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ABSTRACT

We present three extensions of the frequency domain ap-
proach proposed by Schruben and Cogliano (1987). The first
is the assignment of multiple frequencies to input factors. The
frequency selection in this case is nearly identical to that of one
frequency per factor. The second extension is the use of the
time series of batch means to flatten the noise spectrum and
make the identification of peaks in the output spectrum easier.
Finally, we show that using common random numbers (as sug-
gested in Schruben and Cogliano, 1987) for the signal and noise
runs do indeed tend to decrease the peaks in the noise spectrum

and also facilitate factor identification.

We discuss several limitations to the use of frequency do-
main methodology as it currently exists. One limitation is the
case in which a factor-frequency interaction is present. Al-
though none of the simulation models currently being examined
seems to have this property, it is one present in certain chaotic
dynamical systems. These systems demonstrate qualitatively
different behavior when oscillated. Another limitation involves
the time index. For complicated systems it may not be feasible
to define a single “clock” with which to oscillate parameters.
Current work (Jacobson, et al., 1988) shows that certain mod-
els may use the global time clock, but it is not clear that there

is always a solution.

1. MULTIPLE FREQUENCY ASSIGNMENTS

In this section we will first discuss the relationship between
Frequency Domain Experiments (FDE’s) and Response Surface
Analysis (RSM). A FDE may be viewed as a dynamic version
of a2 RSM as follows. The RSM approach consists of hypoth-
esizing a meta-model which is polynomial in the factors (Box

and Draper). The experimenter specifies a region of interest

and performs experiments within that region by specifying the
various factor levels and running the simulation for each com-
bination of factor level. The model is fitted by a polynomial

regression on the resulting data (Kleijnen, 1987).

The FDE approach also begins by hypothesizing a response
meta-model which is polynomial in the factors, but the method
of experimentation differs. Rather than one run at each factor
value, in a FDE the factors are oscillated throughout the run;
this constitutes the signalrun. A second run is often performed
in which each factor is held constant at its nominal value. This
is simply a conventional run, but is referred to as a noise run.
The output power spectrum is computed for each run and the
ratio of the spectrum at each frequency is obtained, the signal
to noise ratio. The experimenter looks for peaks in this ratio,
either visually or statistically. Relatively large peaks at certain
frequencies are indicators that corresponding combinations of

factors are influential in the simulation. Thus, factors may be

'screened in an efficient manner.

To perform FDE’s, the experimenter makes an assump-
tion in addition to those for RSM: oscillations of the factors at

their respective driving frequencies result in peaks in the output

spectrum at sums and differences of certain multiples of those
frequencies, the term indicator frequencies, These multiples do
not exceed the order of the hypothesized polynomial the exper-
imenter assumes for RSM. Some models which exhibit this be-
havior include the Dynamic Response Surface Model (Schruben,
Heath, and Buss; Sanchez and Buss), the Hammerstein model,
and the Weiner model (Jacobson, 1987). In this paper we will
only consider models of order 2; that is, we assume that the
response surface may be approximated by a second order poly-
nomial. This is commonly used for RSM (Box and Draper,
1987). FDE’s should thus be viewed as a complement to RSM,
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at the very least as a relatively efficient method of factor screen-

ing (Schruben and Cogliano, 1987).

We will now consider assigning more than one driving fre-
quency to each factor. The problem of selecting driving fre-
quencies has been solved to optimality for up to seven factors
in Jacobson, Buss, and Schruben (1986). They also show that
driving frequencies may always be selected so that there is no
confounding amongst term indicator frequencies. We discuss
confounding below. The frequency selection problem for multi-
ple driving frequencies is no more difficult than for single driv-
ing frequencies. Each factor is simply treated as being several
factors for the purpose of assigning frequencies. The total num-
ber of frequencies to be assigned is the sum of the cardinality
of the frequencies assigned to each factor. The frequency se-
lection problem is solved using that number as the number of
factors. Observe, however, that the interpretation of the term
indicator frequencies (linear, quadratic, interaction, etc.) is dif-
ferent in this case than the one frequency per factor approach.
For example, all quadratic and interaction term indicator fre-
quencies for those frequencies associated with a single factor
are associated with the quadratic term for that factor. Also,

there are many more interaction terms: if each of two factors

are assigned s and r frequencies, respectively, then there are .

