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ABSTRACT

Research on the analysis of steady-state simulation experi-
ments has concentrated on mitigating the effects of initial-
condition bias and estimating the variance of the simulation
point estimator, usually a sample mean. There hag been little
research on improving the precision of point estimators through
variance reduction, especially in multivariate estimation prob-
lems. In fact, multivariate estimation procedures are rarely
used in simulation output analysis.

We consider applying the non-overlaping batch means out-
put analysis method in conjunction with the control-variates
variance reduction technique to estimate a multivariate mean
vector. The effect of the number of batches and the number
of control variates on the multivariate point and region esti-
mators and the univariate point and interval estimators are
considered. OQur results have implications for terminating sim-
ulations as well.

1. INTRODUCTION

Computer simulation is commonly employed for the analysis
of stochastic systems. There are many situations in which we
are interested in several performance measures of a stochastic
system simultaneously, possibly of several different systems.
However, multivariate estimation procedures are rarely used
in simulation output analysis. Moreover, when we make simul-
taneous inferences on each individual response, difficulties arise
from the fact that these response variables are often dependent.

Although simulation is frequently the only feasible method
for estimating the parameters of a complex stochastic system,
the computing cost for achieving acceptable precision can be
a serious disadvantage. Variance reduction techniques can be
used to reduce the population variancé of estimators derived
from the output of simulation experiments. Recent surveys of
variance reduction include Nelson (1987) and Wilson (1984).

This paper examines the effect of applying the control-
variate variance reduction technique to estimate a multivariate
mean vector, in conjunction with batching to improve point
and region-estimator performance.
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Suppose we have an output process of the form (Y{, CiY, i =
1,2,---,n, where Y is a p x 1 vector, C is a g x 1 vector, and
! indicates the transpose of a matrix. Suppose that the out-
put process is identically distributed and stationary. We are
interested in estimating the p-variate mean vector ® = E[Y],
when a g-variate control vector C;, with known expectation,
e, can also be observed.

Such an output process can arise from either terminating or
steady-state simulations. In terminating simulation, (Y?, CI)
could be summary outputs from the stk replication, which are
therefore independent. In steady-state simulation, after initial-
condition effects have been removed (see e.g., Schruben 1981),
(Y!,ClY,i=1,2,...,n, could be the output of a single replica-
tion. Of course, to obtain a discrete-time process of the form
assumed here we may have to transform the natural output
process, possibly by batching by time. In either case, we want
to form point and region estimators for ® using the control-
variate variance reduction technique to improve the precision
of the estimators.

Standard region estimation procedures require that the out-
put process be independent and identically normally distributed.
The assumption of normality is not necessarily true for the
output process obtained from terminating simulations. The
assumptions of normality and independence may be violated
for the output process from steady-state simulations. Batch-
ing is an aid to improve both assumptions. More precisely,
batching makes the output processes from both terminating
and steady-state simulations closer to normality due to central
limit theorem effects, and the output process from steady-state
simulations less dependent for typical covariance structures.

The penalty for the improvement from batching is loss of
degrees of freedom. The approach we take in this paper is
to assume the conditions of independence and normality are
actually satisfied, and then to study the potential penalty for
further batching in terms of the effects on point and region
estimator performance. We find that estimator performance
is robust for all numbers of batches beyond a certain point.
This result is useful for experimental design and analysis be-
cause it limits the range within which we need to search for an
acceptable number of batches.



We first review both batching and control variates, and then
examine batch-size effects on the variance of the point estima-
tor and the expected volume of the joint confidence region. We
also study the tradeoffs for using individual univariate estima-
tion versus multivariate estimation procedures, in terms of, for
example, the expected half width of the confidence intervals
for individual univariate responses.

2. REVIEW OF BATCHING AND CON-
TROL VARIATES

To review the batch means method and control-variates vari-
ance reduction technique, let the output of the simulation ex-
periment (Y, C) be as described above (we temporarily drop
the subscript i). Let © = (6y,6s,...,6,) = E[Y] denote the
unknown mean vector of interest. The variance-covariance ma-
trix of (¥?,C'Y can be represented by

(3 E0)

where Syvy is the p x p matrix of Cov[Y], Zyc is the px ¢
matrix of Cov[Y,C], B¢y is the ¢ x p matrix of Cov[C,Y],
and Bgc is the ¢ X ¢ matrix of Cov[C].

