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ABSTRACT

Many problems in statistics and operations
research reduce to the evaluation of the distribution
of a random variable, called the response, known to be
a complicated function of a number, d say, of
independent uniform variables. Monte Carlo estimation
is often used for this purpose if the distribution is
analytically intractable. Often the response
possesses symmetry properties with respect to its
arguments. It is then possible to restrict sampling
to simplex regions of the sample space. This can be
easily combined with stratified sampling to give
variance reduction of order O(d) compared with normal
stratified sampling. The theory of such methods is
discussed and a simple stratified sampling scheme is
applied to two examples giving a two to five fold
reduction in the variance.

1. INTRODUCTION

Many of the most successful applications of
variance reduction in Monte Carlo simulation have
occurred in the context of estimating the distribution
of a test statistic. A glance through the statistical
literature shows this to be one of the areas where
Monte Carlo simulation is most widely wused,
particularly for comparing the small sample
distribution of a statistic with asymptotic,
theoretically derived, results.

A typical scenario for such a study is as
follows. A random sample is drawn from some specified
distribution. A test statistic is then calculated
from the random sample. This latter is often an
involved calculation which consumes the bulk of the
computing time. A crude way of estimating the
distribution of the test statistic (but one which is
often used) is to generate many independent test
statistic values (from independent samples) and then
estimate the distribution using the empirical
distribution function. We shall consider how
stratified sampling can be used to improve on this
elementary method. The choice of stratified sampling
rather than one of the other well-known variance
reduction methods, like control variates or antithetic
variates, has been based on the following factors.

(i) The distribution
precisely defined,

of a test statistic is
and there is an arguably
greater requirement to determine it more
accurately, or at least to determine the
accuracy of the Monte Carlo estimation more

precisely, than in sinulations of the
operations research type where many more
uncertain assumptions «can influence the
results. Thus variance reduction techniques

which can introduce errors like bias, as in the
case of control variates, are not so attractive
as exact methods like stratification.
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function of the Us. Thus

(i1) The technique should be applicable without the
need to presume specialist features of the
statistic under review for its implementation;
ideally variance reduction should be guaranteed
under very general conditions.

(iii) The technique should be easy to implement.
Cheng and Davenport (1988) discuss an elementary
stratification scheme which meets the above three
criteria. They discuss its implementation to problems
of operations research type via the stratification of
a so-called shadow response variable which is well
correlated with the response of actual interest. This
method is in principle applicable to the problem of
concern to us here and indeed Cheng and Davenport
mention one such application. He shall here adopt a
much more direct approach. Our only restriction will
be a symmetry condition on the response variable. This
is not an inconsequential restriction; nevertheless
many test statistics will satisfy it. Thus for
example. those based on sums of squares of the
observations, or connected with maximum 1likelihood
estimation will usually satisfy the condition.

Section 2 outlines some of the ideas of
stratified sampling to be used. Section 3 describes
hou they specialise under the symmetry condition.
Example algorithms are discussed in Section 4. Two
applications are described in Section 5.

2. STRATIFIED SAMPLING

We «collect together some results
stratified sampling for later reference. Some, but
not all, are well-known. Good reviews of stratified
sampling include those by Rubinstein (1981), Wilson
(1984) and Nelson and Schmeiser (1985).

concerning

Let X, X,, ..., Xq be a random sample from some
distribution Fy(.). Let Y = Y(X,, X,, ..., Xq) be the

test statistic of interest. We assume that each Xy is
generated from an independent uniform U(0,1) variable,
U;, by the inverse distribution function transform

Xj = F*(Up). (2.1)

Then Y can with no loss of generality be regarded as a
writing

d
U=(U, U, ..., Ug), 19 =1 [0,1], so that 19 is the
i=1

d-dimensional unit hypercube, we have

Y = Y(U) U e 19, (2.2)



We shall assume that it is the distribution of Y, and
its major characteristics, like its mean, that are of
interest to us.

