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ABSTRACT

This paper describes a class of Monte Carlo optimization
problems for which unbiased derivative estimators of the in-
finitesimal perturbation analysis (IPA) type can be derived; and
also a simple framework within which to establish unbiasedness.
Of central importance are systems with continuous, piecewise
differentiable sample performance functions. Experience sug-
gests that continuity is, in practice, almost necessary for IPA to
work. “Piecewise” differentiable is a concession to the discrete
nature of many applied probability models. We discuss a variety
of examples, including both static and dynamic systems.

1. INTRODUCTION

The subject of Monte Carlo optimization has received con-
siderable attention in recent years, primarily through advances
in derivative estimation techniques for discrete event systems.
A typical setting for such optimization problems is the follow-
ing: It is desired to maximize g(8) = Es(y) over 6 € © where
v is interpreted as the performance associated with each real-
ization of a stochastic system which depends on a parameter 8.
Algorithms of the Robbins-Monro type search for a zero of the
gradient by iterating according to

Bnp1 = 0 + 02 V(0r) )

where {e,} is a sequence of step sizes and V;@n) is an estimate
of VEy(y). Specific characteristics of Vg vary; but one issue
of particular importance is whether or not it is unbiased in the
sense that

E[Vg(8)] = Vg(6) Vo€ 0. @
Recent advances consist of finding easily computed estimators
satisfying (2). See Meketon [9] for a survey and references.

In this paper, we consider only derivative estimators of the
infinitesimal perturbation analysis type: Suppose X is a random
variable, vector or sequence whose distribution depends on 8 —
for now, a scalar — and

9(0) = B[]
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where
7 =I(X).

The idea is to (try to) construct a family of random elements
X(6) on a single probabilty space in such a way that ¥(§) =
T(X(0)) is almost surely differentiable with respect to 6. Then
4'(0) is estimated using v/(6). (It may be more descriptive to re-
fer to these as “common random number” or “common probabil-
ity space” derivative estimators (as in Glynn [5]) and to reserve
the name “perturbation analysis” for the particular implemen-
tation associated with networks of queues.)

Our goal is to use some simple ideas from calculus to provide
easily checked conditions for the unbiasedness of these derivative
estimators. We do not attempt to formulate the most general
éonditions; necessary and sufficient conditions can be stated suc-
cinctly in terms of uniform integrability, but these are rarely im-
mediately applicable. Instead, we seck conditions that are sim-
ple enough to be easily checked and cover enough cases to be in-
teresting. Furthermore, by illustrating the use of this framework
in a variety of examples, we suggest new areas of application.

2. PRELIMINARIES

The most important ingredient in the unbiasedness of IPA-
like estimators is usually the almost sure continuity of v as a
function of 8. This was first noted in Cao [1] and is also the
motivation for the approach in Gong and Ho [6]. It may seem
strange that continuity should be an issue once differentiability
is assumed; the point is that even if 4 is a.s. differentiable
for each @ in the parameter space O, it may happen that v
has discontinuities in © with probability one. An analogy can
be made here with the sample paths of a Poisson process as
functions of ¢: a Poisson process has discontinuous sample paths
which are a.s. differentiable (with respect to ¢) at each £ > 0.

Our approach is to focus on continuous, piecewise differen-
tiable ; we believe this to be the most interesting class of func-
tions with which IPA can be used. We also advocate a particular
approach to proving unbiasedness in such cases.



The basic result is the following lemma. Let the parameter
space O be a finite interval (,,6;) and let v be a random func-
tion of 8 on a probability space (9, F,P). Let D,(w) be the
subset of © on which 4’ exists.

Lemma 1. If 4 is a.s. a continuous, piecewise differentiable

function of © and

sup |7'(8)| is integrable, 3)
€D,
then
Bly(e) = 0O (@

Proof. Part of the content of the lemma is that the derivative on
the right in (4) exists. From a generalization of the mean value
theorem (see, e.g., Dieudonne [2] p. 160).

(6o -+ h}z - (6o) (5)

< ‘(0
< s O
whenever 8y and 8y + k are in ©. Equation (4) follows from (3)
and the dominated convergence theorem.