Tyy Zve
Xcy Zcc

The idea behind control variates is to identify a g-variate
control vector C which has known expectation, pg, and is
strongly correlated with the p-variate response, Y. The devia-
tion C — p¢ is then used to counteract the unknown deviation
Y — © by subtracting an appropriate linear transformation of
C— u from the response. For any fixed ¢ X p matrix of control
coefficients, @, the control estimator of ® is

O(®) =Y — ®(C - pc).

Letting || denote the determinant of a matrix, the generalized
variance of the control estimator is

|Cov[©O(®)]] = |Byy — 28'Scy + ¥'Sccd|
which is minimized by the optimal matrix of control coefficients

P* = EE;ICECY

(Venkatraman and Wilson 1986). The minimum generalized

variance is
|Cov[®(®")]| = |Cov[Y]| - [T(1 - o2
=1

where v = rank(Zvyc), and p;s are the canonical correlations
between the response Y and the control vector C.

If we are only interested in the individual univariate re-
sponses in a multivariate estimation problem, then the trace
of the covariance matrix of the control estimator is an impor-

467

tant criterion. Consider the jih expected response, 8; = E[Y;],
where Y; denotes the jth element of Y. As a special case of
the result above, the variance of the control estimator for 8;
alone is minimized by the optimal vector of control coefficients

¢; = Bgcey
yielding the minimum variance
Varld;(¢7)] = [Syvli; - (1 — RY),

where Xy, is the jth column of gy, [Evy];; is the jih diago-
nal element of Xy, and R? is the squared multiple correlation
coefficient between C and Yj.

Since ¢} is the jth columm of ®*, the control coefficient
matrix that minimizes the generalized variance of the control
estimator for @, ®* also minimizes the trace of the covariance
matrix of the control estimator. The minimum trace is

»
(Cov®(@)) = (1 - R)IZwls,
i=
where tr(-) denotes the trace of a matrix. This result assumes
that we use the same control vector C to estimate each univari-
ate response. Later we discuss the possibility of using different
controls.

In practice, By is unknown, so ®* must be estimated.
This results in an efficiency loss relative to the minimum gen-
eralized variance and trace. This efficiency loss was quantified
by Venkatraman and Wilson (1986), and is discussed in the
next section.

Batching, as we use the term, means to partition the output
process into k nonoverlapping batches of size b = n/k and to

compute the batch-mean vectors ¥;(k) and C;(k), where

— 1 &

Y;(k) = 3 Y
i=(~1)b+1

_ 1 2@

Ci(k) =3 C:
i=(j~1)b+1

for j =1,2,.++,k; b is called the batch size, k the number of
batches, and we assume k divides n evenly.

In the case of terminating simulations, where the output
process may be nonnormal, or in steady-state simulations, where
the output process may be dependent and nonnormal, it is

hoped that
idd. (] .
) JN,,H((%), z(k)), F=1,2k
Yyv(k) Zvye(k)

(
(k) = (gcy(k) Ecc(k))

where
is analogous to X for the original output process. The approx-

Y;(k)
C;(k)



imation of independence and normality will tend to improve as
k, the number of batches, decreases (b increases).

3. POINT ESTIMATOR

Let {(¥4(k),C(k)),j =1,...,k} denote the batch-mean vec-
tors as defined above. Let ¥ and € denote the sample mean
vectors of the response and the controls, respectively,

Let f}yy(k), f}cy(k), and f}cc(k) denote, respectively, the
sample analogues of Byvy(k), Scy(k), and Bce(k), which
are computed from the batch mean vectors as follows:

’

Be(h) = 7 (T8 - D8 - D)

!

k — =
Slov(k) = g7 L(G® - O %) - D)

k = = 7
Sook) = = 2(G5(k) - BYT; (k) - &Y.

