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ABSTRACT

Multiple comparisons with the best, which is applicable to
single-stage experiments, is introduced as a method for choos-
ing the best of a finite number of system designs. Examples
are given.

1. INTRODUCTION

When designing systems, it is natural to attempt to design the
best possible system relative to some performance criteria, but
subject to structural or resource constraints. When system
behavior is uncertain, stochastic models may be employed to
aid the design process. In that case, the criterion often becomes
mean or expected system performance. This paper considers
optimization of stochastic models via simulation with respect
to minimum or maximum expected performance.

In his survey of stochastic optimization, Glynn (1986) clas-
sified stochastic optimization problems based on their decision
space. Within his classification, this paper addresses problems
with finite-dimensional, discrete decision spaces, in which the
number of possible decisions (system designs) is finite. Thisisa
common situation in practice when system designs arise from
choosing among competing machines, schedules, or facilities,
subject to constraints on available budget or technology.

The standard methods used to search for the best design
in such problems come from the statistical literature on rank-
ing and selection. However, indifference zone selection was
thought to require two-stage sampling. In simulation experi-
ments, this means simulating each system design, calculating
a second-stage sample size based on the initial results, and
then restarting each simulation to obtain additional data. The
technique introduced below, called multiple comparisons with
the best (MCB), can be applied in a single-stage experiment,
and implies ranking and selection inference. Also included are
two examples that demonstrate how MCB can be used as an

alternative to ranking and selection.
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2. MULTIPLE COMPARISONS WITH THE
BEST

We assume that k competing systems are to be compared in
terms of their expected performance. Denote the k systems by
1, W2, ..., Tk, and their expected performance by 6,,6;,..., 6k,
respectively.

Suppose that a larger expected performance implies a bet-
ter system. For each system m;, consider the quantity 6; —
max;z; 6;, which can be termed “system ¢ performance minus
the best of the other systems’ performance.” We claim that,
to assess the systems, very often the parameters ; — max;y; 6;
for i = 1,...,k are the quantities of primary interest. This
can be seen as follows: If 0 < §; — max;y; 6;, then system =;
is the best, for it is better than the best of the other systems.
If 6; — max;%; 8; < 0, then system m; is not the best, since
there is another better system. Even if 6; — max;.; 8; < 0, if
—6 < 0; — max;y; 6; where § is a small postive number, then
system m; is within § of the best. Thus, for multiple compar-
isons with the best, the relevent parameters are 6; — max;y; 6;
fori=1,...,k.

Because the systems are stochastic and estimates are based
on (necessarily finite) samples, the quantities §; — max;z; 0;
are not known precisely. MCB gives two-sided (1 — «)100%
simultaneous confidence intervals for 6; — max;y; §; for all i.
The subset selection aspect of ranking and selection decides
which systems are not the best (i.e., 6; — max;z; 6; < 0). The
indifference zone selection aspect of ranking and selection de-
cides whether system myy, that appears to be the best accord-
ing to the data, can indeed be inferred to be the best sys-
tem (i.e., ) ~ max;zp 6; > 0), or at least good enough (i.e.,
Oy —max;jzp 6; > —6). It would be natural to presume that, at
the same confidence level 1 — «, (a) one-sided subset selection
inference would be sharper than MCB upper bound inference;
(b) one-sided indifference zone inference would be sharper than
MCB lower bound inference; and (c) the joint confidence level
of subset selection and indifference zone selection would be less
than 1— a. Surprisingly, (a), (b), and (c) are false, as we show
below.



2.1 Derivation of MCB Simultaneous Con-
fidence Intervals

Suppose for each system m; a random sample ¥, Yo,..., Y,
is generated, where each system is simulated independently.
Then under the usual normality and equality of variance as-
sumptions we have the oneway model

YVo=6+eni=1,...,k £=1,...,n, ;

where €3,. .., €, are independent and identically distributed
(i.i.d.) normal with mean 0 and variance o2 unknown. We use
the following notation

nt z": Y

=1

Y;

s? = MSE = (k(n— 1))~ ij an(Y,-z %)

i=1£=1

for the sample means and the pooled sample variance, respec-
tively. Also, let (1),...,(k) denote the unknown indices such
that 8y < 6y < -+ < 8y, and let [1],...,[k] denote' the
random indices such that I7h] < }7}2] < e L ?[k].

