Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P, Haigh, and J. Comfort (eds.)

Simulation graphs

Lee ¥. Schruben

! School of O.R.I.E.
Cornell University
Ithaca, N.Y. 14853

ABSTRACT

The Simulation Graphs presented in
this paper are a mathematical formalization
and extension of Event CGraphs introduced
by Schruben (1983) as a graphical
representation of the event-scheduling
approach in discrete-event simulations. Any
simulation, indeed any computer program,
can be modeled using a Simulation Graph.
Finally, we present a graph theoretic
approach to define equivalence of

simulations.

1. INTRODUCTION AND BACKGROUND

The Simulation Graphs presented in
this paper are a mathematical formalization
of the Event Graphs introduced by Schruben
(1983) as a graphical representation of
the event-scheduling approach in discrete-—
event simulations.

Pictorially the vertices of an event
graph represent state changes that are
associated with the various events in the
simulation. The edges of the graph
represent the logical and temporal
relationships between the vertices. For

example, suppose the following edge is
part of a simulation graph,
t (1)

O>—"—0

This edge is interpreted as follows:

"whenever event A occurs, if condition (i)
is true, then event B will be scheduled to
occur t time units later." When t is equal
to an infinitesimal increment, &t, the
graph represents a differential equation
simulator; when t can be a random

504

Enver Yucesan

School of O.R.I.E.
Cornell University
Ithaca, N.Y. 14853

variable, the graph represents a discrete-
event simulator; when t has multiple
spatial dimensions, the graph represents a
finite-element simulator.

The elements of a simulation model
are the state variables, events that
change the values of state variables, and
the relationships between the events. An
event graph is a structure of the objects
in a discrete-event system that
facilitates the development of a correct
simulation model.

Events are represented on the graph

as vertices; each is associated with a set
of changes to the state variables and has a
partial ordering of execution priorities.
In the computer, each vertex of the graph
is a pointer to a string of expressions
giving the state changes that result when
the corresponding event occurs.
Relationships between events are
represented in an event graph as directed
edges between pairs of vertices. Each edge

is a set of pointers to strings of logical
and temporal expressions. Basically, the

edges define under what conditions and
after how much of a time delay an event
will schedule another event to occur.
Associated with each edge is a set of
conditions that must be true in order for
the edge origination event to schedule the
termination event. Also associated with
each edge is an expression or function that
will give a delay time telling how long
until the scheduled event will occur.
There can be multiple edges between any
pair of event vertices in the model; these
edges can point in either direction. As a
modeling convenience, there may also be
cancelling edges in the graph. .



1.1 The Definition of a Simulation
Graph

A Simulation Graph is an ordered
quadruple G=(V(G),88(G),SC(G),WG), where
Y(G) is the vertex set of G, SS(G) is the
set of scheduling edges of G, Sc(G) is the
set of cancelling edges of G and ?G is the
incidence function [Schruben and Yucesan,
1987]. We may then formally define a
simulation model as the following
structure of indexed sets:

F= ifi : STATES = OUTPUTS | i €
¥(G)%, which is the set of state
transitions associated with vertex (event)
i;

c = §cij : STATES + §0,1% | (i,j) €
£(G)?, which is the set of edge conditions;
(also note that £(G) = SS(G) u SC(G) )

7= ity | (i,3) € €(G)}, which is
the set of edge delay times;

r= iYi | i € ¥(G)}, which is the set
of event execution priorities; note that
is the set of nonnegative integers; we
will also assume that smaller integers
will correspond to higher priorities with
0 representing the highest execution
priority;

Si is the set of state variables
possibly altered by event vertex i, i €
¥(G);

Ei is the set of state variables
involved in the conditions on the arcs
emanating from vertex i, i € ¥(Q);

z is the list of scheduled events
(events list);

T is the global simulation clock.

The simulation also includes a scalar
stochastic process of independent uniform
random variables on (0,1).

2. SIMULATION GRAPHS AND TURING MACHINES

The Turing Machine is a simple
mathematical model of a computer. Despite
its simple structure, it captures all of
the essential features of real computing
machines. Hence, it is the accepted

formalization of an effective procedure or

505

an algorithm. This is partly a result of
the Church's Thesis, which states: "Turing
Machines are formal versions of algorithms

and no computational procedure will be
considered an algorithm if it cannot be

rendered as a Turing Machine' [Lewis and
Papadimitriou, 1981]. Note that this is
not a theorem; it merely establishes the
correspondence between an informal concept
and a mathematical object. Nevertheless,
the Turing Machine has the computing power
of a digital computer and is equivalent to
the general mathematical notions of
computation. Thus, establishing the
equivalence between Turing Machines and
Simulation Graphs demonstrates the general
computational power of the Simulation
Graphs.