Then the optimal control coefficient can be estimated by
& = 3o(h)Boy (k)
and a control-variate point estimator of ® is
&(k,p,0) = ¥ — (& — pc).
The following theorem establishes the basic properties of this
estimator:

Theorem 1 (Venkatraman and Wilson 1986) If(Y!, CLY,
i=1,...,n are i.id. normal, then E[@(n,p,q)] = O, and

[Cov[®(n, p, g)]| ( n—2 )p 4 2
L] = CTT(1 = p2
|Covi¥]] n—eg-3) HO-4)
where v = Rank(Byc(k)) and p;s are canonical correlations
between ¥ and C.

=1

Under the same assumptions as Theorem 1 we can show

that
- n—2 1& 2
w(Cort®(rp o) = (;2555) -2 S0 - B

These results are for the case when there is no batching (k =
n), and the original output process is ii.d. normal. If the
independence and normality assumptions are not valid, then we
may batch the output process in hopes that for some number
of batches k small enough (equivalently, some batch size b large
enough), the batch means are approximately i.i.d. normal. For
k in this range, B(k)/k = Cov[(¥', é’)'], which equals 3/n in
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the special case that the original output process is i.i.d. The
following results, which are similar to Nelson (1986) for the
case p = 1, assume that k is in the range such that the batch
means are i.i.d. normal.

Theorem 2 For fized p and q, with ¢ +2 < k,
Cov[®(k E-2 \? 2
[Cov(©(, p, 9)]| __( ) T -A

[Cov[Y]| k-—q-2) 3
and
tr(Cov[(:D(lc,_p, D _ ( k-2 ) CXEa(1 - R?)[E??]jj.
tr(Cov[Y]) k—gqg-2 Tia[Zgelis

where Bgg = Cov[Y].

Notice that p? is a function of p and ¢ but not of &, since
|Cov[Y]—Cov]Y, C[{Cov[C]}~*Cov[C, ¥]| = |Cov[¥]|-[[T= (1~
P2)] under our assumptions. Similiarly, R} is a function of ¢
only.

Theorem 3 For fized p, q, and ¢ +2 < ky < ko,

|Cov[®(k1,p, )l _ [(k1—2)(ka — g — D]
ICOV[(:)(kg,p, q)]] (k2 - 2)(k1 —-q- 2)

>1,

and.

(Covl@(hupgl) _ (b =2)(ka—q~1) _,
tr(Cov[O(kg,p, q)]) (kz - 2)(k1 —q- 1) '

Theorems 2 and 3 compare the control-variate point es-

timator to the sample mean, and to itself for different num-
bers of batches, but always in the range such that the batch
means are i.i.d. normal. For fixed p and g, increasing k de-
creases the generalized variance, especially for larger p, mean-
ing that having a larger number of batches is more important
when estimating more parameters. Similarly, increasing k de-
creases the trace of the covariance matrix, but the number of
responses has no effect on this ratio. Figure 1 shows the loss
ratio ((k—2)/(k — g —2))? for different values of k and p when
g = 5 controls. The curve p = 1 covers both the generalized
variance for a single response, and the trace for any number of
responses. The number of responses has a dramatic effect on
the loss ratio when k is small, but little when k > 80.

For different numbers of batches, more batches is better
(the ratios in Theorem 3 are greater than 1) as would be ex-
pected. However, it is important to notice that the ratios are
nearly 1 if & > 80, p < 5 and ¢ < 5, no matter how large k,
is. This means that the improvement from a larger number of
batches is negligible beyond, say, 80, unless p is quite large.

We are considering different batch sizes when the total num-
ber of outputs, n, is fixed. It is interesting to constrast the
batch-size effects with the effect of additional sampling, Sup-
pose that, under the same assumptions as Theorem 3, (:)(kl, 7q)
is formed from k; batches of size b;, while ®(k,, p, ¢) is formed



from k> batches of the same size b, Thus, @(ks,p, ) is based
on a larger total sample. The result for generalized variance
in Theorem 3 is valid if the right-hand side is multiplied by
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Figure 1: Loss Ratio for Control Variates with ¢ = 5 Controls

(k2/k1)?. Thus, in the case of additional sampling, the improve-
ment from more batches is magnified by (kz/k1)? compared to
the case where n is fixed.