Define the event £ as follows:

E = {Yy) — Oy 2 ¥: — 6 — ds/v/n Vi, # (K)}.

The probability content of the event E is independent of 8 =
(61,...,6), and o2, Thus, one can find the critical value d,
which depends only on k, @ and v = k(n — 1), the degrees of
freedom for s?, such that

PI{E} = Pr{I_’(k) —0(k) Z 17; - 9,' —ds/\/f_l, Vi,i % (k)} =1l~a.
()

Suppose a larger expected performance is better. Let —z~

z if ¢ is negative, 0 otherwise; and a2+ = z if z is positive, 0
otherwise.

Theorem 1 (Hsu 1984b) Under the oneway model above,
the closed intervels

[~(Fim g ¥~ do VR), (i maaxc By +ds /)i = 1,

form a set of (1 — a)100% simulianeous confidence intervals

for 6; — max;4; 0;.

Proof: The lower MCB confidence bounds are derived by not-
ing that

B = {Yuy -0y 2 ¥i— 0~ ds/Vn Vi,i # (k)}
= {6 — 6y 2 V; — Yy — ds/v/n Vi,i # (k)}
= {8i—max§; 2 ¥ - ¥y — ds/v/n Vi,i # ()}
€ {6-max; 2 ¥ —max¥; ~ ds/v/n Vi i # (K)}

{6~ max0; > ¥ — max ¥; ~ ds/v/n ¥i,i # ()
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and ; —I?i;?(aj > 0 for i = (k)}

{6:— mex6; 2 —(¥: — max ¥; — dsji/m)” Vi}
1 I#

= El.

N

Similiarly, the upper MCB confidence bounds are derived by
noting that

E

{Yuy — Oy =2 ¥ — 6; — ds v/ ¥i,i # (k)}
{0y — 8: < Py — i+ ds/v/m Vi, i # ()}

S {8 —max; < Yigy ~ ¥i + dsjv/n Vi, i  (k)}
= {6 - max 6; <Yy - ﬁ%f’} + ds/r/n}
= {0 — max 0; <Yy — 51;(9%?: +dsfv/n
and 6; — max 0; <0 Vi,i# (k)}
C

{6: — max6; < +(¥; — max ¥; + ds/v/n)* Vi}
E,.

We have thus shown that 1 — o = Pr{E} < Prg{E; N E;} =
Prg{~(¥: ~ max ¥; — ds/v/n)” < 6; — max;
< I#i

< (¥ —max ¥; + ds/y/n)* Vi} 2
which completes the proof. o

Hsu (1984a) noted that equality is attained in (2) when
61 = -+ = G, or when O3y — 8y_1y > ds/r/n, but not generally

otherwise.

2.2 MCB Upper Bounds Imply Subset Se-
lection

Gupta’s (1956, 1965) subset selection selects system m; if and
only if

¥~ max¥; +ds/\/n 2. 0. ®3)
The crticial value d in subset selection is the same d as in
(1) of MCB. Comparing (3) with (2), one sees that a system
is rejected (not selected) by subset selection if and only if its
MCB upper bound is 0. Subset selection guarantees, with a
proability at least 1 — a, that the true best system is contained
in the selected subset; i.e.

®

We now show that (4) is implied by (2) if it is assumed that
bty > Be-):

Prg[(k)e {i: ¥i— n]:;a;xff, > —dsf/n}] 21 -0

ENE, = {Gg—migcajei(l_fg—mggcf}:‘i:ds/ﬁ)* Vi}
J# F#

€ {6~ max; < +(¥i —max¥; + ds/\/m)* Vi}
c {6:— 15123( 0; <0 Visuch that

7, ~ max ; < ~ds/VF)
C ()¢ 6+ Fimmax¥; < —dsp/a)}



{(F) € {5+ % - maaxc¥; 2 ~dsp/m})
Es.