Following Hoperoft and Ullman (1979),
we define a basic Turing Machine, TM, as
consisting of a finite control, an input
tape that is divided into cells and a tape
head that scans one cell of the tape at a
time. The tape has a leftmost cell, but is
infinite to the right. Each cell of the
tape may hold exactly one of a finite
number of tape symbols.

In one move, depending on the symbol
scanned by the tape head and the state of
the finite control, TM changes state,
prints a symbol on the scanned cell and
moves its head left or right one cell.

Formally, TM is defined as:

M= (Q,z,T,s,qo,B,F)

where

Q is the finite set of states,

T is the finite set of allowable tape
symbols,

B is the symbol for blank, (BET),

X is the set of input symbols, (Z C T
\ §B% ),

8 is the next move function, &:QYT -+
QX TYiL,RE
q, is the start state, (qo EQ),

F is the set_of final states, (F C Q)

There are many modifications of THM.
Two-way infinite tape, multiple tracks,
multiple tapes are among such
modifications. These alterations are



mainly for convenience in particular
applications and do not increase the
computational power of TM. For equivalence
theorems, see Hopcroft and Ullman (1979).
The equivalence between Turing
Machines and Simulation Graphs is
established in Schruben and Yucesan
(1987). This result demonstrates that any
simulation, indeed any computer program,
can be modeled using a Simulation Graph.

3. EQUIVALENCE OF SINULATION GRAPHS: A
GRAPH THEORETIC APPROACH

3.1. Preliminary Definitions

In a Simulation Graph, an edge
condition will be called simple if it
consists of two arithmetic expressions
connected by a relational operator. In
other words, a simple edge condition is a
relation. The arithmetic expressions may
simply be a constant or a variable,
vhereas the relational operators are "less
than,"” '"less than or equal to," ''greater
than," 'greater than or equal to,' "equal
to" and "not equal to." On the other hand,
the edge condition will be called complex
if it consists of two or more relations
joined by Boolean operators AND or OR. For
example, [QSIZE>0] is a simple condition,
while [(QSIZE=0)AND(S=1)] is a complex
edge condition.

Similarly, a vertex will be
considered simple if there is at most one
state variable change associated with it.
In other words, vertex E is a simple event
vertex if its execution alters the value
of at most one state variable.

Otherwise, the vertex will be called
a complex vertex. A vertex with no state
variable changes will be referred to as
the identity vertex.

Finally, a Simulation Graph G will be
called an Elementary Simulation Graph and
denoted GE, if it contains only simple
event vertices and the edge conditions are
all simple.

506

Given a Simulation Graph G, one can
always construct an associated Elementary
Simulation Graph, GE, by expansion. This
is the process of replacing a single
vertex with m state variable changes (m>1)
by m vertices in series, each with a
single state variable change. It is also
the process of replacing an edge with a
complex condition by a series of identity
vertices, each connected with simple
edges.

A graph G cdn be thought of as a
triple, G = (V(G), £(G), WG), where V(G)
is the vertex set of G, £(G) is the edge
set of G, and ?G is the incidence function

[Bondy and Murty, 1976]. Since we are
mainly dealing with directed graphs, WG(e)
= uv if e is an edge directed from vertex
u to vertex v.

¥e will call graphs G and H identical
and write G = H if ¥(G) = v(H), £(G) =
&(H) and ¥q = ¥y Clearly, two identical
graphs can be represented by the same
diagram. However, it is still possible for
graphs that are not identical to be
represented by the same diagram. Such
graphs are called isomorphic. More
precisely, G and H are isomorphic, if
there exist one-to-one and onto mappings
(bijections)

8 : v(G) » v(H)

@ : £(6) + &(H)
such that ?G(e) = uv if and only if
WH(¢(e)) = 8(u)e(v). The pair of mappings
(8,%) is called an isomorphism [Bondy and
Murty, 1976].

Note that isomorphic graphs form an
equivalence class. Thus, we are not
interested in the particular names of the
vertices or edges, and distinguish between
graphs only up to isomorphism.

