains at
its current 1location wuntil a load does
qualify (Gray, 1988).

Chart #1 shows a typical vehicle

It

shows

programming data base. is keyed by 1load

drop-off locations and which pick-up

stations qualify for service when a vehicle
completes its drop. If no loads are ready to
be picked up, the vehicle is dispatched to an
This

intermediate parking location is included as

intermediate parking location.

a field in each record.

CHART #1
Intermediate

Drop~off Pick-up Loca— Parking
Location tions Polled Location
1 (battery) E 33 50
4 (Slave) 4,3,2 51
5,6,7,8 (Ship) 4,2,83 51
15,16 (Pal Col) 14 60
17 (ASRS) 18,20,22 52
19 (ASRS) 20,22 52
21 (ASRS) 22 52
28 (Lift) 24,11,10 61
25 (Dye Pen) 25 58
26 (Prod) 26,27,28,29, 59

30,31,32 .
27 (Prod) 27,28,29,30, 59

31,32
28 (Prod) 28,29,30,31 59
29 (Prod) 29,30,31,32 59
30 (Prod) 30,31,32 57
31 (Prod) 31,32 57
32 (Prod) 32 57
33 (Dye Pen) 33 58
34 (Dye Pen) 34 655
35 (Prod) 35,34 55
36 (Prod & 36,35,34 55

Dye Pen)

37 (Raw Matl) 37,36,35,34 55
38 (Raw Matl) 38,37,36,35, 55

34
39 (WIP) 39,40,41 54
40 (Dye Pen) 40,41,39 54
41 (Fin Prod) 41,40,39 54

¥% There are no pick-up stations between the
drop~off location and the intermediate point.
Therefore,the vehicle travels directly to the
intermediate point before polling begins.



Chart #2 is a continuation of Chart #1 .

keyed

It
parking
which

residence at

is by each intermediate

The

polled during a vehicle’s

location. pick—-up stations are

its

current location and the next intermediate

parking location are included as records in

this data base.

CHART #2
Parking Pick-up Loca- Next Intermediate
Location tions Polled Parking Location
51 18,20,22,25 52
52 24,10,11,37, 58
38,39,40,41,
35,36,34,33
53 39,40,41,38, 55
37,36,35,34
54 33 58
55 33 58
56 33 58
57 33 58
58 26,27,28,29, 60
30,31,32,14
59 30,31,32 57
60 12,13 61
61 18,20,22 52
62 kX 63
63 X% 64
64 4,3,2,20,18, ¥

22,24,25,26,
27,29,33,30

¥% There are no pick-up stations between the
parking location and the next intermediate
parking location, therefore the vehicles
travel to the next parking location before
polling begins.

¥ Vehicles residing at location 64 will
remain there until given a pick-up station
destination.

4.2.2 Transfer of Vehicle Programming
Algorithms

In an AGV system, vehicle programming can

be represented in the form of data bases.
Quite obviously, table driven logic developed
in a simulation would be most efficiently

transferred to the actual system in data base
form. The actual control system would operate

the AGV system using the rules developed in

the simulation and represented by the data
base. The advantages inherent in this data
base transfer include the incorporation of

completely debugged logic, ease of transfer,

and reduction of duplication of effort.

589

4.3 Through-put Modeling

Although the through-put 1logic
transferred from the simulation to the actual
the of

it will be briefly mentioned.

is never

system controller, for sake
completeness
Through-put is defined as the number of loads
per unit time which must be picked up and
delivered. In the simulation, through-put is
used as a measuring stick to arrive at the
the

is possible to exercise

of vehicles
It

system

number required to achieve
desired results.
the

this portion of simulation logic and using it

actual controller by modifying

to create a system emulator. This gives the

system designers some insight concerning the

amount of work being done on the factory
floor.
5.0 SUMMARY

The widespread use of simulation in the

design stages of complex control systems has
warranted the development of new standards of
communication and requires new techniques for
the This

become an issue for several reasons.

transfer of simulation logic. has
First,
it is essential that simulation integrity be
the

without a logic transfer methodology,

maintained in actual control systenm.
Second,
subtle differences between the simulation and
Third,

duplication of effort can be minimized when

real world system are prone to emerge.

using a logic transfer.
methods that

simulation

This paper has listed
be
logic

four can used for

transporting into actual
system software. Several of these methods and
their further illustrated

through the example of an AGV system.

advantages were

REFERENCES

Carson, John S. 1986. "Convincing Users of a
Model’s Validity is Challenging Aspect of
Modeler’s Job." Industrial Engineering
(June): 74-85,

Christy, David P. and Hugh J. Watson.
"The Application of Simulation :
Industry Practice."”

1983.
A Survey of
Interfaces (Oct).

1984.
MA.

Cox, Springer.
Software, Stow,

GPSS/PC. MINUTEMAN



Davis, Deborah A. 1986. "Modeling AGV
Systems." Inm Proc. 1986 Winter Simulation
Conf. (Washington D.C., Dec. 8-10). SCS, San
Diego, Calif., 568-574.

Gray, Cheryl. 1988. Generic Simulation
Document. Control Engineering Company, Harbor
Springs, MI.

Harmonosky, Catherine M. and Randall P.
Sadowski. 1984. "A Simulated Model and
Analysis Integrating AGV’s with Non—~Automated
Material Handling." In Proc. 1984 Winter
Simulation Conf. (Dallas, Tex. Nov. 28-30).
8CS, San Diego, Calif., 178~183.

Henriksen, James 0. and Robert C. Crane.
1983. GPSS/H User’s Manual. Wolverine
Software Corporation, Annadale, Va.

Lajeunesse, Jim. 1984. "Eleven Steps To
Simulating An Automated System." Modern
Materials Handling (Nov 4) : 45-49.

Law, Averill M. 1986. "Introduction to
Simulation : A Powerful tool For Analyzing
Complex Manufacturing Systems." Industrial
Engineering (May) : 46-63.

Newton, Dave. 1985, "Simulation Model
Calculates How Many Automated Guided Vehicles
Are Needed." Industrial Engineering (Feb) :
68-78.

Page-Jones, Meilir. 1980. The Practical Guide
to Structured Systems Design. Yourdon Press,
New York, N.Y.

Quinn, Edward B. 1987. "Discrete Event
Computer Simulation of AGV Networks." In
Proc. AGVS 87. (Pittsburg, PA., Oct 27-29),
MHI, Charlotte, NC. 43-51.

Sadowski, Randall. 1987. "Computer Simulation
of Automatic Guided Vehicles." In Proc. AGVS
87. (Pittsburg, PA., Oct 27-29), MHI,
Charlotte, NC. 21-41.

Schriber, Thomas J. 1984. "A GPSS/H Model For
A Hypothetical Flexible Manufacturing
System." In Proc. First ORSA/TIMS Special
Interest Conference on Flexible Manufacturing
Systems. 168-182.

AUTHOR BIOGRAPHY

ROGER MCHANEY graduated Summa Cum Laude
from Lake Superior State University in 1984
'with a B.S. in Industrial Engineering
Technology and an Associates degree in
Computer Technology. He is currently a
candidate for his M.B.A. degree at the same
institution. In addition to being a part-time
student, he is employed by Control
Engineering Company (an affiliate of Jervis
B. Webb Company) as a simulation analyst. In
his five years there, he has developed a GPSS
based software package to aid in simulating
Automatic Guided Vehicle Systems and has used
it to simulate over 100 AGV systems. His
current interests include microcomputer
applications of simulations and computer
graphics.

590

Roger McHaney

Control Engineering Company
8212 Harbor Springs Road
Harbor Springs, MI 49740