Consider two different sets of control variates containing
¢; and ¢; controls. We add an argument (g) to p? and R? to
emphasize their dependence on the particular controls variates.
Then

Theorem 4 For fized k and p,

|Cov[®(k, 2, g2)]| < |Cov[©(k, p, )|

<(

tr (Cov[@)(lc,p, qz)]) < tr (Cov[(:)(k,p, ql)])
if and only if

3 (1 - R?(QZ))[EYY]H
T (1 - R?(h))[EYY]ii

A special case of Theorem 4 is adding control variates to a

if and only if

[IM21(1 — p}(g2))]
(M1 (1 = pH(@))]

kg -2\
F—q—2)

and

k"'Qg'—l
k—q—1

fixed set of ¢; controls. Since [[T%.,(1—p¥(q))] and T%., (1 — R¥(q))
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Figure 2: Marginal Improvement Ratio as a Function of & for
@1 =4, ¢2 =5 Controls

are nonincreasing in ¢, Theorem 4 gives upper bounds on the
decreases in [[Ti, (1 — p¥(q))] and %, (1 — R¥(q)) necessary
to insure that adding control variates leads to a generalized
variance and trace reduction, respectively. For generalized
variance, this upper bound decreases as p increases, mean-
ing that adding control variates is more likely to degrade the
generalized variance when we are estimating more parame-
ters. There is no such effect on trace. Figures 2 and 3 il-
lustrate this point by plotting the marginal improvement ratio
((k — g2 — 2)/(k — g1 — 2))? for various values of &, p and g.

4. REGION ESTIMATOR

A joint confidence region for ® that incorporates control vari-
ates can be constructed using the batch mean vectors. Let

Bge = Cov[¥] - Covl¥, E}{Cov[C]}~'Cov]C, ¥]
= gy - DeePasTer
and
G = (k-1)35¢

(k= D{Z By () - Sve(MSah(E Sy ().

Then if the batch means are actually iid. normal, a (1 —
@)100% confidence region for © is (Wilson 1984)

{©:[®(k, p,q) — O/G[O(k,p,q) — ©] <

4 . . 2
— Folp,k—p—q)- (1 +T2)}
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Figure 3: Marginal Improvement Ratio as a Function of ¢ for
k = 30 Batches

= o -1,= -
where (k — 1)I? = (C - pc)'(Bege) (C — ue), as =
k13cc(k), and Fu(p,k — p — g) is the (1 — o) quantile of
the F distribution with p and k — p — ¢ degrees of freedom.

4.1 Expected Volume of the Confidence Re-
gion

I Vo[6(k,p,q)] is the volume of the (1 — @)100% confidence
region for © based on k batches and ¢ control variates, then
the expected volume is

JT()r(Eg)
2Dy Q}W

ST, o

X H[\/_ I\(k—g— ) ] |2?-é|

=]

E [Vm [(:)(ka b, Q)]] D(k

where

p

2xPl?
D(k‘,p, Q) [m o

0]

and I'(:) is the Gamma function.

Suppose the number of responses, p, and the number of
controls, g, are fixed but the number of batches, k, varies. The
effect of number of batches, when the batch means are actually
ii.d. normal, can be summarized as follows:

»/2
(pb—p— Q)] ,

1. As k increases, the expected volume of the joint confi-
dence region decreases but at a decreasing rate, meaning
that the gain from more batches decreases as the number

of batches increases.
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2. For larger p, decreases in the expected volume of the joint
confidence region are still significant at larger values of
k; in other words, having k large is more valuable when

estimating more parameters.

. For larger ¢, decrease in the expected volume of the joint
confidence region is still significant at larger values of k,
meaning that having k large is more valuable when more

control variates are used.

. With respect to the expected volume of the joint confi-
dence region, there is little benefit from increasing the
number of batches beyond ¥ = 80 when p < 5 and ¢ < 5,
since the gain from more batches is insignificant.

Table 1 shows the number of batches & such that the marginal
benefit in terms of reduced expected confidence region volume
from 5 additional batches is just less than 5%. This is one way
to define the number of batches at which increasing & further,
with n fixed, has little additional benefit. Rows in the table
show the effect of number of responses, while columns show
the effect of number of controls.