2rs term indicator frequencies representing interaction between

those two variables. An attempt should be made to spread out -

the frequencies for each factor by assigning it both high and low
frequencies. If the system acts in a way that certain frequencies
do not affect the output (e.g. low pass filters) then using more
than one frequency, increases the chance that peaks in the out-
put spectrum will actually be observed when the corresponding

terms are in fact in the model.

One disadvantage is the fact that in order to stay within
the appropriate region of the response surface, the amplitudes
for each term must be reduced roughly in proportion to the
number of frequencies it is assigned. However, this may be out-
weighed by the information obtained about gain. In particular,
since each factor will typically have term indicator frequencies
at high, medium, and low frequencies, the signal and noise run
may be substituted for the Latin square design proposed in
Schruben and Cogliano (1987). Of course, since there will be

many more frequencies, the distance between term indicator
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frequencies will be much smaller, and longer runs will be re-
quired to get good spectral estimates. On the other hand, due
to the greater number of term indicator frequencies for each
term we may allow some confounding to occur in the design,

particularly amongst interaction terms.

Confounding occurs when distinct terms in the meta-model
have the same indicator frequencies. For a given order polyno-
mial meta-model, we may always choose frequencies so that
all term indicator frequencies are unconfounded. If the order
of the polynomial is greater than hypothesized then, as with
RSM, there will be model mis-specification. In a FDE this will
result in peaks for higher order term indicator frequencies be-
ing aliased to term indicator frequencies corresponding to lower
order terms. Thus, there will be confounding. This cannot be
detected by a FDE, since it is assumed a priori that the hypoth-
esized order of the polynomial is large enough. Of course, there
is a similar difficulty with RSM, in which most of the analysis
deals with a quadratic (second order) model (Box and Draper,

1987).
1.1 Example

We will illustrate multiple driving frequencies with an
M/M/1 queue with factors the arrival rate and the service rate.
The experiment was run for 50,000 customers and the values
as shown in Table 1. Observe that each factor has a high and
a low driving frequency. The resulting signal to noise ratio is

shown in Figure 1.

Table 1: M/M/1 Queue Parameters

Nominal
Factor Value Amplitudes Frequencies
Arrival 0.6 0.35 0.04
Rate 0.20 0.22
Service 1.0 0.40 0.05
Rate 0.25 0.36
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Figure 1: Signal/Noise Ratio for M/M/1 Queue

2. BATCH MEANS

Batch means are a way of reducing serial correlation in-
herent in simulation experiments (Fishman, 1978). One would
therefore expect that using batch means for FDE’s would re-
sult in a flatter noise spectrum and reduce the effect of gain
and frequency-pass qualities of the simulation model. Sargent
and his co-workers have extensive experience with the use of
batch means in queueing and computer network models (Sar-
gent, 1988). In this section we will show that the output spectra
of FDE’s are extremely sensitive to the exact value of the batch

size,
We will be making the following assumptions for the FDE:

1) The noise run is a (second order) stationary process with

covariance function Ry(n).

2) The signal run is the sum of two uncorrelated processes:
one having covariance function Ry(n) (the same as for
the noise run), and the other having periodic covariance

function Rg(n) with finitely many frequencies.