For Simulation Graphs, we will adopt
slight extensions of the above definitions.
Recall that we have defined a Simulation
Graph G by a quadruple G =
(V(G>,€S(G),SO(G),WG) [Schruben and
Yucesan, 1987]. A simulation model is then



defined as a structure of indexed sets.
Four of these sets are of particular
importance to our construction here:

I - set of event execution
priorities,

Si - set of state variables possibly
altered by event vertex i,

¢ - set of edge conditions,

7 - set of edge delay times.

Also define, for a Simulation Graph,
G,

8(@) = UiEV(G) S;, set of state
variables possibly altered by any event
vertex.

Moreover, let S'(G) C 5(G).

Let (G), 8'(G), ¢(G), I(6) and r(H),
S'(H), c(H), J(H) be the above defined
sets associated with Simulation Graphs G
and H, respectively.

Then, two Simulation Graphs G and H
will be called isomorphic if there exist
bijections:

: (@) » V(H)

: M(G) » F(H)

: 87(6) + s'(H)
c(G) » c(H)

: I(G) » (W)

s ¢ SS(G) > SS(H)
o ¢ SC(G) - SC(H)

W o X 0 > a4 o

such that WG(e) = uv if and only if
?H(Qs(e)) = o(w)e(v) for all eE88(G) and
WG(f)=xy if and only if TH(§c(f))=
o(x)e(y) for all fESc(G). That is, the
mappings (e,V,A,n,x,és,éc) form an
isomorphism. Simply stated, names given to
objects in a graph are not important since
jisomorphic graphs form an equivalence
class.

Note that the isomorphism is defined
over subsets of state variables whose
values may be altered by the execution of
any event. This provision allows for the
modeler to focus on those state variables
that are relevant in the scope of the
simulation study.

507

3.2. Bquivalent Simulation Graphs

Definition : Simulation Graphs G and

H are equivalent with respect to a subset

of the state variables if their Elémentary

Simulation Graphs GE and HE are
isomorphic.

The above definition is important in
at least two aspects: testability and
utility. Testability refers to the ability
to identify equivalent simulations
possibly coded in different languages
without actually running both models and
comparing their outputs. Utility, on the
other hand, refers to the ability to use
the two models interchangeably once their

equivalence is established.

The construction of‘Elementary
Simulation Graphs as well as considerations
for the validity of such procedures are
presented in detail in Schruben and
Yucesan (1988).

4. BIBLIOGRAPHY

[1] Bondy, J.A. and Murty, U.S.R. (1976)
Graph Theory with Applications. North-
Holland, New York.

[2] Hopcroft, J.E. and Ullman, J.D. (1979)
Introduction to Automata Theory, Languages
and Computation. Addison Wesley. Reading;
MA.

[3] Lewis, H.R. and Papadimitriou, C.H.
(1981) Elements of the Theory of
Computation. Prentice Hall. Englewood
Cliffs, N.J.

[4] Schruben, L.¥. (1983) Simulation
Modeling with Event Graphs. Communications
of ACM. 26-11, 957-963

[5] Schruben, L.¥. and Yucesan, E. (1987)
On the Generality of Simulation Graphs.
Technical Report No.773. SORIE, Cornell
University, Ithaca, N.Y.



[6] Schruben, L.W. and Yucesan, E. (1988)
Equivalence of Simulations: A Graph
Theoretic Approach. Technical Report
No.794. SORIE, Cormell University, Ithaca,
N.Y.

Authors' Biographies

LEE ¥. SCHRUBEN is on the faculty of the
School of Operations Research and
Industrial Engineering at Cornell
University. He received his undergraduate
degree in engineering from Cornell
University and a Masters degree from the
University of North Carolina. His Ph.D. is

from Yale University. Before going to
graduate school, he was a manufacturing
system engineer with the Emerson Electric
Company in St.Louis, Mo. His research
interests are in the statistical design
and analysis of large scale simulation
experiments. His consulting activities have
been primarily focused in the area of
manufacturing systems simulation. He is a
member of ASA, ORSA, SCS and TIMS. He
currently serves on several editorial
boards for several journals.

Lee ¥W. Schruben
School of O.R. & I.E.
Cornell University
Ithaca, N.Y. 14853
(607) 255-9139

ENVER YUCESAN is a Ph.D. student in the
School of Operations Research and
Industrial Engineering at Cornell
University. He received his undergraduate
degree in Industrial Engineering from
Purdue University and a Masters degree in
Operations Research from Cornell
University. His research interests include
simulation modeling, simulation output
analysis and manufacturing systems.

Enver Yucesan

School of 0.R. & I.E.
Cornell University
Ithaca, N.Y. 14853
(607) 255-9139

508