Note that these characteristics can often be
written as an integral. For example the mean of Y is

E(Y) = [ T(w)du (2.3)
T4
where T is identically equal to Y, i.e. T=Y. The cdf
is
Pr(T ¢ y) = JT(u;y)du (2.4)
L4
where
T{u;y) =1 if Y{(u) sy
0 if Y(u)>y. (2.5)

Crude Monte Carlo sampling is thus equivalent to
sampling a set of points U,, U,, ..., Uy unifornmly and

independently distributed in 19 and then estimating
the integral

o= [ Twa (2.6)
Iy
by
. N
Bcrude = Ntz T(Ui)' (2.7)
i=1
The accuracy is well known to be
Var (8pyge) = O(NT1). (2.8)

Consider now stratified sampling. We imagine 1d
to be partitioned into N disjoint strata or cells, Cy,
i=1,2, ..., N:

- | Ci-
i=1

Let C; have volume «j. We shall consider the special
case where we sample just one point U; uniformly from
each cell and use as the estimator

A

N
9strat = 121 3 T(Ui)’ (2.9)

This is unbiased for 0.

We shall for convenience use the term STRAT1 for
stratified sampling using one uniformly distributed
point from each cell. We shall say the cells are
equiprobable if o« = N~ for all i. He have the
following result.

If the cells are equiprobable, then use of STRAT1
gives
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Var (9gtpat) € Var(8cpyde)- (2.10)
This is a special case of the more general result
described for example by Rubinstein (1981). The
attraction of it is that is applies simultaneously to all
functions T whose integrals are to be estimated. Thus
the result guarantees, for example, that the entire
cdf Fy(y) is estimated more accurately using
stratification than if crude Monte Carlo is used.

A very obvious partition to use is that where the

hypercube is divided in N=kd equal subcubes all with
sides of length k™!. We call this the equal-subcubes

partition of o,

Cheng and Davenport show that provided T
satisfies certain smoothness conditions (but which
allow for discontinuities in T) then use of the
equal-subcubes partition with STRAT1 gives

A 1
Var(estrat) =0 [EI;I7E]' (2.11)

Thus, though better than crude Monte Carlo, STRAT1
will only be significantly better when d is small. It
is perhaps worth comparing this result with the case
where a fixed regular grid scheme is used (see for

example, Niederreiter, 1978, or Ripley, 1987). The
square of the so-called discrepancy
1
Dyt =0 2/d (2.12)

appears to be the most natural quantity to compare
with (2.11); and it will be seen that STRATL always
does better than the fixed regular grid.

We now consider the special case of estimating
Fy(y) when the cells are not equiprobable. Let
Fy(y) = p, say. Using crude Monte Carlo we have that

var (8epyge) = P1-p)/N. (2.13)

We shall obtain a worst case bound on Var(ﬁstrat).
Let
R(y) = {ulu e I9, Y(u) ¢ y}.

Then the volume of R({y) is p.

Let the area of CiNR be
pi. Then

(2.14)

N
Var(9gtpat) = X pyflei—pid.
1=1

This is a concave function of the p;, so its maximum

can be found, subject to Ip; = 1, by the method of
Lagrange multipliers. This gives after some
manipulation
ﬂ?x Var (8gtpat) € N335 2 - N72 (p-%)2, (2.15a)
i

or

N
nax Var (fggrat) € X (@;-N")" + N7'p(i-p). (2.15b)
i i=1



It should be emphasised that this last expression is a
worst case situation. The actual variance will be
less than this value. It shows that choice of unequal
«j can lead to a variance greater than that of crude
Monte Carlo but it does place a limit on how much
greater.

3. T SYMMETRIC IN ITS COMPONENTS

We consider the case where T(.) is symmetrfc in
its components. That is, if

m(u) = (m(u,), nluy), ..., m(uy)) (3.1)
is any permutation of the components of u then
T(m({u)) = T(u). (3.2)

In this case the entire behaviour of T is encountered
in the simplex

S={ulo su, Sup ¢ ... <ugsi, ueId. (3.3)

More precisely we have the following property:

Theorem 1 If T(.) is symmetric in its components
then the distribution of T(U) is the same as the
conditional distribution of T(U) given that U is
uniformly distributed on the simplex S.

Proof We write

S(m) = {ulo < m(ug) € mlup) € .o < @lug) €1, we 19)

to denote the simplex obtained from S by permuting its
components to m(u). There are altogether d! such
simplices (including §); each has volume {(d!)~*; they
are disjoint, so they partition I".
Now
Pr(Tst) = I du
T(u)st

=3 I du
T[T (u)stInS (m)

=2 I du,
TSI (m(u))$t NS (m)

using (3.2). But

I du = du .
[T{n(u))st1nS(m) [T(u)st]ns

Thus

Pr(Tst) = d!I du
[T(u)stIns

J du/[du

[T(u)stins 5

noao

Pr(Tstlu ¢ 8).

