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ABSTRACT

This paper presents an algorithm to
determine where the correlation of data
sequence has died out. This algorithm can be
used to collect essentially uncorrelated
observations from a sequence of correlated
observations. The final purpose is to use
such observations to derive statistical
inferential procedures for +the parameters
concerned. Examples of M/M/1 queues are
presented.

INTRODUTION

Simulation modeling is a quite wuseful
technique to determine the behavior of the
system wunder a variety of conditions, to
identify means through which system
performance may be improved or simply to
better understand the behavior of the system.
Hence an important objective in simulation
output analysis is to estimate means of the
system characteristics. These estimates are
the primary sources from which the behavior
of the system can be characterized. Examples
of such estimates include the mean time that
arrivals spend in the system or the waiting
line, the mean length of the waiting line,
and the mean idle time for the service
channel or channels.

The
often comprises

data sequence in simulation output
realizations of correlated
random variables. This constitutes a major
stumbling block for applying classical
statistical inferential procedures to the
output data of a simulation because these

procedures are known to be unreliable if the
assumed independence of sample observations
is violated. Ho and Schmidt (1987) have
shown that the predictability of classical
procedures is affected in the presence of
data correlation, especially for highly
correlated sample observations.

Simulation output analysis has been an
active field of research. Consequently

various methods have bheen proposed to resolve
the problem of data correlation. These
include replication, batch means, parametric
modeling, spectral analysis, regeneration
cycles, and standardized time series. While
each method has its own method of analysis,
these procedures can be classified into four
categories as in Law (1983): (1) those that
seek independent observations. (2) those that
seek to estimate correlation in output
variables. (3) those that exploit the special

and

532

Chin-Fu Ho
Department of Information Management
National Sun Yat-sen University
Kaohsiung Taiwan 80424

probabilistic structure of the underlying
process. (4) those that are based upon stand-
ardized time series. The procedure to be

presented in this paper falls into the first
category. Hence in the sections below the
attempt to seek uncorrelated observations is
the mode to reduce the potential disastrous

impact when the assumption of independence is
violated.

While the method of replication could
provide independent observations, it is truly
wasteful that one simulation run only yields

a single observation. The method of batch
means isn't quite expensive. This method
divides a sample sequence into Dbatches of
equal size; then computes the sample mean of
each batch, Motivation for batching
observations is brought about by the
anticipation that the absolute magnitude of
correlation among batch means decreases
asymptotically; thus successive batch means

may be treated as uncorrelated if the sample
size is large enough. However, Schmeiser
and Kang (1981) have shown that the sequence
formed by batch means still gives the same
type of time series process as that of the
original data sequence. Therefore in a batch
means sequence the consecutive observations
have the possiblity of being subjected to
strong autocorrelation. This proposition is
supported by empirical results reported by
Law and Kelton (1979), where the correlation
between batch means is the most serious error
in the case of M/M/1 queues.

The problem of correlated batch means
gives rise to procedures which seek to find a
suitable batch size so that successive batch
means can be treated as uncorrelated. Law

(1983) discussed some approaches. One is to
fix the number of batches and then increases
the batch size until the estimated
correlation of adjacent batch means is less
than a small, user-defined number (Gross and
Haris (1974)). The drawback of this
approach is that the correlation estimator is
generally biased and for small sample sizes
is highly variable, thus less 1likely to
produce a reasonable estimate of batch size.
Another approach is developed by Fishman
(1978). Fishman applied +the von Neumann
ratio test to determine whether observations
in a batch means sequence are independent.
The conclusion rendered in Fishman's
empirical study is that his method might not
perform well if the sample sequence is too
positively autocorrelated.

Schmidt and Ho (1987) have proposed the



method
solve

of sequential systematic sampling to
the problem of data cororelation.
Similar to replication and batch means,
sequential systematic sampling also employs
uncorrelated observations to assist construc-
tion of inferential procedures. Nevertheless
its sampling procedure could be viewed as the
converse of batch means. While batch means
groups a sequence of consecutive observations
(one batch) together, sequential systematic
sampling collects observations at intervals
of some length (say k observations). If the
correlation of sample sequence dies out at
lag k, then observations drawn at intervals

of k can be considered as essentially uncorr-
elated. Using a common value k as the batch
size and the sampling interval, Ho and Schmit
(1987) conducted a simulation study of
comparing batch means and sequential system-
atic sampling. The comparison is based upon
the predictability of confidence interval
procedures applied to sample observations
generated from autoregressive, simple moving
average, and M/M/1 queuing models. The
results that follow indicated that sequential
systematic sampling is more satisfactory than
batch means in terms of the predictability of
the inferential procedure applied.