5. CONFIDENCE INTERVALS

Even though constructing a joint confidence region for a mul-
tivariate response is important, practioners often need to make

Table 1: Number of Batches & such that the Marginal Reduc-
tion in Expected Volume from 5 Additional Batches is Less
Than 5%

pl 1 2 3 4 5
014 22 29 37 44
1|17 26 33 41 48
g 2|20 28 38 44 51
322 32 40 48 55
4124 34 42 51 58
526 36 45 54 62

inferences on each univariate response, which leads to simul-
taneous inference or multiple comparisons. Bonferroni’s pro-
cedure and Scheffé’s projection procedure are two approaches
for obtaining multiple univariate confidence intervals. Both of
these procedures are conservative in the sense that the actual
confidence level may be greater than what is prespecified. This
section considers batch-size effects on the efficiency of these
procedures when simultaneously applying control variates. In
particular, expected half width of the univariate confidence in-
terval will be given.,



5.1 Expected Half Width of Univariate Con-
fidence Intervals

Let H; denote the half width of the confidence interval for
8;, the jth element of ®, with 1 — a overall confidence level,
when simultaneously applying control variates and batching.
When the Bonferroni inequality is used to construct confidence
intervals for individual univariate responses the expected half
width of the confidence interval for each univariate response is

BLE(B)| = 5B{VaplO, 1)
=g Fep(Lk—g- 2k VIZg.alii

)
where [B¢ &l;; is the jth diagonal element of Xg &, and B
stands for Bonferroni.

Scheffé’s projection procedure is used to construct confi-
dence intervals for any linear combination of the mean vector
and still achieve the overall confidence level. This projection
procedure is very conservative when only the confidence inter-

vals for each univariate mean is constructed.

The confidence interval for 8; using Scheffé’s projection pro-
cedure is

{05 H 1_,"[@(16,?, q) - G]IG—I[é(k:p: Q) - 6]1.7' <

F_%_q‘ ‘For(pyk_p_q)' (1 +Tq2)}7

where 1; is a p X 1 vector with 1 as the jth element and 0’s
elsewhere. The expected half width of the confidence inter-
val for §;, with overall confidence level 1 — «, using Scheffé’s

projection procedure, is

1/2 T(k
—Ef—?— RVXFAN
(%)

5.2 Comparison of Bonferroni and Scheffé’s

Procedures

B = |2 Rtk -2 1)

The ratio of the expected half width obtained by the Bonfer-
roni procedure to that of Scheffé’s projection procedure can be

expressed as

BHB) _[Fupllk—g-1) k-p—gq |

EH;(S)] | Fulpk—p—q) plk—g-1)

The results can be summarized as follows:

1. For fixed p and g, the Bonferroni procedure dominates
Scheffé’s projection procedure in the sense that the ra-
tio is less than 1. The ratio increases as the number of
batches, k, increases, meaning that the Bonferroni pro-

cedure is more sensitive to the number of batches.

. Forfixed k and p, the ratio decreases at an increasing rate
as ¢ increases, meaning that Scheffé’s projection proce-
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dure is more conservative than the Bonferroni procedure
when more control variables are applied. For larger k&

there is no significant decrease in the ratio as ¢ increases.

. For fixed & and ¢, the ratio decreases as p increases,
meaning that Scheffé’s projection procedure is more con-
servative than the Bonferroni procedure when estimating

more parameters.

6. DISCUSSION

The results in this paper apply to both terminating and steady-
state simulations when batching is used to improve the assump-
tions of independence and normality. Although not specifically
examined here, batching can also improve the performance of
the control-variate-point estimator in terms of bias, since un-
biasedness depends on the normality of the output process.

The number of batches at which the departure from inde-
pendence and normality is insignificant is usually unknown.
Keeping the number of batches small improves the approxi-
mations of independence and normality, but if the number of
batches is not too small then little is sacrificed in estimator
performance due to the loss of degrees of freedom.

When the multivariate normality assumption is satisfied
and we use the same ¢ control variates for estimating each indi-
vidual response, multivariate estimation procedures are more
appropriate than the Bonferroni procedure since the former
constructs a smaller joint confidence region and a confidence
interval for any linear combination of the responses can be
constructed based on Scheffé’s procedure. If desired, the Bon-
ferroni intervals can be constructed from the results of the mul-
tivariate estimation procedure.

