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ABSTRACT

Consider a directed flow network whose arcs have
random two-state capacities. The paper describes how a single
Monte Carlo experiment allows one to estimate the sensitivity
of the probability that a particular cutset is critical, given that
the maximum flow between a pair of nodes takes values in an
interval, in response to varying arc reliabilities. The technique
improves considerably on alternative potential methods.

THE PROBLEM

Flow networks model several distribution systems,
electricity and water supply systems being examples. In
practice, several of the parameters of a flow network are
random variables and the network is called stochastic. The
model under study is a directed network ¢ = (/.€) with
node set = {1,..,n} and arc set €= {I,...,a}. Assume
that the nodes do not restrict the transmission of flow through
the network and that the arcs have finite capacities which are
independent two—state random variables Bi with states 0 and
bi for €. Let Xi= 1 if B, = bi and Xi=0 otherwise.
Also, let s and ¢ denote a pair of selected nodes in . For

given capacity state-vector €% where &= {0,1}%, let
A(z) denote the value of a mazimum s—t flow. Every directed
minimal s-¢ cutset (or s-¢ cutset hereafter) ¢ separates J

into two sets X and X such that XUX= 4 XnX =9,

seX and (€X. The capacity of %, denoted by Z(%,1), is
defined as I _ bz, and satisfies Z(%,3) > A(z). The

i€(X,
cutset & is called critical when Z(%,3) = A(z). For a review
on maximum flows see Ford and Fulkerson (1962).

Fix two maximum flow values /< u¢ A(bl,...,ba) and a
cutset ¢. This paper proposes an efficient Monte Carlo
sampling plan for estimating the variation of the probability
h(%,q) that the cutset % is critical given that the value of a
maximum s~ flow A(X) lies in the interval (/4] in response

to varying reliability vectors ¢ in a set ofC (0,1)°, where

¢;=pr(B=b) for ic.6. We call the vectors in (0,1)* points.
The evaluation of (% ,g) at a single point ¢ is an intractable
(NP-hard) problem.

Identifying s~ cutsets ™ with high h(#*,q), for fixed
¢, as well as pointe ¢ for which the probabilities k(% *,q),

for a fixed s-¢ cutset if*, become large or small are very
important in repairing and designing stochastic
networks.

issues

For a fixed point ¢, let ¢g(q) denote the probability that
I<A(X) < u andlet f(#,q) denote the probability that &
is a critical s-t cutset and I < A(X) < v. We then define

k(€.,9) = f(%,9/99 if glgg>0

1
otherwise.
Hereafter, assume g¢(g) >0 V g€ .

We first describe briefly an efficient Monte Carlo
importance sampling plan in Alexopoulos and Fishman (1988)
for estimating h(%,g) at a single point ¢ and then we show
how this plan can be extended for estimating this flow
performance measure at all points in . The sampling plans

use an upper bound on the flow probability ¢(g), g€[0,1]* to
gain their advantage over a crude Monte Carlo sampling plan.

[ 1-z,
Let P(z,q) = I ql.'(l—qi) ' denote the p.m.f. of the random
i=1
vector X = (Xl,...,Xa). Also, let &3+, #; denote arc-disjoint

directed s-¢ paths and iﬁ’l,...,ﬁ’J denote arc-disjoint s-t

I
cutsets. Define A (X) = S [mind] I X, that is the
i=1 1691. j€ .5”‘
maximum amount of flow that can be transmitted from s to ¢

through the paths 2,...,2, and A =min z
¢ P peeEp 2 i=Lend i€,

it

One can readily show that
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9(9) < 90 = pr{Ay(X) > 1, A,(X) <
@

= pr{A,(X) > I] - prA (X) < o].

For ze% let  ¢(2) I(I’u](A(z)), (%)
LBy (A (2) 00 $S2) = I (2(5,3) - A(2)
where I(c’ 4(:c) is the indicator function on the interval (c,d].

To take advantage of this upper bound, one constructs a
conditional distribution

QA=z.9 = ¢ () P(z.0)/9,(9) ()

(see ref. [AF] for details) and draws K independent samples

X(l),...,X(K) from it. An estimate for h(%,q) is given by

B (.0 = [{€.0/3,(0 if §,(0) >0
O]
= otherwise
where
(5.0 =00 % 3 60ex®)
and

940 = 9,{9 %k§1¢(x(k))

are unbiased estimates of f{%,g) and ¢(g), respectively, with
variances

var £(%,0) = €09, (- €)X $ g,(0°/x

and

var §,(% ,0) = 9(9)g,()-9(Q)/ K € 9,(9*/ K.

From Alexopoulos (1988) one has

Eh (6,0 = h(%0[1-(1-9(0)"]
and

(6)

var b (,0) = [o(0)/ 9, (DI E,DN1-R(E,9)/ Fro(x )
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where o(y) denotes a function of y such that o(y)—0 as
y—0. Toorder 1/k this variance improves on the variance of
a crude estimate by a factor of gU(q) demonstrating the
efficiency of the importance sampling plan based on the bound
information.

