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ABSTRACT

The
provides a variety of distributional shapes for the

Johnson translation family of distributions
modelling of empirical data that are readily used in
simulation models. ¥e compare a number of methods
the of

distributions, including moment matching (MM),
(0LS), weighted— (WLS)
diagonally weighted- (DWLS) 1least squares),
maximum likelihood (MLE).
to determine the properties of the fitted parameters

for estimating parameters these
least
squares  (ordinary- and
and

A sampling study is made

and estimates based on the fitted parameters, such
as the quantiles of the distribution. We restrict
attention to the case that the analyst knows the

correct distribution when fitting the parameters.

1. INTRODUCTION
Several approaches can be taken to the problem
of choosing and fitting distributions for use as

simulation input models. These approaches include

empirical distributions, and
of which

The parametric

parametric modelling,
use of flexible distributional families,
the Johnson family is one example.
identification, from
data,
have generated the
fitting
using

approach involves theory,
the’ parametric model
data.

maximum

experience,
likely to
Distribution is
likelihood, the
distribution as the basis for estimation.

or sample
observed
usually by
assumed parametric
At the
of

explicit model by using the data to form empirical

other extreme, one can avoid the choice an

distributions. Variants of this approach, such as

the empirical distribution with exponential tails

suggested by Bratley, Fox, and Schrage (1987),
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require little in the way of additional assumptions
about the underlying distribution being ‘estimated.
Finally, using slightly stronger assumptions (e.g.,
smooth density function and restriction to uni- or
bivariate distributions) one can construct general
families of distributions, including the Johnson
translation family,
(1980), among others.
approach, members of these families are considered

the

Pearson, and Schmeiser-Deutsch

In contrast to the parametric
useful and not

approximations, necessarily

"true" distribution that generated the data.

Our focused the Johnson
which of
distributions whose variates can be transformed into
the

distribution is treated as a fourth member of the

attention is on

translation family, consists three

normal variates. For completeness normal

family. The general form of the transformations is

Y+ 8 ff (x=&)/» ]

where £(-) denotes the transformation, » and & are

scale-location parameters, and Y and & are shape

parameters. The two parameters )\ and & are taken by
convention to be positive. Table 1 1lists the
transformation functions f(+) and their inverses

f_l(-), which are useful for variate generation.
Note that if Y is normally distributed with mean -
Y/5 and variance 1/5, the variate X can be obtained
via

X=t+2 (1)

The four distributions are the lognormal (SL), the
bounded (SB), the unbounded (SU)’ and the normal
(SN)’ Bounded variates are supported on the range
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Figure 1. Four Examples of the Johnson S, Family.

Parameters y and 6 are specified above; for all cases £ = 0 and A = 100.

(&,840).

Several examples of the SB and the SU are

illustrated in Figures 1 and 2.

TABLE 1: Transformations for Johnson distributions

Family £(x) ey
S, e* log(x)
X_ X
Sy Log(x+(ttx® )% 33—2—‘3—2
S5 log(x/(1-x)) (te™®71
SN X X
Figures 1 and 2 suggest the variety of
distributional shapes that the Johnson SU and SB

distributions can assume. It can also be shown that
there is a unique member of the Johnson family for
each permissible combination of third and fourth
The
moment matching method uses this fact to choose the

parameters on the basis of the sample moments.

moments and any first and second moments.
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Moment matching and other parameter estimation

methods are discussed in the next section. In
section 3 a sampling experiment is conducted to
examine the properties of the estimated

distributions as a function of the fitting method.
The section concludes with a brief discussion of the

results and plans for further work.

2. METHODS OF FITTING

The moment matching algorithm consists of two
parts: in the first part, the proper distribution is
determined using the standardized third and fourth
moments, Bl and 82. The actual parameters of the
chosen distribution are obtained by equating the
sample moments to the moments of the distribution
taken as a function of the parameters, from which
the parameters may be Hill, Hill,
Holder (1976) provide a FORTRAN implementation of

the algorithm.

solved. and
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Figure 2.

Four Examples of the Johnson S

U Family.

Parameters vy and § are specified above; for all cases £ = 0 and A = 10.