Apparently the method of sequential
systematic sampling will require a procedure

to determine a suitable value of k. The
purpose of this paper 1is to present a
procedure developed to identify where the
correlation has died out, therefore being
able to collect uncorrelated or nearly
uncorrelated observations from a sequence of
correlated observations. To assure
effectiveness of the procedure developed,
comparison with a parallel procedure already

in use will be pursued in this paper.

Section 2 presents the problem of deter-
ming where the correlation has died out. The
algorithm suggested by Fishman for determin-
ing a suitable batch size 1is reviewed.
Fishman's algorithm will be used in this work
as a benchmark for comparison. Section 3
presents an algorithm for determining where
the lag correlation has died out. Section 4
presents empirical results <for the M/M/1

queuing system applications.

THE PROBLEM

Consider a strictly stationary sequence
{xi} with mean u, variance ¢ and auto-
covariance  function {Rg Cov(xi,Xi+k)>
k=0,1,2,...}. The lag correlation py is then
given by oex=Rg/ 92. Our objective is to
construct an interval estimate for u. Based
upon a sample record X7, X9,....; Xpn, We use
the sample mean

@.1)
i=1

as an unbiased estimate for u. To asses how

close X is to ¥, we need an estimate of
n-1

Var( ) =[ 0%+ 2 (I-smR1 / n

s=1

(2.2)
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Hence an 100 (1-2)% confidence interval for

is given by

X £t ar(x )

n n-1,1-0/2 i 2.3)

where Var(%p) 1is an unbiased estimate of
Var(xy) in (2.2).

The origin of our problem is to obtain
an unbiased estimate of Var(X,). This can be
achieved if uncorrelated observations can be
acquired from {xj}. The method of batch means
breaks the sample sequence into m batches of
size k each, where n=mk. Let yj be the sample

mean of the ith batch. That is

ik

y i = 1/k X, 9
=D+ @9
i=1,2,..,m.
Now each yj is an unbiased estimate of w» .
That is
E(y;)=u
m
and X, = 1/ z X
=l
= 1/m Y,
i=1
Now suppose we estimate Var(Xp) Dby (syz/m)
where
m
2 1 - 2
S T Z (y;- %) 2.3)
i=1
That 1is, we treat each yj (batch mean) as

though it were an individual observation.

Application of the method of batch means
requires definition of batch size. A
sufficiently 1large batch size might reduce
bias in estimating Var(XZ,). Several empirical
studies including Law and Kelton (1979) have
shown that for less congested queuing systems
performance of batch means appears to be
satisfactory if batch size is large enough.
Fishman (1978) also suggested a procedure for

determining batch size. The procedure is
stated as follows:
1. Define o
2. Select n such that n=2N where N is an
integer
3. r=0
4., r=r+l
5. k=2T-1 (batch size)
6. m=n/2¥-1 (number of batches)
k
1
Te ¥q &7 L X.
1 kj=lJ
2k
1
Vq = 7 L b’
20k g1



1 ik
Yy 5% z X,
J=E-1k+1
mk
1
y o =0 L X,
8. Mk mo1k=1
n
‘)—(n=i z X,
n i=1 3
9. m -1 2
IOy
_ i=1
c =1-
m m ~ 2
Zi--—z-l (yi—xn)
z n
10, If Y@= 2)/@m2 - 1) < Z1 _ayg the
batch observations yq, y9,....,yy may be
considered independent random variables.
Go to step 11, If
C'm
T N iZl— /2
Y- 2)/ @ - 1)
go to step 4.
11. _\/ m
=/ 1 =2
ST ¥ao1, . Op-%
i=1
12.
— sm
L =X -
, U ni‘/? tl—u/Z(m 1)
13. Stop

Fishman's method relies upon the von Neumann
ratio test to determine whether observations
of a batch means sequence are independent.
This method has been tested in the case of
M/M/1 queues. Fishman concluded that his
method performs well with large sample sizes
if the system is not heavily congested.