Thus Prg{Es} > Prg{EsNEy} 2 1 —a.
2.3 MCB Lower Bounds Imply Indifference
Zone Selection

When ¢? is known, Bechhofer’s (1954) indifference zone selec-

tion selects system #yy as the best system and guarantees
Pr{0 = O — 0(1:)} >1l—-aif g(k) - G(k_l) > do/\/n. (5)

We now show (5) is implied by (2):

E.NE, = {0.-—1?2;}:9]- € :E(ﬁ—r?g;?cﬁj:ds/\/ﬁ)* Vi}
S {-(¥i—max¥; - ds/\/R)” < 6 —max9; Vi}
IF J#
C {(Vipy — Vi - — ,
c {-(¥y max ¥ —ds/\/n)” < 6y — 1 ;e?,g]cay}
C {-ds/V/n < 6y — max6;}

i#lk)
E,.

i

Thus Prg{Es} > Prg{E, N E2} > 1 — a. This holds for any

degrees of freedom v. In the case v = 0o, we have s? = o2 and

Prg{—do/i/n < Oy —?;?glfoj} >l-a

== Pro{O == G[k] — o(k)} >l—aif 9(1:) - e(k—l) > dofr/n

which completes the proof.

Notice that when o is unknown, if one selects mpy as the
best system only if ¥ — max;yq ¥; — ds/y/n > 0, then Pr{0 =
Oy — a(k) when Y[k] ~ MmaX;£(x] 17] —ds/h/n > 0} 2 Pr{E,} >
1 — a. This shows indifference zone selection is possible in
single-stage experiments with 62 unknown without assuming
any indifference zone if one allows the possibility of no selec-
tion when the data is too noisy, in much the same way one
allows a test of a null hypothesis to not reject when the data
is inconclusive. Comparing with (2), one sees that a system is
selected as the best if its MCB lower bound is 0.

2.4 Joint Subset Selection and Indifference
Zone Selection Inference

Subset selection inference is based on the event Es; indifference
zone selection inference is based on the event E;; while MCB
inference is based on FyNE;. We have shown EyNE, C E3NE,.
Therefore, since the MCB confidence intervals are guaranteed
to cover the parameters §; — max;y; 6; simultaneously with a
probability of at least 1 — e, subset selection inference and in-
difference zone selection inference can be given simultaneously
with the guarantee that both aspects are correct with a prob-
ability of at least 1 — «. In fact, as noted in Hsu (1981), since
the two aspects of ranking and selection correspond to upper
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and lower MCB bounds, MCB inference and (both aspects of)
ranking and selection inference can be given simultaneously
with the guarantee that all the inferences are correct with a
probability of at least 1 — o. This recent realization made it
possible to write a single computer package for ranking, se-
lection, and mutliple comparisons with the best (Aubuchon,
Gupta, and Hsu 1986). ‘

2.5 R and S Values

For each system, in addition to reporting whether that system
is rejected at the chosen confidence level 1 ~ @, it is convenient
to report the smallest a for which that system can be rejected.
This is called the R-velue for that system. Of course, it would
be useless to report the R-value of the system that appears to

be the best. For that system, in addition to reporting whether
it is selected as the best at the chosen confidence level 1 —a, we
also report the smallest « for which that system can be selected
as the best. This is called the S-value of that system. R and
S-values are particularly suited for computer implementation
(see Hsu 1984a).

2.6 When Smaller Expected Performance is
Better

Now consider the case where a smaller expected performance
implies a better system. By symmetry with the earlier discus-
sion, the parameter of primary interest for each system m; is
0; — min;; 8;, which is “system ¢ performance minus the best
of the other systems’ performance.” Now, if 0 < 6; — min;z; 8;,
then system m; is not the best system. If §; — minjy; 6; < 0,
then system =; is the best system. Even if 0 < 6; — min;y; §;,
suppose §; — minjy; §; < §, where § is a small positive number.
Then system ; is close to the best.