However, using the same control variates to estimate each
parameter may not be optimal if we are only interested in each
parameter individually. For example, suppose p = ¢ = 2 and
(Y',C'Y has the covariance structure below:

10 p 0
_[ZByy Byc\_|0 1 0 p
_<Ecy Ecc>— p 010
0 p 01

Clearly, only the first control variate, if any, should be used to
estimate the first response mean 6, since the second control
and the first response are uncorrelated. However, the gener-
alized variance of the control estimator for © is minimized by
using both control variates if and only if

(2=2) a-sr<

(n_3)2(1—p’)<1,

n—4




which is equivalent to

n—4\2
pPr>1- (n — 3) .

Thus, the generalized variance and volume of the joint con-
fidence region are minimized by using both controls, while the
variance of the individual point estimators and the lengths of
the joint Bonferroni intervals are minimized by using different
controls for each estimator. This seems to suggest that there
are benefits from selecting controls individually for each pa-
rameter. A similar argument can be made for batching each
response variable individually to gain additional degrees of free-
dom where there is less dependence. Unfortunately, control-
variate selection is a difficult problem in any case (see Bauer
1987 for the first systematic study), and multivariate batch-
ing algorithms proposed to date batch all outputs together
{Afionuevo and Nelson 1988, Chen and Seila 1987). The value
of our results is that they show that, beyond a certain number
of batches, estimator performance is robust to the number of
batches or control variates selected, and this number of batches
is not very large. Thus, the benefits from individually selecting
control variates or batch sizes are negligible in this range.

ACKNOWLEDGEMENT

This research was partially supported by National Science Foun-
dation Grant No. ECS-8707634.

REFERENCES

Afionuevo, R. and Nelson B.L. (1988). Automated estimation
and variance reduction via control variates for infinite-horizon
simulations. Computers & Operations Research, in press.

Bauver, K.W. (1987). Control variate selection for multire-
sponse simulation. Unpublished Ph.D. dissertation. School
of Industrial Engineering, Purdue University.

Chen, D.R. and Seila, A.F. (1987). Multivariate inference in
stationary simulation using batch means. In: Proceedings of
the 1987 Winter Simuation Conference (A. Thesen, H. Grant,
and W.D. Kelton, eds.). Institute of Electrical and Electronics
Engineers, Washington, D.C., 302-304.

Nelson, B.L. (1986). Batch size effects on the efficiency of
control variates in simulation. Working Paper Series No. 1986-
001. Department of Industrial and Systems Engineering, The
Ohio State University.

Nelson, B.L. (1987). A perspective on variance reduction in
dynamic simulation experiments. Communications in Statis-
tics B16, 385-426.

Schruben, L. (1981). Control of initialization bias in multi-
variate simulation response. Communications of the ACM 24,
246-252.

472

Venkatraman, S. and Wilson, J.R. (1986). The efficiency of
control variates in multiresponse simulation. Operations Re-
search Letlers 5, 37-42.

Wilson, J.R. (1984). Variance reduction techniques for digital
simulation. American Journal of Mathematical and Manage-
ment Sciences 4, 277-312.

AUTHORS’ BIOGRAPHIES

WEL-NING YANG is a Ph.D. student in the Department of
Industrial and Systems Engineering at The Ohio State Univer-
sity. He received a B.S. in Industrial Engineering from The
National Tsing Hua University (Taiwan) in 1980, and an M.S.
in Industrial and Systems Engineering from The Ohio State
University in 1985. His research interests include multivari-
ate variance reduction and output analysis, and ranking and

selection.

Wei-Ning Yang

Department of Industrial and Systems Engineering
1971 Neil Avenue :

The Ohio State University

Columbus, OH 43210

(614) 202-7820

BARRY L. NELSON is an assistant professor in the De-
partment of Industrial and Systems Engineering at The Ohio
State University. His Ph.D. is from the School of Industrial En-
gineering at Purdue University. His research interests are de-
sign and analysis of simulation experiments, particularly meth-
ods for statistically efficient simulation. He teaches courses in
simulation and stochastic processes. Continuing memberships
include ASA, IIE, ORSA, and TIMS. Dr. Nelson is an active
member of the TIMS College on Simulation, and is currently
its Secretary-Treasurer.

Barry L. Nelson

Department of Industrial and Systems Engineering
The Ohio State University

Columbus, OH 43210, USA

(614) 2920610