We first consider a steady state output {X,} with covari-
ance function R(n) (of either signal or noise form) and define the
batch means Y; as usual: ¥; = (X(j-1)pq1+---+X)/b, 7=
1,...,m, where b is the batch size, m is the number of batches,
and n = mb. Let Ryp(k) be the covariance between batches 7 and

7 + k (observe that Ry(k) is independent of j by stationarity).
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corresponding property in the frequency domain is that the
batch spectrum, the Fourier transform of the covariance of the
sequence of batch means, becomes flat. Let h(w) be the gen-
eralized spectral density for {X,} and hs(w) the corresponding
spectral density for {Y3}, the sequence of batch means. We

have
b—1 |a| 0 .
bf_z.(,(w) = Z (1 - —b-> E ez’"‘"kR(kb + s). (2)
a=—(b~1) k=—co

Thus, if B(n) is absolutely summable, then bhy(w) — k(0)
as b — oo, for 0.0 < w < 0.5. Equivalently, Ay(w)/Rs(0) ~ 1
(Heidelberger and Welsh, 1981).

The situation is quite different in the presence of dis-

crete spectra. Indeed, if Rs(n) is not identically zero, then
Zm

e —oo | B(n)| = co. For simplicity, consider a covariance con-
sisting of a single frequency term at wo: R(n) = cos2nwon.

Then by Equation (2) we have:

b—1

bhy(w) = z (1 - lz—l) cos 27wy s
s=—(b—1)
(o]
. E ¥k 0089 mwn bk
k=—o0

= Fb(wo)ﬁ(w - wob), (3)

in which Fi(w) = sin’(rwN)/Nsin®(rw) is the Fejer kernel
and k is the Dirac delta function. In the above we have added
the “power” at +w and —w to obtain the one-sided power spec-
trum. The contribution of the oscillation of the covariance func-
tion at frequency wg contributes power at bwg, but the Fejer
kernel tends to decrease the power for bwy > 1. Now, buwy will

be aliased into the interval [0.0,0.5], so the exact location of this

peak depends on b. Let wg = r/d where r and d are relatively



prime integers. We are confined to rational frequencies, not only
because of the finite precision of the computer, but because op-
timal frequencies will be rational and every known algorithm for
determining a non-confounding set of driving frequencies results
in rational frequencies (Jacobson, Buss, and Schruben, 1987).
Choosing batch size b a multiple of d, the frequency’s denon}i-
nator, will result in all term indicator frequencies being aliased
to the origin, which is clearly undesirable. However, since we
have complete control over both batch size and frequency selec-
tion, we can always choose the driving frequnecies to avoid this
difficulty. For example, choosing b = kr +1 for integer k results
in bwy being aliased to wy. In general, different batch sizes lead
to peaks in the output spectrum at any multiple of 1/r. The
difficulty with this is that the Fejer kernel is extremely small

for batch sizes greater than the denominator of the frequencies.

It is clear that batch means should be used for FDE’s with
great caution, since the term indicator frequencies do get shifted
from their unbatched locations. Furthermore, the presence of
the Fejer kernel in the batch spectrum at non-zero values could
suppress peaks which would otherwise be observed. This would
be an example of the “false negative,” a situation in which a
peak should be observed since the corresponding term is truly
in the model, but the peak is not observed (see Morrice and
Schruben, 1988 for further discussion-of the false negative prob-
lem). However, since batching may be viewed as a low pass lin-
ear filter (Heidelberger and Welsh, 1981), it seems reasonable
that careful design of the FDE should avoid these difficulties.

One solution is to divide the original driving frequencies
by the batch size b. Clearly the term indicator frequencies from
the batch spectrum will then be the original term indicator fre-
quencies, since each will be multiplied by 4. For even moderate
batch sizes, the effect will be to have all parameters oscillating
at very low frequencies. However, batching has the effect of
increasing the frequencies, and this may always be done so that
the resulting batch term indicator frequencies are those which
the experimenter would have chosen in the output had not been

batched.