Some remarks are in order about what is, so far, a fairly
trivial idea. First, in virtually all interesting cases, it is easy to
define (6, w) so that - is a.s. piecewise differentiable; thus, the
more important condition is the continuity of 4 across points
where it fails to be differentiable. Second, many proofs of re-
sults like (4) rely on constructing a dominating function for
[h"1(4(8 + h) — 4{(6))]. We maintain that the choice of (3) is
particularly convenient. In many applications, v turns out to be
a complicated function of # — though the essence of IPA is to
observe that the local dependence of y on # may be quite simple.
Thus, finding expressions for 4’ or at least bounds on 4’ is often
straightforward. On the other hand, for fixed k, there may be
points between 8 and 6+h at which ' does not exist. Comparing
(0 + 1) and ~(6) across such points is usually difficult, making
bounding 4’ easier than directly bounding |y(6 + k) — y(8)].

‘We should mention that there is a simple extension of Lemma.
1 for vector parameters and derivatives in the Frechet sense (us-
ing, for example, the mean value theorem on page 176 of Lu-
enberger [8]). Gradients may be analyzed by considering each
partial derivative separately, so from now on we consider only
scalar 6.

3. FUNCTIONS OF FINITELY MANY VARIABLES
We now tailor Lemma, 1 to functions of the form

7(8) =T(X1(6), -, Xx(6)), (6)

where T’ : R™ — R and the X; are independent real-valued
random functions of §. Usually, only the marginal distributions
(with respect to @) are specified, say via
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P(X:(6) < 7) = Fi(x;0), Y0 € 6, (7)

where the F; are given parametric families of c.d.f.s.

We take @ = [0,1]", F the Borel sets on £, and P equal
to product Lebesgue measure. Writing w = (w1, ...,wy), each X;
depends on w only through w;. There are usually several ways of
constructing X; on © x £ to satisfy (7). An especially interest-
ing construction is available whenever F; is strictly increasing,

namely the inversion representation

Xi(0,w) = F~ (w;; 0). 8
Under suitable conditions on F;, (8) implies ([11],[5])

dX,(6,0) __ OF;/08,
48 T oF oz

Xi(aa w); 9) (9)

For example, when
Fi(=, 9) =1- e-a:/ﬁ,

(8) becomes
Xi(0,w) = —0In(1 —w;)

and (9) becomes
dX;
dg

X
L.

We will not be directly concerned with (8) and (9) but instead
assume simply

(A1). Every X; is a.s. a continuously differentiable function of
fon ©.

In addition, we sometimes impose the regularity condition
(A2). |dX;/d8) < B(|X;| + 1) for some constant B > 0.

Finally, we mention that it is occasionally desireable to re-
quire the existence of a function D; such that

aX;
W(&w) = Dy(X;(8,w), 6)

since in this case it is possible to calculate dX;/df (and +') from
observation of the X;. (Note that this holds in (9); see also
Suri and Zazanis [12}, eqn.(4.4) and Glynn [5], Theorem 2.14.)
However, we will not distinguish this case here.

We now return to (6). We suppose that
(A3). T is continuous,

and that for every € ©, T is a.s. differentiable at X(0) =
(X1(6), ..., Xn(0)). That is, letting Dr be the domain of differ-
entiability of T, we assume

(A4). Vo€ © P(X(8) € Dp) =1.

Lemma 2. Under (A1), (A3) and (A4), v is a.s. continuous
and piecewise differentiable on ©.

Proof. Continuity is immediate. Let d = |, — 0,| (Where



(04,0,) = ©) and for m = 1,2,... and k = 1,2,...,m let A,
be the event
{7 non — differentiable throughout (d, + F-— Ud 6, + d)}

Note that 4(+,w) fails to be piecewise differentiable if and only
if w is in some App,. But from (Al) and (A4), v is a.s. differ-
entiable at each § € (4,,0;) so each Ay, has probability zero.
Hence, Uy, Ug Apy, has probability zero, and this is just the set
of w for which «(-,w) fails to be piecwise differentiable.