More recently, in an effort to find a fitting
method that could be easily automated and to avoid
the feasibility problems sometimes encountered by
MM, ¥ilson (1983) proposed a least squares criterion
which matches uniformized order statistics to their
expected values under the correct Johnson normalizing
transformation. That is, letting X(l) < X(z) < ees
< X(n) denote order statistics from a sample of size
n, the variates

Ri(f»f) = ‘bg ‘Fi + ‘p‘zf[ (X(i)— ‘9‘4)/4"3 ];

for ¢ = (¥,5,2,£)7, will have the same distribution

as the order statistics from the uniform
distribution wunder the correct choice of the
transformation f(+) and the parameters ¢. Let p; =

i/(nt1) = E[ U(i) ] deriote the expected value of
uniform order statistics, U(i)' The least squares
algorithm fits parameters by minimizing the squared
distance between the Ri(g,f) and the Pi- Further

details are provided in Swain and ¥ilson (1985), and
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Swain, Venkatraman, and Wilson (1988). Venkatraman
and Vilson (1987) provide a FORTRAN program FITTR1
the fitting of

estimators including least squares.

which performs for a variety

The errors s = Ri—pi, i=1,...,n are dependent
and nonidentically Beta distributed. For most
(n>30), the

normal  and

i,
Beta
the
so that ordinary

and moderate samples sizes

will Dbe
could be neglected,

distributions fairly
correlations
least squares (OLS) is suitable for estimation. A
weighting scheme based upon the known variance and
covariance function of the uniform order statistics
leads to a weighted least squares (WLS) estimator.
An
and an explanation is
and Wilson (1988).
Better results can be obtained by basing the weights
the of the
variances, for a diagonally weighted least squares
(D¥LS) estimator.

The WLS estimator is often biased in practice.
illustration of this bias
provided by Swain, Venkatraman,
exclusively inverse

on marginal



The distribution functions of the members of
the Johnson family of distributions are known, so
maximum likelihood estimation can be used to estimate
Storer (1987) examines the properties

likelihood (MLE's) and
develops algorithms for their solution. Solution of

parameters.
of maximum estimators
the likelihood equations leads to the elimination of
the parameters & and Y as functions of the two
remaining parameters, » and &. That is, define the
transformed random variates A; = f[(Xi—E.)/x]. Let
VA be the MLE for the variance of A, and let A be
its sample mean. Then the MLE for & is given by
8% = v,/n, and the MLE for Y is ¥ = -E/v, = -8 L.
Finally, defining Gi=dAi/dx, the log-likelihood
(less constants) can be compactly expressed

n
L=—%10g[VA]+Zlog[ Gi]’
i=1

¥While the log-likelihood is a function of only the
remaining parameters A and &, the surface is not
simple. Storer (1987) examined the properties of
the log-likelihood function and details a strategy

for obtaining solutions.

3. EXPERIMENTAL RESULTS

A statistical sampling experiment is run to
examine the properties of the parameters for each of
the different fitting methods.
presentation of the results, we focus our attention

To simplify the

primarily upon the estimation of the quantiles of
the parent distributions. The quantiles provide an
indication of how well the fitted distributions
variates from the

would reproduce parent

distribution. In addition, since the behavior of
the quantiles and distribution probabilities are
related, the quantiles can be used to infer how well

the distribution function can be estimated.

The comparisons considered here are limited to
a single sample size and the initial restriction
that the analyst '"knows' the correct distribution
for fitting. Sampling is performed for both a
symmetric and skewed member of the SB and SU

families. To simplify the comparison  among
estimators, the simulations employ common random
numbers.

the IMSL (1985) subroutine GGNPM, and the sampling

Normal random variates are generated using

was performed on Control Data Cyber 830 computers.
Each sample consists of 200 replicates of n = 50
observations.

The two SB cases are considered first. The
first case is a symmetric SB with parameters Y = 0,
§=1, 2= 100, and & = 0, while the second SB case
has ¥ = 1; both distributions are illustrated in
Figure 1. Results for the quantile estimates for
94> 250 4 50 9 y5° and q g are provided in Tables
2 and 3.

included for the MM estimators: these are the cases

Note that only partial samples are

for which the parameter estimates are consistent
with the data observed. All five estimators perform
well for the SB’s, though the MM and LS estimators
do not do quite as well for the extreme quantiles,
a, and 1.9 particularly in the skewed case.