With crude Monte Carlo sampling the above Theorem does
not help, as it is imnaterial whether we sanmple
uniformly over the entire cube I“ or merely over S.
However with stratified sampling it can be used to
greatly increase the effectiveness of the method.

Suppose . that stratified sampling is used
throughout 19 and that the partition used divides each
simplex in the same way into N/d! equiprobable cells.
For any cell, C, in S we can consider the
corresponding cell (i.e. the one in the same position)
in each of the other simplices. If T is symmetric in
its components, the d! points falling in such a set of
cells can be viewed as all having been sampled from
the one cell in S. 1In this situation we can regard
the nmethod of sampling as taking d! uniformly
distributed points from each cell of S. However from
(2.11) we see that it would be better to further
partition each cell of S into d! equiprobable cells
and use stratified sampling in these cells; from
(2.11) this reduces the wvariance by a factor

o[{d1)Y/4], ue thus have

Theorem 2 Suppose use of STRAT1 with equiprobable
cells gives Var(éstrat) = o114y, Then for T

symmetric in its components, application of STRAT1 to
the simplex S using N equiprobable cells reduces

Var(8gipat) by a factor O[(a!)/d], compared with
using STRAT1 on the cube 19 with N equiprobable cells.
ooo

For d large (ant/ad o d/e, where e is the basis
of natural logarithms.

4. TWO SAMPLING SCHEMES

In this section we describe two partiton methods
of the simplex S. The first is a partition into
equiprobable cells. The second is only approximately
so, but would seem to be more convenient to use in
practice. For this reason the first method will only
be discussed briefly, but the second will be
considered in more detail.

4.1 Equiprobable Partition of the Simplex $

The simplex S can be partitioned &nto kd
equiprobable subsimplices, all of volume k™%d!; all
are similar in shape from that of S. We shall not
describe the case of general k, but the special case
k=2.

Consider a point u € S, S0 that
0 €u €u, €...€uUq €1. Let r be the subscript for
which up € % < upyq. If we let

Vo=, vi=uj#¥ i=1,2, ..., r, and vy =1

..o (4.1)



then clearly

€ Vp €12 vy, 4.2)

so that we can think of v,, v, ..., v, as dividing the
interval [%,1] into (r+1) subintervals:

[Vj-l' Vj] j=1,2, ..., r41. (4.3)

Now the remaining uj, i = r+l, r+2, ..., d, being all
greater than %, will fall 1nto these sublntervals Let
a(j) be the number of uj's that fall in [v; -1 vj].
Thus if

J

b(0) =r, b(j)=r+ X a(i), j=1,2, ..., r+1
i=1

then

< <

Vj—l < ub(j'—l)'i-l € ... € ub(J) N Vj,

=1, 2, ..., £, (4.4)

We shall write a = (a(1), a(2), ..., af(r+l)); for
brevity we do not make explicit the dependence of a on
r. Note also that for fixed r, different sets of a(j)
values are possible. Each a represents what is known
as a different composition of (d-r) objects into (r+1)
parts (see Nijenhuis and Wilf, 1978), and there are in

all (3) different compositions. In fact elementary

considerations show that, for a given r and a, then
(4.1), (4.2) and (4.4) define a, sinplex of the same
shape as S, but of volume 27%/d!{. Each different
combination of r and a defines a different simplex and
there is no overlap ({apart from boundary points og
probability zero). Summing over r shows there are 2
subsimplices as required.

An algorithm for sampling one point from each
simplex can be constructed from (4.2) and (4.4). For
each r, we use the subroutine NEXCOM described by
Nijenhuis and Wilf to generate each different a
composition. For each composition we generate an
ordered set of d uniforms on (%,1). We then leave the
first a{l) values unchanged, but subtract ¥% from the
(a(1)+1)th uniform; then leave the next a(2) values
unchanged but subtract % from the next. The process
is repeated until all the uniforms have been
considered. This set of processed uniforms
constitutes our sample point from the subsimplex with
the given r and a composition.