What makes Lemma 2 interesting is that it relates the a.s.
differentiability of 4 separately for each § to a property that
holds simultaneously for all 8.

Piecewise differentiability is only half of what is needed to
apply Lemma 1. Integrability of the supremum of [y/] can be
assured through a variety of hypotheses. As an example, we

consider

(ASB). |80'/dz|,% = 1,...,n bounded on Dr;
and

(AB). supgee | Xi(0)] integrable, ¢ = 1,...,n
We then have

Lemma 8. Under (A1),(A2),(A4),(A5) and (A6)

E[;Eul;; (@)l < o0

Proof. From the first three hypotheses, on D,

_ 3 orax
- Iz‘; (?:v, d'0

BZI I(IXI+1)

i=1

Now apply (A5) and (A6).

Y (9)l

IA

Ordinarily, taking a supremum over uncountably many ran-
dom variables as in (A6) might make integrability questionable.
But it is important to remember that the X;(6) at different val-
ues of § are highly dependent. Indeed, in applications it com-
monly happens that each X; is monotonic in §. This is the case,
for example, in the construction of the exponential distributions
given above., If X; is increasing in 0, then supg X;(9) is just
Xi(0,). Moreover, it is interesting to note that the inversion
representation (8) stochastically minimizes supg X(8) over all
joint distributions with marginals F(+;6). To see this, observe
that, in general,

P(ggg X(0)> =) 2 sup P(X(0)>z) = 323(1 - F(z;0)),

and that equality is obtained using (8).
Combining Lemmas 1-3, we have
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Theorem 1. Under (A1)-(A6), v as defined in (6) satisfies (4).

Assumptions (A2), (A5) and (A6) could be replaced by oth-
ers, For example, the boundedness of I'/dz; could be relaxed
by placing more stringent conditions on dX;/df. In addition, it
is possible and often convenient to permit explicit dependence
of T on 6.

We now turn to some exarmples to illustrate the use of these
ideas.

Example 1. The “min” operation serves as a building block in
many models (for example, determining the timing of events in
generalized semi-Markov processes) and also serves to illustrate
the role of continuous piecewise differentiable functions. Thus,
let

I(zy,22) =

then I' is continuous ((A3)) and

mm(:c1, zz),

Dr = {(21,22) : @1 # 22}

Let X;(9) and X;(6) be samples from Fy(+; 6) and Fy(+; 6). Sup-
pose that

(AT). F{-;8) is continuous and F;(0;6) = 0 for all § € ©.

then P({(X1(8), X2(6)) € Dr) = 1 ({A4)). Also note that the
partials of I' take values in {0,1} so (AB) is in effect. If we
assume the X; satisfy (A1),(A2) and (A8), we conclude from
Theorem 1 that

Bl min(X(6), Xa(9)] = 55 Blin(X:(0), Xa )]

Example 2. Notice that in Example 1, v(6) = T'(X:(0), X2(6))
could be interpreted as the time to failure of a structure consist-
ing of two components in series with lifetimes X; and X,. This
example extends to more general structures: Let Cy,...,C,, be

subsets of {1,...,m} and let

Iz) = max mip

Iz) =

mmZz,

$€0;
and y(6) = T(X(6)). Then I' is continuous and has bounded
partials on Dr. By adopting some of the hypotheses above, it is
a simple matter to guaraniee

ElY(9)] = —E[ ®)].

Derivative estimates for this type of system via likelihood ratios
were considered in Rubinstein [10].

A closely related class of problems helps to illustrate the
importance of continuity. Consider the probability that a system
is functioning at a fixed time ¢. For convenience, consider the



simple case of two components in series:

I‘(zh $2) = l{min(a:x w2)>t}

7(6) = T(X1(6), X2(6)).
Under (Al) and (A7), v is a.s. differentiable at every 6. But
since v only takes values in {0,1}, it is only continuous if it
is constant. Furthermore, 4'(6) = 0 wherever it exists. Thus,
except in the uninteresting case where dE[v]/df = 0,

B0 # 5 E[v(o)]

The sample derivative v’ completely misses the effect of discon-
tinuities in 4. (It should be pointed out that in this and similar
examples, dE[y]/df can usually be estimated using likelihood
ratios.)