MCB inference obtains, for any specified confidence level
1 — a, the simultaneous confidence intervals

(%~ min ¥ — ds/v/)", (% = min ¥ + ds /)"

for 9; - min#; 9]', = 1,. .. ,k.

For ranking and selection inference, subset selection rejects
system m; if and only if 0 < ¥; — min, ¥; — ds/\/m; ie., when
the MCB lower bound for system =; is 0. Indifference zone
selection inference selects system n; as the best system if and
only if ¥, — min;; ¥; + ds/\/ < 0; ie., if the MCB upper
bound for system m; is 0. Again, for each system except the
one that appears to be the best, the R-value is the smallest «
for which that system can be rejected as best. The S-value for
the system that appears to be the best represents the smallest
o for which it can be selected as best.




3. EXAMPLES

In this section we give two examples of optimization using
MCB. These examples were originally used to illustrate two-
stage ranking and selection procedures.

3.1 Machine-Repair System

The first example is the classical machine-repair problem. Igle-
hart (1977) used this example to illustrate a two-stage indiffer-
ence zone selection procedure for determining the system with
the smallest steady-state mean response.

Consider a system composed of n + m identical machines
and n machine operators. When in use, machines are subject
to failure, and the time until failure is modeled as an expdnen—
tially distributed random variable with mean 1/ time units.
Since there are only n machine operators, there are at most n
machines in use at any time. When a machine fails, it is re-
placed by one of the m spares, if there is one available. When
there are fewer than n machines available, some operators are
idle. ‘

A failed machine is repaired by one of s identical repairmen;
the repairmen are identical in the sense that they each work at
rate p machines repaired/unit time, with the time to complete
a repair being exponentially distributed. Machines are repaired
on a first-come-first-served basis, and repaired machines return
to active use if there is an idle operator; otherwise they join
the pool of spares. ‘

Let {Xyt > 0} be a stochastic process representing the
number of machines being repaired or waiting to be repaired
at time £; thus, X; € {0,1,...,n+m}. Under the assumptions
above, X is a birth-death process, which is a special case of
a Markov process. Let A; and p; be the birth rate and death
rate in state j, respectively. Then \; = n), if j =0,1,...,m,
or;=(m+n—-ANifj=m+1,...,n+m;also u; = ju,
fj=12,...,8,0r gy =sp,if j=s+1,...,n+m. For any
initial state X, the process X; converges weakly to a random
variable X, denoted X; = X. The parameter of interest is
6 = BX].

We fixed n = 10, m = 4, and A = 1, and considered the
(s, ) combinations shown in Table 1. In all cases sy = 12, so
that the total repair capacity of all three systems is the same.

Let §; be the parameter associated with (s, z) combination
i. Then we are interested in simultaneous confidence intervals
for §; —min;y; 0;, ¢ = 1,2,3. This constrasts with Iglehart who
attempted to find ¢* such that 8; = min;§;. The values of 8;
given in the table were determined using standard results for
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Table 1: System Parameters and Expected System State

i s p 0
1 2 6 3.0782
2 8 4 34708
3 4 3 38903

birth-death processes.

The simulation experiment consisted of generating 10 i.i.d.
estimates of §; for each of the three (s,u) combinations in
the following way: Let ¥ be the fth estimate of 6;, for £ =
1,2,...,10, and let X} be a stochastic process corresponding
to system ¢ with X = 0; the index £ denotes the #th replica-
tion of the simulation. Then

5000
- _ it
Ya /2 _ Xidt/3000.

That is, Y; is the time average number of machines under
repair or waiting to be repaired for the last 3000 time units
of a simulation run of length 5000 time units. The design of
the experiment assured that Y, £ = 1,2,...,10 were i.id.,
and that Yy, ¢ = 1,2,3 were independent for all £. Subroutine
rnexp from the IMSL Library was used to generate values from
the exponential distribution.