The main problem with the direct use of the
algorithm is that the total number, k", of
subsimplices increases too rapidly with d. Thus
either some kind of transformation of the problem to
one of lower dimension is necessary (see Cheng and
Davenport, 1988) or else the subsimplices have to be

regrouped into k3P cells .each nade up of kP
subsimplices with b suitably chosen. We do not
consider these possibilities here.
4.2 Equal Subcubes Partition of §

The second partition does not produce

equiprobable cells, but is the more (vaous analogue
of the equal- subcubes partition of I
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Simply take

the Intersection of S with each subcube of the
equal-subcubes partition as a cell of §. These cells
can be «classified as follows.

Divide the unit interval into k equal subintervals.

Dy = [(i-1)/k, i/k] i=1,2, ..., k. (4.5)

For any point u ¢ S we count the number, a;, say of
components that fall in each subinterval Dj, and uwrite

a=(a, a,, ..., ay) (4.6)
All the points u with the same a are defined to be in
the same cell, and every different a identifies a
distinct cell which we can write as C(a). Moreover,

for a fixed a, the aj ranked components of u that fall
in Dj sweep out a simplex n aj—dimensional space of

volume k—aj/aj!. Thus the volume of C(a) is

vol(a) = k™9/(a, ! a,! ... apt). (4.7)

The different a's are, 1like the previous
partition, the compositions - only now - of d objects
divided into k groups. A convenient method of
generating them is the NEXCOM subroutine previously
mentioned.

An algorithm for generating one point from each
cell C(a) is readily constructed if we treat the ay
components of u falling in Dj as just a random sample
of aj uniform U(k™*(j-1), k™*j) variables.

If we write U(a) as the vector of uniform
variates formed in this way, then the estimate of 6,
as given in (2.9), becomes

d
strat=d'kd’£(rlaj')
a j“l

T[U(a)]. (4.8)

The total number of cells is the number of
compositions (see Nijenhuis and Wilf, 1978):

T(d,k) = (d“;‘l]. (4.9)

For practical values of d and k this is spectacularly
sgaller than k9 (e. g. for d = k = 10, J = 8008.
= 101°

A weakness of this partition is that the cells
are not equiprobable. However if d is much smaller
than k then the partition is close to being
equiprobable in the following sense.

Notice that in (2.15a) an upper bound for
Var(estrat) can be obtained by replacing every «; by
max o = «, say. Now the largest cells of the
partition are those which are full subcubes of volume
k4. Because the sampling is restricted to points of
S, this Is equivalent to having « = k~ddr.

Moreover,
as N = J(d, k),

we can replace oN in (2.15b) by



ol = (1 +K*)(1+2kY) ... 1+ (d-1X1)

to give

p{1-p)
+ N

" 1 Jd-1 .
Var[astrat] < m LE]_ 1+ _]/k) -1 .

Provided therefore that d << k, the right-hand side
Will not be much larger than Var(ecrude) even in this,
the very worst case. Overall this potential loss of
efficienc%/needs to be weighed against the improvement
of 0((dt}1/d) given in Theorem 2.

In use the weighting factors of (4.8) can be
precalculated, or can be calculated recursively as
each composition a is generated. Thus computationally
the overhead associated with the use of (4.8) rather
than (2.7) is small.

5. NUMERICAL EXAMPLES

5.1 A Statistical Estimation Problem

To illustrate the kind of variance reduction
possible we consider the sampling scheme of Section
4.2 applied to a problem discussed by Thoman et al
(1969) of estimating the bias of the maxinum
likelihood (ml) estimator of the shape parameter B of
a Weibull variable W with cdf

Fy() = 1 - expl-(u/7)F]

when the scale parameter ¥ is unknown. Now the ml
estimator B is not dependent on the order of the
sampled observations. Suppose therefore that these
are generated from uniform variables by the inverse
distribution function transform method. We can then
apply STRATL to these uniforms and moreover, do so
using the simplex version of the equal subcubes
partition described in Section 4.2. Table 1 gives the
results of estimating @ = E(B) for sample size d = 5
with k = 10. This scheme uses 2002 points in one
stratified run. To estimate the variability of the
estimate of €, the run was repeated 1000 times. For
comparison the table also shows the neans and
variances of 1000 runs each of which estimated 6 from
2002 independent samples (of size 5). It will be seen
that the variance is reduced by a factor of over 10.
Also tabulated are gelected percentile estimates of
the distribution of B and it will be seen that use of
stratification leads to variance reduction for all
percentiles, with a near five—fold reduction at the
99th percentile.