Example 8. Let I'(z1, 22) = |21 — 22|; T is differentiable except
where x; = z,. Suppose the c.d.fs F(-;8) and G(-) (with G(:) ¢
{F(-;0)}) satisfy (A7) and admit inversion representations X (9)
and Y satisfying (A1) and (A2). Suppose also that X satisfies
(AB). Let 4(8) = T'(X(0),Y), with X(f) and Y constructed
simultaneously on [0,1]. Then v is a.s. continuous and piecewise
differentiable, and on D,

HOI < 120)

<
< B(X(®)]+1).

So under the stated hypotheses, from Lemma 1,

E/(0) = 2 EL(0)]

Notice that

@) = [ 1F(50) - G (@)l (10)

This has the interpretation of a distance between F(:;§) and G.
In this context, the problem of minimizing E{y] becomes the
problem of fitting a member of F(-;6) to G.

Example 4. Consider the average waiting time of the first n
customers in a GI/G/1 queue that starts ernpty Let W; be the
WL U

and X; are the interarrival and service times of customer 2, then

(11)

waiting time of the itk customer and W, =

Wis1 = max{0, W; + X; — U;}.

Let T, j = 1,...,n be such that

I/Vj = Pj(Uh sy UJ'7X17 ""‘Xj)'

It is clear from (11) that every I'; is continuous.

Suppose now that the X; are functions of a service time pa-
rameter 0 satisfying (A1) with a c.d.f. satisfying (A7). Then
the functions
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7;(0)

are a.s. continuous and piecewise differentiable. From (11), it is
immediate that

= P.i(Ul: ey Uijl(o): 7XJ(0))

dX;
1O < (O] + 1=

and v{(6) = 0, since the first customer never waits. Thus,

n—1

7O < X o(n —Z)I
=1
Under (A2),
dX;
) < Bn 3o 125
=1

so from (A6) and Lemma 1, (4) holds for v and also for W,. (See
Zazanis [14] for a different approach to this example as well as

convergence to steady state.)

4. FUNCTIONS OF RANDOMLY MANY VARIABLES
We now consider the case where X is a sequence of random

[0,1]*°) but ' depends on only finitely

More precisely, suppose we have functions

variables (now with Q =
many at a time.
{Tx}2,, Iy : R® — R and a positive integer valued function N
on R*, and consider

1(6) = (12)

We assume that every I', is continuous and also, for simplicity,
everywhere differentiable. We further assume that N(X(:)) is,
for each 0, a.s. constant in a neighborhood of §. Under these

Trx)(X1(0)s - Xn (8))-

assumptions and (A1), « is a.s. differentiable and

NX®) g1 dx;
’ O N(X(8)) G2
v =3 e 13)

Equations (12) and (13) are typical of situations arising in com-
plex discrete event systems, and also help to emphasize a point
made earlier about the local and global dependence of v on 6.
Locally, v is just some I',; thus it is a simple matter to write
(13) and from (13) to find bounds on |v/|. But for any fixed &,
it may happen that N(X(0 + h)) % N(X(6)), in which case it
may be difficult to bound |y(8 + k) — (6)].

Bounding |y} is only useful if 7 is continuous. To guarantee
this, we impose the following condition on {I'»} and N: If {z"}
and {y"} are sequences in R* converging pointwise to z, then

= Hm Tpgm) (31, - (14)

n—00

nl.l_’r{.lo FN(;") (:z:{', aeey mlftl(g")) . y,’\‘,(ln)).

Note that it is not necessary that

lim N(g") = lim N(y").

N—+00

Under (14), v is continuous, even across discontinuities in N(X(-))
- though 4’ may fail to exist at such points.



Example 5. Fix constants T > 0 and {f;} and let

N(z) = max{n: zﬂ:x,- < T},

=1

Loy ooy ) = ifw; +(T - ézi)fnu. (18)

i=1

If N is discontinuous at z, then

n
Za:;:T

i=1

for some n; and
I‘n(wl, vory $n) = Fn-—l (.’Bl, ceoy $n~1).