Let us examine the impact of choosing frequencies in this
manner on the output spectra. For a single frequency wy as

above we have

bhy(wo) = Fy(wo/b)6(w — we) (4)

so that the peak is now at wp. Now observe that

sin? mwo
bsin® mwp /b

_ sin® mwy 2 mwy /b z
- TWy sin mwo /b

For large batch sizes b the rightmost term is nearly unity,

so that Fy(wo/b) = O(b) as b — co. Therefore, we would ex-

Fy(wo) =

pect the signal to noise ratio corresponding to batch size b to
increase, at term indicator frequencies for terms present in the
model, about on the order of . For small frequencies the in-
crease is nearly b, while for high frequencies (near 0.5) the in-

crease is about b(2/7)2.

We note one final consequence of baich means flattening
the spectrum. The purpose of performing signal and noise
runs and taking the spectral ratio is to mitigate effects of gain,
namely properties of the system which tend to enhance or sup-
press certain frequencies. If the noise spectrum were truly flat
then we would only have to perform the signal run. Since
batch means tend to flatten the spectrum if to periodicities are
present, while enhancing the peaks of frequencies corresponding
to the discrete spectrum, we envision the possibility of dispens-

ing with the noise run.
2.1 Example

We will illustrate the impact of batching on the M/M/1
queue with the arrival and service rates the parameters of in-
terest. In each case the nominal values of arrival and service
rates were 0.6 and 1.0, respectively and the (batched) driving
frequencies were 0.04 and 0.4, respectively. The settings are

given in Table 2 below.

Figure 2a shows the low pass nature of the queue, while
Figures 3a and 4a demonstrate the gradual flattening of the

spectrum with increasing batch size. As these three are all the

noise runs (no oscillation of parameters), this replicates behav-

ior previously observed (e.g. Heidelberger and Welsh, 1981).
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Turning to the signal spectra, we observe increasingly higher
peaks at 0.04 and at 0.40 as the batch size increases (Figures
2b, 3b, and 4b, respectively), while the width of the peaks in-
creases due to the correspondingly fewer observations. This ef-
fect is more pronounced for the lower frequency than the higher
one. As batch size increases, the second order effects become
more apparent. The square of the arrival rate appears as a peak
at 0.08 and the interaction between arrival and service rates as
small but distinct peaks at 0.36 and 0.44. The signal/noise ra-
tios (Figures 2c, 3¢, and 4c) show the increasing heights of the

peaks as well as the increase in order of magnitude described

above.
Table 2: Frequencies and Batch Sizes
for the M/M/1 Queue
Batch wy wa
Run Size # Batches (Arrival) (Service)
1 1 50,000 0.04 0.40
2 10 5,000 0.004 0.040
3 100 500 0.0004 0.0040
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Figure 2a: Noise Run for M/M/1 Queue
Batch Size =1

ICT14000TD

0eg0

ICT0B8TO

553

40 -

20 -

10 -

0.0 O.1 O.2 0.3 0.4 D.5

Fraeqguarnoc)y

Figure 2b: Signal Run for M/M/1 Queue
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Figure 2c: Signal/Noise Ratio for M/M/1 Queue
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Figure 3a: Noise Run for M/M/1 Queue
Batch Size = 10
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Figure 3b: Signal Run for M/M/1 Queue
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Figure 3c: Signal/Noise Ratio for M/M/1 Queue
Batch Size = 10
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Figure 4a: Noise Run for M/M/1 Queue
Batch Size = 100
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Figure 4b: Signal Run for M/M/1 Queue
Batch Size = 100
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Figure 4¢: Signal/Noise Ratio for M/M/1 Queue
Batch Size = 100

3. COMMON RANDOM NUMBERS FOR SIGNAL
AND NOISE RUNS

In this section we investigate the effects of using common
random numbers for the signal and noise runs. This was sug-
gested by Schruben and Cogliano (1987). The usual F test
under the null hypothesis of no significant frequency response
is not appropriate, even under the assumption that the spec-
tral estimators are asymptotically chi-square. This is because
the F distribution is based on ratios of independent chi-square

variables.