One can compute the bound 9[1( ¢) in time polynomial in
I J
b, i€{u Z}u{u ‘6’].} and sample from the distribution
=1 =1
{Qzg} in (3) in'time O(] £1).

The sampling plan described above is designed to provide
an estimate for A(%,q) at a single reliability vector ¢
Therefore, the estimation of the function {#(%,g), g€ ¢’}
requires, in principle, |¢”| experiments. We now show how
sampling data collected for estimating h(#,q) at a single point
can be used to provide estimates for h(#,q) at all points
ge .

Let p be a point and define the importance functions

R(z,,p) = P(z,9)/ P(%p)

€ .%; g€

a
= II

g5% (1-¢; 1=z
Ll =)

Suppose one draws K independent samples X(l),...,X(K)
from {Q(z,p)}. Then

K
7,490 = 0,0 & kglqs(x(“’)zz(x“‘),q,p)

ge & (8)

and

K

5 89) = 9,(9-9,(0) 3 élu-qﬁ(x"“))uz(x“),q,p)

are unbiased estimates of ¢(g), g€ ¢ with

Kvar g (¢p) = K var 9.9
+ {d 2P, (P)9,(0)-9,{09D}

and



K var §bK(q,p) = K var §K(q)

+ {den)g, ()9 {d")-9,(9]
- 9y(DlgD-9( 9},

where
dep) = H 6( q,p)
c{a,2) = €/p;+ (1-0)%/(1-p)
4 (10)
4, = ¢/lefa,0)p)
and

* * *
¢ =(q 9, )

indicating that var Z]jK(q,p) < var g, (g) for some j= a,b
provided that the corresponding expression in curly brackets is

negative. One can derive unbiased estimates {f; (%,¢2),
ge e}, i=ab of {f(%.q), g€ ¢} and their variances if

he(she) replaces ¢(X(k)) with ¢(X(k))¢(if,X(k)) in (8) and

(9, y(q*) with f(%,q), f(,¢") respectively in (9).

Combining the estimates f: LEep), i= ab and

QjK(‘q, ), j=a,b one has four potential estimates for L(#,q)
for g€ ¢, namely

byl €00) = T, (6,00)/9,{ap) it 3,(ap)>0
iiab (11

=0 otherwise.

Fix ge o, let

49 = {13,{e9)-9(d) | <o(9)} ;b

and observe that pr{A?] > 1 - [1-g(p)/g,(P]¥ and then
linpr[A{%) =1 for j= a,5. From Fishman (1978) (p. 55-59)
K-

one has

}(3‘2 K E[flin( ﬁ, q’p)-h( K, Q) l AI((])] = h( ﬁ’ Q)

varg.
) K{ 9;5(8P)

cov(f; . ( €,4,p) ,ijjg(q,l’)]}
9(q)’

f(#, 99(q)

and Li=ab  (12)

: A (3 = 2
11(::: K varlh, (%,69)| A7) = 1(%,9)

{varg (6D cov (f:x(%:4.0).9 :x(9P)] varf i1 if,q,p)}
o(9)? f(%,99(q) 1%, 9

indicating the possibility that var &, K(if gp) < var hK(is’ 9
for some ¢ and some j.

To anticipate the efficiency of the proposed experiment,
we compare it with the |eo/| single experiments which

produce the estimates ﬁK(if,q) in (4). Namely, let T (o)
denote the mean time per replication for the proposed
experiment and T(g) denote the mean time per replication for
the single experiment that is designed for estimating h(%,q)
for g€ of. Then

T(q) varh (%,q)
= X
g€ T()

min varh”K(if,q,p)
i,j=a,b

denotes the number of single experiments required to run to
produce estimates of {A(%,g), g€ ¢} as accurate overall as
the estimates the proposed experiment produces when all
[¢”] + 1 experiments rua for the same time.

Note that the cutset # in the definitions of f{%,q) and
h(#%,q) can be replaced with a set I' of s~¢ cutsets and then
h(T,q), that is the probability that T contains a critical
cutset given that the value of a maximum s-¢ flow lies in (4,4,
can be estimated similarly to A(%,q) at an incidental
additional cost.

As shown by (9) and (12), the sampling point p affects
the accuracy of the estimates in (8) and (11), therefore, the
selection of it using only a~priori information is an important

issue. Note that the quantity c(q,p)gU(p)yU(q*) is an upper

bound on var }]jK(q,p), Jj=ab for g€ /. One approach
then chooses a sampling point p which minimizes the worst



case bound max‘y c(q,p)gU(p)gU(q*). Other approaches, related
g€

directly to the accuracy of the estimates ﬁin( %,q), j=a,b in
(11), are currently under investigation.

Confidence intervals (individual and simultaneous) for
h(%,9), g€ o are necessary for evaluating the accuracy of the
estimates the proposed method produces. Since convergence to
normality is not uniform in general, confidence intervals which
are derived with exclusive use of statistical inequalities and
are, therefore, valid for each finite sample size K deserve
special attention. Such non normal confidence intervals are
currently under development.

Finally, the general case of multiple capacity levels and
set ¢ consisting of joint p.m.fs. with independent marginals
and common support is also under development by the authors
of this paper.
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