Therefore, if v(f) = Tn(Xy(8),...,Xn(0)), 7 is continuous. If
the f; are bounded, sup || is easily dominated using (13) and
perhaps (A2).

This example easily extends to

T
10) = [ £(z0)dt (16)

where Z; is a semi-Markov process whose sojourn times X; de-
pend on § but whose embedded transition probabilities do not.
In this case, (16) takes the form (15) but with coefficients f;
determined by the embedded chain.

Example 6. The continuity condition (14) is, unfortunately,
often violated in examples of interest. Consider again the single
server queue with interarrival sequence {U,} and service times
{X.}. Let N be the number of arrivals in the first busy cycle
and

Ty = W;

™

Il
-

&

with W; defined by (11). Discontinuities of N correspond to
points where busy cycles merge or break apart due to changes
in service or interarrival times. At such points, Ty is also dis-
continuous: the accumulated waiting time in one busy period
may jump to that in two busy periods (see also [12]).

5. GENERALIZED SEMI-MARKOV PROCESSES

So far, we have considered only fairly simple examples. More
interesting and more general systems can be handled through the
framework of generalized semi-Markov processes (GSMPs). We
describe GSMPs briefly but refer to, e.g., Whitt [13] for details.

The ingredients of a GSMP are a countable state space S;
aset I = {1,...,J} of events; an event list mapping £ : 8§ — 2!
with the interpretation that £ (s) is the set of possible events in
state s; transition probability functions p : SxSxI — [0, 1] with
the interpretation that with probability p(s'; s, @), the process
enters state s’ when event o € £(s) occurs in state s. Associated
with each event « is a clock reading c,; at any time, the event
with the smallest clock reading is the next to occur. New clock
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readings for event o are drawn from a c.d.f. F, whenever « is
activated.

Denote by 7o = 0,7y, 73,... the times at which events oc-
cur; i.e., the state transition epochs of the GSMP Z,. Let
{¥:} be the embedded process ¥; = Z,; and suppose Z is right-
continuous. For each o € I, let {X,;}2, be an i.i.d. sequence
of F,-distributed random variables, interpreted as clock samples
for . We suppose that the c.df. Fy,, of one event ap depends
on §.

We are interested in

70) = [ 1z, an

Since n events occur in [0,7,), ¥ depends on 8 only through (at
m08t) X1y ey Xagn

The function (17) is superficially similar to (16), but there is
an important difference. For (16) we assumed that the sojourns
of Z may change with 6 but that the state sequence cannot. But
in (17), 6 enters through the clock c.d.fs, not the state sojourns.

Thus, changes in § can, in general, introduce changes in {Y;}.
Such changes potentially introduce discontinuities in 7; thus, we
must place some restrictions on the possible changes in {¥;} that
can occur.

We now present two conditions that guarantee the continu-
ity of 4. To simplify the presentation, we restrict attention to
GSMPs satisfying

VseSVael, p(sss,a) =p(s";s,a) >0=> 5" =5" (18)

In words, no two transitions out of a state due to the same event
can have exactly the same probabilites (though the difference
could be arbitrarily small).

The conditions are

(C1). If {e, 8} € &(s) and p(s';s,0) > 0 then g € £(s).
(C2). I {e, 8} € £(s) and s; and s, are such that
P(81; 8, 0)p(s2; 81, B) > 0 then there is a state s3 such that

p(33; 3, ﬂ) = P(Sz; 81y ﬂ)

P(82; 33, @) = p(s13 8, ).

Condition (C1) can be paraphrased as saying that no event
deactivates another, condition (C2) as saying that - in a prob-
abilistic sense — the order in which two events occur does not
affect the resulting state. In particular, (C2) implies that when
every transition probability is in {0,1}, the state reached from
s by the occurrence of @ then 8 is the same as that reached by
the occurrence of 8 then a.