‘We will focus on a single frequency wq and begin by assum-
ing that the spectral estimators are asymptotically chi-square
with v degrees of freedom, where v is the “equivalent” degrees of
* freedom and depends on the exact type of window used (Priest-

ley, 1981). We further assume that the chi-square variables are
obtained from the sums of squares of "equivalent” standard
'norma.l random variables. We will initially assume that the sig-
nal and noise run are of identical length, so v is the same for
each. Thus, under the null hypo.thesis of no factor effect, the
outputs from the signal and noise runs are considered to be
transformed into {X,...,X,} and {¥3,...,Y,}, respectively,
where the :X;’s and Y;’s are two sets of v independent standard
normal random variables. The spectral estimators at wg are
asymptotically proportional-to 3i_; X7 and 3 ;_, Y7 for the
signal and noise runs, respectively. Finally, we assuime that the
effect of the common random numbers is to induce correlation
p between X; and Y;, identical for each ¢, but the pairs (X;,Y3)

are independent and jointly normal.

Under these assgmptions, the joint distribution of the spec-
tral estimators for the signal and noise runs are proportional
to the following bivariate gamma density (Johnson and Kotz,
1971):

( \/,,,.—y)(v—Z)/ze—(zw)/z(l—p’)

f(zyy) = 4(1 - p*)I(v/2) . ©

Here, I,(z) is the modified Bessel function of the second type
of order p. The density in Equation (5) may be written as a

mixture of univariate gamma densities:

Fmy) = ki oy w/2)v(w50/2 + B, 1/[2(1 = 7))

k=0

~y(ysv/2 4+ k,1/12(1 - pz)])

in which

N+1
wkin ) = (3 1) -a), k=0

is the negative binomial mass function and

Aae—)\z

¥(z30,4) = T

is the gamma density function. Thus, given K (a negative bi-
nomial random variable), the joint distribution of the spectral

estimators (under the null hypothesis) are proportional to in-

dependent gamma random variables with parameters v/2 + K
and 1/[2(1 ~ p?)]. We may therefore write the density of the

signal to noise ratio as a mixture of F distributions:

F(2) = ks 0%,0/2) fuzipsan(2)
k=0

in which fyyak,u42k(2) is the density of an F' distribution with
v+ 2% degrees of freedom in both the numerator and denomi-

nator. This density was apparently first studied by Bose(1938).

Using the moments of the F distribution, the mean and

variance of this distribution are

_V—-2p2
T v-2

(v>2)

and

s (= 1)(1=p) 421 = p*)(ov ~8)
(v—2)*(vr—-4) (v —2)2(v - 2)

(v>4)

Thus, using common random numbers should result in smaller
signal/noise ratios under the null hypothesis. When the term
for which the indicator frequency in question is in fact not
present in the model, then using common random numbers
should result in smaller peaks, as desired. Thus, using common
random numbers is desirable when we are particularly inter-

ested in detecting the absence of factors in the model.

The distribution of the signal to noise ratio depends on
the unknown parameter, p, which must be estimated. Since
this is the cross-correlation (with no lag) between the signal
and noise runs, the usual estimator is asymptotically unbiased
and consistent. Therefore, with large samples sizes there should
be no difficulty replacing p with its estimator 5. The exact

distribution appears to be extremely complicated.

Suppose the equivalent degrees of freedom for the signal
run are greater than those for the denominator. If we assume
that the extra degrees of freedom come from more normal ran-
dom variables independent of the noise run, we have the follow-
ing distribution of the signal to noise ratio for a given frequency

under the null hypothesis:



Floay) =Y D (ks p?v/2)(k; 0, v/2)

k=0 k=0

(@ v/24 p/2+ k4 hy 1/[2(1 - pP)]
(e v/2 + k,1/[2(1 - p*)]

in which there are v + p degrees of freedom in the numerator

and v in the denominator.

There does not appear to be a nice representation of the
spectral ratio under these conditions when the alternative hy-
potheses (existence of a peak in the signal spectrum) is true.
One could approximate it by replacing the F distributions with
non-central F' distributions corresponding to the numerator in

the negative binomial mixture above.