The computational overhead of using stratified
sampling was less than 5% and so has been ignored.

Cheng (1984) discussed an antithetic technique
for this problem which used antithetic sampling of
certain control variables. A comparison of the
results shows that the stratification method described
here is more effective. However it would be possible
to use stratified rather than antithetic sampling of
the control variables, and it is hoped to report this
elsewhere.
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Table 1: Comparison of the Monte Carlo Estimates of
the Mean and Selected Percentiles of the nl
estimator, B, of the shape parameter B in
the Weibull distribution, using Random
and Stratified Sampling

Number of replicates = 1000
d=5, k=10, J = 2002

True value of 8 = 1

Hean Percentile

of B 1% 10% 50% 90% 99%
Replicate Means:
Indep. Runs 1.4423 0.550 0.769 1.243 2,303 4.473
Strat. Runs 1.4420 0.551 0.766 1.240 2.306 4.533
Replicate Variances x 104
Indep. Runs 3.4 2.0 1.0 2.2 25.0 751.
Strat. Runs 0.3 1.7 0.78 0.88 6.0 155,
Variance Ratio (= Efficiency)
Indep/Strat 11.3 1.2 1.3 2.5 4.2 4.8

5.2 The Distribution of a Test Statistic

A number of goodness of fit test statistics have
been proposed (see d'Agostino and Stephens, 1986, for
a review) based on the differences between ordered

observations. It is of some interest to tabulate the
percentiles of such statistics under the null
hypothesis. A well known example is Moran's statistic

whose null distribution is that of

d+1

== % log(Uy) - Ugig))
i=1

(5.1)

where Ug,y < U¢,y < ... Ugq) are an ordered sample of

independent uniform U(0,1) variates: and U¢o) 0,

Ugs1 1. Though its asymptotic distribution is
known, curiously there has been no attempt to tabulate
its distribution for small samples until recently (see
Cheng and Thornton, 1988). It will be of interest

therefore to try Monte Carlo simulation in this case.

From (5.1) it is clear that M is symmetric in its
components and so we can use the stratification scheme
of Section 4.2 to estimate the small sample properties
of M.

Table 2 gives the results of estimating the mean
of M together with selected percentiles of its
distribution for the case where d+1 5 with k=18.
This uses 5985 points in one stratified run. To
estimate the variability of estimates the run was
repeated 500 times. For comparison Table 2 also shows
the estimates and variances from 500 replicates each
of which estimated the mean and the percentiles from
5985 independent runs.

As will be seen, stratification leads to variance
reduction for all pércentiles as well as for the mean
even taking into account the computational overhead.
The typical saving of 50% is perhaps not dramatic in
this particular case. Two features of this problen
are perhaps unusual in this respect. The statistic
happens to be rather easy to calculate, so that the
computational overhead of using stratified sampling is
more noticeable than in general. Secondly, Moran's
statistic is known to be sensitive to the smallest
differences U(;) U(j-1) @appearing in (5.1). Our
method of samp&ing does no% take especial advantage of



this. A more effective application would probably be
to use stratification directly on these differences.

These features should therefore not be allowed to
obscure the main point, which is that the
stratification scheme is extremely easy to apply and
in general carries little computational overhead or
danger of being variance increasing. The example does
show that even where the stratification is not being
applied in a subtle way, it still gives worthwhile
variance reduction.

Table 2: Comparison of Monte Carlo Estimates of the
Mean and Selected Percentiles of Moran's Statistic
using Random and Stratified Sampling

Number of replicates = 500

d=4, k=18, J = 5985

Mean Percentile

of M 1% 10% 50% 90% 99%
Replicate Means:
Indep. Runs 10.415 8.23 8.69 10.05 12.62 15.74
Strat. Runs 10.416 8.23 8.69 10.05 12.62 15.71
Replicate Variances x 10*
Indep. Runs 4.27 1,561 2.35 6.16 30.9 257.0
Strat. Runs 1.30 0.79 0.8 2.93 17.3 151.7
Variance Ratio
Indep/Strat 3.3 2.9 2.7 2.1 1.8 1.6
Efficiency Ratio
(Variance Ratio
x Labour 2.5 1.5 2.1 1.6 1.4 1.3
Ratio)
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