It is a simple matter in general to construct a family of
GSMPs Z,(0) so that each event occurrence time is a.s. piece-
wise differentiable; differentiability fails where event times cross.
Conditions (C1) and (C2) essentially ensure the continuity of
event times across event order changes. The idea behind them
might be called “the principle of quick return to the right state;”
it is included as part of a heuristic discussion in Glasserman (3].
Here, we just sketch the implications of (C1) and (C2); details
can be found in [4] and in a forthcoming paper. In addition,
conditions in the same spirit as (C1)-(C2) can be found in Li
and Ho [7].

Even for GSMPs violating (C1)-(C2), v as in (17) is usually
a.s. plecewise differntiable. This is made clearer by writing -y as

n—1

> %

=0

0))[7i41(6) — ()], (19)

Possible dis-

continuities of 4 (and the 7;) occur at points § where some

and noting that f(Y;(-)) is piecewise constant.

7i(07) = 7;41(67) — where two events may change order. For
simplicity, here we ignore the possibility that more than two

event times merge. Then, an important consequence of (C1)

and (C2) is

Lemma 4. Under (C1),{C2),(A1) and (A7), Z;(6) can be con-
structed so that every 7; is a.s. a continuous function of 4,
and so that if 7;(8) = 7;41(0), then for ¢ = 0,...,n — 1, 1 # 7,
Yi(6) = Yi(0).

The point of the lemma is that when two events change order,
the only change in the state sequence invloves the state ¥; which
has a sojourn of length 7.4 — 75 = 0.

With Lemma 4, we can easily prove

Theorem 2. Suppose that (C1) and (C2) hold, and also that

(A1),(A2) and (AS) are satisfied by the e clock samples {X,0:(6)},

i =1,...,n, and (A7) by the Fy(:;9) c.d.fs. If, in addition, f is

bounded, then P
J —_——

with « as in (17).

Proof. Under (C1),(C2),(A

For even if 7;(8) = 7;41(6),

1) and (A7), 7 is a.s.

continuous.

n—1

2 Fira(09)) = FHON][meaa (6) = 7:(9)]

=0

[F(¥;41(67))
0.

() = 1(607)

— FEG(0"Mr542(0) — 73(6)]
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Next, if K bounds [f|, then on D,,

n~1

> fHO)—;

1=0
n—1 41 dXDlok

233 | et

1=0 k=1
n—1 i+1

2KBY Y | Xaok + 1]
i=0 k=1

dr,
T de

dr; ,+1

@)l

IA

IA

Then, under (A6), supp, |v'| is integrable. The result now fol-
lows from Lemma 1.

Generalizations of this theorem can be found in {4] and in
a forthcoming paper. The extensions allow 7, in (17) to be
replaced by either a fixed time or the time of the nih occurrence
of a fixed event. (Unfortunately, it is rarely possible to replace 7,
with a regeneration epoch and still maintain continuity.) Other
extensions allow the introduction of “speeds” — state-dependent
clock rates.

We close this section by mentioning some examples that sat-
isfy (C1) and (C2). Consider a GI/G/1 queue where the state is
the number in the system and the events are arrivals and depar-
tures. Condition (C1) is obviously satisfied; to see that (C2) is
also, observe that an arrival followed by a departure leaves the
same state as a departure followed by an arrival. Similarly, these
conditions are satisfied by open and closed networks of FCFS
queues with a single class of customers and state-independent
routing.

On the other hand, (C2) is violated by the GI/G/1/K queue:
in s = K, an arrival followed by a departure leaves /X — 1 cus-
tomers (since the arrival is lost), whereas the events taken in the
opposite order leave K customers (since the departure makes
room for the arrival). Many networks of queues with multiple
classes of customers also violate (C2).

6. CONCLUSIONS

We have emphasized the role of sample performance con-
tinuity in the consistency of infinitesimal perturbation analysis
derivative estimates, and presented a framework for establishing
consistency when performance is in fact continuous. We main-
tain that dominating the supremum of the sample derivative is
3 fruitful approach, usually preferable to dominating finite dif-
ferences. A variety of examples of the use of these ideas were
given. Of particular interest are simple conditions for the con-
sistency of a class of IPA estimates associated with generalized

semi-Markov processes.
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