Table 2: Sample Means and Variances of Estimated
Quantiles for Sg, Case 1. {(Variances in (-))

Quantile
Est. 950 | %92 | %50 | %5 | %L.e0
21.7 33.7 50.0 66.3 78.3
MM 22.0 33.1 49.5 66.2 78.0
[n=81] | (8.88) | (9.12) | (9.88) | (9.53) | (9.04)
oLS 22.8 33.4 50.1 67.0 78.1
(15.7) | (17.2) | (15.2) | (14.6) | (14.3)
¥LS 22.1 33.0 50.8 68.6 79.5
(24.6) | (28.7) | (®6.2) | (56.7) | (22.3)
D¥LS 22.4 33.1 50.0 67.2 78.4
(14.5) | (16.4) | (14.8) | (13.7) | (13.3)
MLE 21.5 32.9 50.1 67.2 78.6
(13.8) | (17.5) | (15.2) | (14.1) | (12.2)

Table 3: Sample Means and Variances of Estimated
Quantiles for Sg, Case 2. (Variances in (-))

Quantile
Est. 940 | %92 | %50 | Lys | %90
3.62 | 6.45 | 11.9 | 21.0 | 32.8
MM 3.01 | 6.6¢4 | 12.3 | 21.7 | 33.0
=521 | (.769) | (1.37) | z.67) | (5.44) | (12.3)
oLS 3.8¢4 | 6.39 | 12.1 | =21.8 | 32.5
(.730) | (1.32) | (2.81) | (8.21) | (21.0)
s 3.78 | 6.3¢ | 12.3 | =e.6 | 33.7
(1.16) | (2.18) | (4.88) | (15.1) | (33.3)
pwis | 3.7 | 6.31 | 12.1 | 2e.0 | 32.9
s62) | (1.20) | @70 | (7.91) | (20.2)
MLE 3.58 | 6.26 | 12.1 | =2.2 | 34.0
(.552) | (1.23) | (2.65) | (7.20) | (18.7)




The two SU distributions are also represented
by a symmetric and a skewed distribution with common
A =10, and § = 0. The first case
is symmetric, Y = 0, and the second case is skewed,
Y =1, illustrated
Here the case for the MLE appears to be stronger.

parameters & = 1,

Both cases are in Figure 2.
The MM and LS quantile estimates were often biased,
particularly for the second case, while the MLE's
exhibited much less bias.

One of the hazards of using the MM estimator
with the SU is illustrated here. The MM estimakor
switches to an SB fit when indicated by the sample
Though the SU
experiment are not close to the region for the S,

moments. distributions used in this

variability in the sample moments is sufficient to

require an SB fit. In the second SU case, for

instance, 193 of the 200 replications were fit to an

Sg

instead of the SU.
Table 4: Sample Means and Variances of Estimated

Quantiles for Sy, Case 1. (Variances in (+))

Quantile

Bst. | 449 | 925 | 950 | %95 | oo
-16.6 | -7.27 0.00 7.27 16.6

MM -18.5 | -9.24 .0185 9.404 19.0
[n=151] | (R0.2 (7.73) | (5.058) | (5.67) | (17.1)
OLS -14.7 | -7.73 -.0769 8.14 16.6
(13.0) | (5.14) | (3.21) | (4.61) (14.9)

YL -16.8 | -8.50 274 9.66 19.6
(43.2) | (13.6) | (6.60) | (11.7) | (38.2)

DWLS -15.2 | -7.99 -.144 8.28 17.0
(13.7) | (5.24) | (3.44) | (4.83) | (14.4)

MLE -16.5 | -7.24 .0915 7.38 16.5
(17.5) | (5.47) | (3.00) | (4.62) | (13.9)
Yhile the case for the MLE appears fairly

strong, further sampling is necessary. In addition,

since the MLE owes some of its superior performance
to the knowledge of the parent distribution, it is
of estimators when the

parent distribution

interest to compare the
is either wunknown or
not necessarily a member of

is a
general distribution,
the Johnson family.
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Table 5: Sample Means and Variances of Estimated

Quantiles for Sy» Case 2. (Variances in (-))

Quantile

Est. 990 | %25 | %50 | 995 | %go
-48.4 | -25.7 | -11.8 | -3.31 | =2.85

™ -42.8 | -27.1 | -13.0 | -0.724¢ | 10.3
fn=7] | (130) | (57.3) | (19.6) | (6.62) | (34.2)
oLS -31.1 | -23.8 | -14.1 | -2.18 | 10.8
(34.6) | (21.4) | (9.34) | (3.83) | (15.8)

LS -28.8 | —22.1 | -13.3 | -2.69 | 9.08
(108) | (81.2) | (49.1) | (17.3) | (2¢.5)

DNLS | -30.1 | —23.3 | -14.5 | -3.9¢4 | 7.33
(30.9) | (19.5) | (9.98) | (4.35) | (7.71)

MLE -48.0 | -25.2 | -11.6 | -3.32 | =2.81
115) | (24.3) | (6.49) | (3.35) | (4.59)
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