The data is plotted in Figure 1. Little from the plot sug-
gests that the variances are heterogeneous. The sample means
are given in Table 2. To assess the normality assumption,
a quantile-quantile plot was made of the combined residuals
Yu—-¥,¢=1,2,...,10,i=1,2,3, against the normal distri-
bution, with a robust regression line fitted through the points.
There was no evidence against the normality assumption. The
pooled root mean squared error (RMS) for this data is 0.2444,
with 3(10 — 1) = 27 degrees of freedom. Applying the MCB
function in S with @ = 0.05, we obtain the results in Table 2.

The R-values for systems 2 and 3 are less than « = 0.05.
Therefore, we can infer these systems are not the best. The
same conclusion can be arrived at by noting that the lower
confidence bounds for these systems are 0. Gupta’s subset
selection procedure would thus select system 1 as the best sys-
tem.

System 1 appears to be the best from the data. Its S-

value of 0.0007 is much less than o = 0.05, indicating evidence
that system 1 is the best system. The conclusion can also be
reached by noting that the 95% upper confidence bound for 6, —
min;y 0, is 0. Bechoffer’s indifference zone selection procedure,
modifled for single-stage variance-unknown experiments, would
also select system 1. The MCB intervals are plotted in Figure
2.



Table 2: MCB Results for Machine-Repair Problem

. . min _
? Y, Yi~j#1Y; R-value S-value interval
1 3.1346 -0.4195 - 0.0007 (-0.6378, 0.0)
2 3.5541 0.4195  0.0007 - (0.0, 0.6378)
3 3.8543 0.7196  0.0001 - (0.0, 0.9380)
Repair Data
4.4
E3
4.2 *
40
i ¥
% 38} :
3 *
g 361 " *
[ ¥
O 34r % *
*
321 * *
3.0F &
*®
2.8 L—E : ! ! :
1.0 1.5 20 25 3.0
System
Figure 1: Data for Machine-Repair Problem
Repair MCB Confidence Intervals
g
e i 3
s F 2
boo
gL
T]) (=3
g o
d -
e
cli B 1
= o 1.5 2.0 2.5 3.0
System

Figure 2: MCB Intervals for Machine-Repair Problem
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3.2 Inventory System

The second example is an (s, .5) inventory model. Koenig and
Law (1985) used this example to illustrate a two-stage subset
selection procedure for determining a subset of possible inven-
tory policies that contains the least-expected-cost policy.

An (s, S) inventory system is one in which the level of in-
ventory of some discrete item is reviewed periodically. If the
inventory level is found to be below s units, then enough addi-
tional inventory is ordered to bring the inventory level up to S
units. When the inventory position at a review period is found
to be above s units, no additional items are ordered.

Let {I;;t = 1,2,...} be the inventory position just af-

ter a review at period f. Orders are filled immediately, so

Le{s,s+1,s+2,...,8} Let {D;;t=1,2,...} be a stochas-
tic process representing the demand for units of inventory in
period t. The inventory position I; changes in the following
way: Lyn=SifL—D;<s,or Lyy =L ~D:yif I, - D; > s.
We assume that I; = S and {D;;t = 1,2,...} is a sequence
of 1.i.d. Poisson random variables with mean 25. Under these
assumptions {I;;Z = 1,2,...} is a Markov chain.

In each period there are costs associated with the inventory
position. If I; — D, < s, then in period ¢ + 1 a cost of 32 +
3(S ~ (I; - D)) is incurred, which is a fixed cost plus a per
unit cost of bringing the inventory position up to S. In period
t 4+ 1, if Iiyq > Dyyq, then a holding cost of Liyy — Dy dollars
is incurred; otherwise a shortage cost of 5(Dyyy — Li41) dollars
is incurred.