The method of sequential systematic
sampling (Schmidt and Ho (1987)) also
attempts to acquire uncorrelated observations
through regrouping observations in {xj}. The
method of regrouping may be considered as the

converse of batch means. In applying the
method of sequential systematic sampling,
the sample observations x1,%3,....,xp are
sampled at intervals of length k, That is,
the first systematically drawn sample
consists of observartions X Kq yoeses Xme
k+1, the second  consists of ~ x5,

Xiey2s+»+9X¥(m-1)k+2s and so forth where n=mk.
If the lag correlation pi of {xi} dies out at
lag k, then each of the k systematically
drawn subsequences will comprise m
essentially uncorrelated observations. Thus a
procedure for determining where the
correlation has died out becomes particularly
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important for the method of sequential
systematic sampling if this method is to be
implemented on correlated data.

Testing whether ¢y dies out at lag k
involves the distribution theory of
lag covariance and 1lag correlation.
However, for finite n, the distribution
theory of sample 1lag covariance and lag
correlation is complicated. In fact, most of
the past research on finite sampling
distribution has been based upon the
assumption of circular correlation to
facilitate deriving the distribution of the

following:
n
2
1 2%
t=1

The formulation of rg is given in general
when =0 is given in Hannan (1970).

often
sample

n

s Z XXias

r 2.6)
t=1

Most of +the exact results which have
been obtained refer only to the distribution
of rq for a simple model of {xi}. References
can be found in R.L. Anderson (1974), Koopman
(1942), Dixon (1944), and Madow (1945).
Various approximations have been derived for
the distribution of higher autocorrelation
(T. Ww. Anderson (1948), Hannan (1955),
Leipnik (1947), and Hannan (1970)).

corelation
assumption
computation

The approach using circular
not only resorts to a fictitious
but also entails considerable
effort. These two drawbacks inevitably
constrain circular correlation from
formulating applicable distribution theory of
correlation. On the other hand, the
asymptotic theory may be used to derive
limiting sampling distribution of
autocorrelation. Priestley (1981) suggested
that the asymptotic normality of the sample
autocorelation at lag r may be approximated
by

o~

P, . @7

N(p, Var(§))

Suppose one wants to test the null hypothesis
Hg: p =0
Under the null hypothesis

Var(ﬁ‘c)=1/n {1+2i P} k>q (2.8)
p=1
Two drawbacks are associated with this

approach. First, the asymptotic normality may
require a sufficiently .large sample size
which may be infeasible in terms of the final
cost incurred. Secondly, the conventional
correlation estimate is not unbiased, whose
absolute magnitude of bias is often enlarged
as the time lag increases. This phenomenon is
illustrated in Figure 1, in which law and
Kelton (1982b) estimated the correlation of
the waiting time observations in an M/M/1
queuing system.
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Source: Law and Kelton (1982b).

PROPOSED METHOD

Testing whether coreelation dies out at
some lag is a classical problem in time
series analysis. The conventional approach to
this problem 1is through construction of
hypothesis testing procedures to determine
where +the correlation has died out. This
generally will impose an arduous task in the
light of distribution theory and estimation
of sample autocorreltion. This section
describes a procedure to determine where the
correlation has died out. We approach the
problem in two phases. In the first phase we
propose a correlation estimate. Then we
determine where the correlation has died out
according to the criterion of Gross and
Harris (1974). Hence a value k can be
determined if the correlation at lag k is
less than a small number. In phase 2 the von
Neumann ratio test is used to test whether
observations drawn at intervals of k are
uncorrelated.