4, LIMITATIONS OF FREQUENCY DOMAIN EX-
PERIMENTS

In this section we will discuss some limitations to the use of
Frequency Domain Methodology. Although it appears to work
very well for a number of models, Frequency Domain Method-
ology is still relatively untested. Its good and bad properties
are not known to the extent of conventional models. This in
itself has been used as a basis for dismissing FDE’s as a useful
tool for analysis. However, all established techniques were once

new and untested, so we do not feel that this justifies the denial

of benefits of FDE’s. The experience of the author, as well as
other workers in the field of frequency domain methodology, has
been then FDE’s work extremely well, even when perhaps they
shouldn’t. This suggests a certain robustness to the Frequency
Domain approach. However, there appear to be situations in
which we might expect FDE’s to perform badly. These situa-
tions should be those in which interaction of the frequencies of

oscillation and the factors themselves is present.

The issue of validity and robustness is far from settled.
There are several papers which discuss the kinds of models for
which FDE’s will perform well (Schruben, Heath, and Buss,
1988; Jacobson, 1988; Sanchez and Buss, 1987). These models
include static models as special cases: regression, RSM, etc.
Each of these models has the difficulty of the respective analysis
invalidated by model mis-specification.
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However, there should be cases in which FDE’s simply do
not work due to gross violation of the dynamic assumptions. A
class of models from nonlinear dynamics, the so-called chaotic
systems, exhibit qualitatively different behavior when excited
by periodic functions (Guckenheimer and Holmes, 1983). Two
well-studied examples of such systems are the Duffing oscilla-
tor and the Van der Pol Oscillator. These arise from relatively
simple nonlinear models of physical phenomena. Although the
researchers in that field do not think of them as such, we may
consider such models to be FDE’s, The unforced system cor-
responds fo the noise run and the forced system (essentially
replacing a nominal value of zero by a sine wave) corresponds
to the signal run. The unforced system may decay to a stable
value or to a periodic limit cycle. The forced system, how-
ever, can exhibit either periodic or “chaotic” behavior. The
spectrum of periodic systems consists of peaks at the appro-
priate frequencies, while the chaotic spectrum is typically wild,
resembling more a white noise spectrum than a periodic one.
Evidently the type of behavior (periodic or chaotic) depends on
the frequency and the amplitude of the forcing sinusoid. the be-
havior of the oscillated system depends on the frequency. If the
experimenter is so unfortunate to attempt a FDE on such a sys-
tem, the conclusions could be radically different when different

frequencies are used.

The second limitation concerns the time index. There are
two types of simulations for which a consistent time index may
always be selected: synchronous, or “time slice” simulations
and FIFO simulations, such as the M/M/1 queue. Somewhat
more complicated systems have a defineable time index, but in
some cases one has to resort to a re-ordering of the output (Som,
et al., 1987). In some circumstances one need not re-order the
output, but instead may determine effects of “shuffling” on the
term indicator frequencies (Jacobson, et al., 1988) and use the
simulation time clock as the index. For extremely compliacted
systems, however, with multiple entities and vast amounts of
shuffling within it is not apparent that a consistent time index
may always be found. Tt is a limitation which Frequency Do-
main Methodology must overcome if it is to prove a useful tool
for analyzing large simulation models. If we can understand
the circumstances under which FDE’s will not work, we may
understand better which circumstances under which they will

work.



5. SUMMARY AND CONCLUSIONS

We have presented three extensions to Frequency Domain
Methodology as originally proposed by Schruben and Cogliano
(1987): use of multiple frequencies for each factor, use of the
batch means time series for spectral estimation, and the use of
common random numbers for signal and noise runs. The ini-
tial results for each of these are encouraging. Further study
is needed to demonstrate the utility of these techniques. We
have discussed some validity issues concerning Frequency Do-
main Methodology itself. It would appear that factor-frequency
interaction is the most damaging characteristic of a system to
have if the experimenter wishes to perform FDE’s on it. Chaotic

dynamical systems are one class of models for which this occurs.
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