Let Cf be the cost incurred in period ¢ under policy i. The
quantity of interest is the expected total cost of the inven-
tory system for 30 periods under several (s, S) policies, with a
smaller expected total cost being preferred. The five policies
considered by Koenig and Law are given in Table 3. Let

30 A
6, =F [E C;]
t=1

be the expected cost for policy i. We are interested in simul-
taneous confidence intervals for #; — min;y, 6;, ¢ = 1,2,3,4,5.
This constrasts with Koenig and Law who attempted to find
a subset of policies that contains 6, = min;8;. The values of
9; given in the table, which were taken from Koenig and Law
(1985), can be obtained using standard Markov chain analysis.

The simulation experiment consisted of generating 30 i.i.d.
estimates of §; for each of the five (s,5) combinations in the
following way: Let Yi be the fth estimate of 6;, for £ =
1,2,...,30, and let C be the cost in period ¢ correspond-



Table 3: Parameters and Expected Cost

i s S 6;
1 20 40 114.18
2 20 80 112.74
3 40 60 130.55
4 40 100 130.70
5 60 100 147.38
Inventory Data
160
150 |- g
140 | * *

L L O

Cost
et
(=3
T
XTI

*
120 | é ¥
110 g
100 ] 1 1 ] ]
1 2 3 4 5
Policy :

Figure 3: Data for Inventory Problem

ing to system ¢; the index £ denotes the £th replication o]f the
simulation. Then

That is, Y is the total cost of 30 periods of operation under
policy i. The design of the experiment assured that all ¥,
£=1,2,...,30 were i.i.d., and that Yy, ¢ = 1,2,3,4,5, were
independent for all £. Subroutine rapoi from the IMSL Library
was used to generate values from the Poisson distribution.

The data is plotted in Figure 3. Little from the plot sug-
gests that the variances are heterogeneous. The sample means
are given in Table 4. To assess the normality assumption,
a quantile-quantile plot was made of the combined residuals
Y-V, £=12,..,30,i=1,2384,>5, against the normal
distribution, with a robust regression line fitted through the
points. There was no evidence against the normality assump-
tion. The RMS for this data is 4.11014, with 5(30 — 1) = 145
degrees of freedom. Applying the MCB function in S with
o = 0.05, we obtain the results in Table 4.

The R-values for policies 3, 4 and 5 are less than o = 0.05.
Therefore, we can infer these policies are not the best. The
same conclusion can be arrived at by noting that the lower

Table 4: MCB Results for Inventory Problem

_ _  min _
Y; Y—j#:iY; R-value S-value

) interval
1 114.043 1.046 0.3808 - (-1.267, 3.359)
2 112.998 -1.046 - 0.3808 (-3.359, 1.267)
3 131.055 18.057  0.0000 - (0.0, 20.370)
4 131.749 18,751  0.0000 - (0.0, 21.064)
5 146.715 33.717  0.0000 - (0.0, 36.030)

confidence bounds for these systems are 0. Gupta’s subset
selection procedure would thus select policies 1 and 2 to be in
the subset.

Policy 2 appears to be the best from the data. However,
since its S-value 0.3808 is greater than a = 0.05, the evidence
is insufficient to conclude policy 2 is the best policy, which
is not unreasonable considering the closeness of the sample
means for policies 1 and 2. The 95% upper confidence bound
for 8; — minj4, 0; indicates that policy 2 may be worse than the
true best policy by as much as 1.267. Bechoffer’s indifference
zone selection procedure, modified for single-stage variance-
unknown experiments, would thus choose the option not to
select any policy as the best policy. The MCB intervals are
plotted in Figure 4.

4. CONCLUSION

We have presented an alternative to standard ranking and se-
lection methods for stochastic optimization problems when the
number of system designs is finite. Extensions of the MCB
methodology that would be useful in simulation experiments
include methods for applying MCB in steady-state simulation
using single-run experiment designs, and theory for sharpening
MCB inference by using the common random numbers variance
reduction technique. Both problems are being considered by

the authors.
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Inventory MCB Confidence Intervals
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Figure 4: MCB Intervals for Inventory Problem
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