Suppose that the observations
X1,X25.-+5%n can be represented by an
autoregressive moving-average model given by

- - - m O % - Ba.- -6 2
X ¢1xl-1 ¢2XL-'Z ¢P -p 8 el‘il-i qut_q(:).l)

N(0,0%)

o?

a

0

Ewgﬁ= {

Cov(a%,) =0

the familiar model referred
ARMA(p,q) model in Box and Jenkins (1976).
The thrust of their idea is to model the
sample data according to the form of equatlon
(3.1, The modeling procedure comprises
identification, estimation, and dlagnostlc
checking. If by these steps an AR(p) model is
built and the estimates (¢4, ¢g,..., $p) are

if t>s

This is to as
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obtained, then the autocorrelation function
P given by this model is

%=¢Pva%HJ+ '+¢£bw k>0 (32
Employing the approach adopted by Gross and
Harris (1974), we may consider that the lag

correlation dies out at lag k if pyp<c where c
is a small, user-defined number.

For
value k
applying

a stationary process {xji}, if the
is sufficiently large then by
the method of sequential systematic
sampling there are k systematic samples and
each comprises m essentially uncorrelated
observations. This can be tested empirically
when the von Neumann ratio test is applied to
such systematic samples. 1In the test if a
value k is not accepted, increasing k will
add to the likelihood of acceptance. The
steps of determining k are described by the
following algorithm:
1. Define o,
2. Define n.
3. n=mk, where m and k are to be determined.
4, For a sequence of observations
X1,X0,+..3¥n. determine the order of p and
q of an ARMA (p,q) model (We employed
the corner method (Beguin, Gourieoux,
a§d Monfort (1979)) to identify p and
q
Compute the max1mum llkellgood estimates (
$y P 2y00ay ¢ seeay a2) according
to Box and tge Jenklns (1936)
Compute model residual
estimates rj, Jj=1, 2,...,t

5.

6. correlation

7. Compute Q=n (n+2) Z (-j) r
8. If , =
Q< Xipq

the sample observations X1, X92,...,Xp may
considered being fitted by the ARMA (p,q)
model in 4, then go to 9; otherwise, go to
4,

9. Compute the autocorrelation function of
the model. For the case that q=0

Py = 01Ppq + 0Pt o T O Py, KO

10.Determine k if py<c where c is a small,
user-defined number.

11.m=[n/k]1, wher [n/k] is the largest
integer of n/k, if m<5 go to 18.

12.Generate a random number f,
Set i=[mf], where 1<im.

where 0<f(1.

m
13. Compute %, 2 ”)m
1=1
14. m:l m
. 2 - =2
'Iz;("(pl)kafi “Xpad) / 22 Kerryeas ~ %)
= i=1
|
15 T |l ST '1)l < Zion



the observations x(q1_1)k4i, 1=1,2,...,m
may be considered as independent random
variables, go to 18; otherwise, go to 16.

16. Let k=k+10, m=[n/k].

If m<5 go to 18. If m>5 go to 12.
17. k=[n/m]
18. Stop.
With the value k determined in the algorithm,
an interval estimate for can be computed by
applying the method of sequential systematic
sampling. If the value k is chosen where the
lag correlation is deemed to have died out,
it 1s expected that the predictability of
such interval estimate should be less
affected by the presence of correlated data.

M/M/1 EXAMPLE

Comsider a stationary single-channel
queuing system where service time is
exponentially distributed with parameter
A and interarrival time is exponentially
distributed with parameter v. The rate t( /v
) gives proportion of the time the server is
busy and is denoted as traffic density.If A
and Vv are knowh, mean system time (mean time
in the waiting line plus mean time in the
service channel) u is given as follows:

u=L/ A
where L=(v-x)}/v

Define Pn as the autocorrelation
function of the waiting time observations in
an M/M/1 queuing system with lag n. the
formula for o, is given in Daley (1968) by

a

(=) (7 | tt (@D

—_—dt

2nt (2-1) 0 v

where a 4

Pq

, 0<t<1

We first compared the correlation
estimate in our algorithm and the
conventional correlation estimate with
respect to the induced bias in the case of
M/M/1 queues. The comparison included the
M/M/1 queuing model of t=0.5,0.8, and 0.9,
and for each model 1000 observations of the
waiting time were generated. The results of
the comparison are presented in Figure 2,3,
and 4. As the results in Figure 2 indicated,
for a less congested queuing system ( t=0.5),
the bias of the conventional correlation
estimate does not pose a serious problem. As
for the results presented in Figure 3 and 4,
where heavily cogested queuing systems (1=0.8
and 0.9) were addressed, the conventional
correlation estimate is subject to
significant bias. This is especially true as
the lag increases. By comparison our
correlation estimate has led to substantial
bias reduction.

We next comared sequential systematic
sampling and batch means, in which the
suggested algorithm and Fishman's procedure
were applied to acquire the sampling interval
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and batch size respectively. The comparison
was based wupon the coverage of confidence
interval constructed. Again, the model of
M/M/1 queues was the case under study. The
two methods were applied to construct

confidence intervals for the mean system time
¥, Three sets of sampling experiments were
conducted for the traffic density t =0.5,0.8,
and 0.9. For each set, 60 replications were
used. As suggested by Fishman (1978) to avoid
the problem of initial transient, the first
459 observations in every output process were
deleted. The sample size used in each type of

experiment was 2048, 4096, and 16384
respectively. In each replication Fishman's
procedure was used to determine the batch
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size and employed the proposed algorithm for
the sampling interval. Batch means and
sequential systematic sampling were then

applied to compute confidence interval. Batch
means and sequential systematic sampling were
then applied to compute confience intervals
for u . The coverage of confidence interval
constructed is based upon the 60 replicates.
The results were summarized in Table 1,2,and
3.

Table 1

Coverage of 80X Confidence Interval for the Method of Batch Means
in ¥/M/1 Queueing Models.

Replication = 60

n
2048 4096 8192 16384
o
0.5 0.8333 | 0.8136 | 0.9333 | 0.9333
0.8 0.6949 | 0.7627 | 0.7333 | 0.8667
0.9 0.2174 | 0.3966 | 0.6167 | 0.6610
Table 2

Proportion of Runs that Failed to Determine a Batch Size for
the ¥ethod of Batch Means im M/M/L Queueing Models.

® 2048 | 4096 | 8192 | 16384
0
0.5 0.03 0.0 0.0 0.0
0.8 0.15 | 0.10 | 0.08 | 0.03
0.9 0.35 | 0.40 | 0.27 0.17
_Table 3

Coverage of 80% Confidence Interval for the Method of Sequential
Systematic Sampling in ¥/M/1 Queueing Hodels.

Replication = 60

n
2048 4096 8192 | 16384
p

0.5 | 0.8000 | 0.7996 | 0.8305 | 0.8305

0.8 | 0.7797 | 0.7458 | 0.8136 | 0.8136

0.9 | 0.5652 | 0.6500 | 0.7667 | 0.8049
Table 1 presented the coverage of
confidence interval when batch means is

applied with Fishman's procedure to determine
the batch size. As the results in table



suggested, the resulting coverage for batch
means 1s not satisfactory for 7=0.8 and 0.9.
In addition, according to Fishman's
observations, the von Neumann ratio test may

fail to determine the batch size for heavily
congested queuing systems. Table 2 presented
the proportion of replicates where such
failure occurred. The results in Table 2
indicated that Fishman's procedure has
difficulty in determining a suitable batch
size for heavily congested queuing system
data such as the system +time observations
with 7=0.9. Based upon the reaults presented
in Table 2, the performance of Fishman's
procedure dose not seem to be satisfactory.
Special precaution should be taken when
Fishman's procedure is to be implemented on
highly correlated data.

Table 3 presented the results in
applying sequential systematic sampling where
our suggested alorithm is used to determine
the sampling interval. The user-defined value
¢ in testing the autocorrelationis taken as
0.0017 wuniversally in all experiments. The
results presented sugested that the algorithm
proposed in this paper has 1led +to an
improvement on the coverage of the confidence
interval applied.

CONCLUSION
The obtaining of uncorrelated
observations has vital importance Zfor the

procedures of simulation output analysis that
seek such observations. The algorithm
presented in this paper is suited to the
method of sequential systematic sampling for
acquiring uncorrelated observations. The
approach to this problem in the paper began
with a correlation estimate which provides a
reasonable approximation. This correlation
estimate, together with the von Neumann ratio
test, contributed to produce sequences of
essentially uncorrelated observations from a
sequence of correlated observations. With
such observations at hand, sequential
systematic sampling is able to negate the
influence of data correlation and therefore
leads to improvement of the coverage of
confidence interval applied.
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