~ = -
~

Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

On selecting the best of K systems: An expository survey
of subset-selection multinomial procedures

Pinyuen Chen
Department of Mathematics
Syracuse University
Syracuse, NY 13244-1150

ABSTRACT

This paper studies the subset-selection
approach of the ranking and selection pro-
cedures of choosing among k arbitrary systems
or alternatives. Ranking and selection prob~-
lems have customarily been treated using two
different approaches, namely, the indifference~
zone approach and the subset-selection
approach. 2n expository survey of indiffer-
ence—-zone approach for selecting the best of
k systems has been given in Goldsman (1984a).
In this paper, we present a number of Ffixed-—
sample-size and sequential procedures based

on subset-selection approach.

1. INTRODUCTION

Goldsman (1984a) presented an expository
survey of procedures for selecting that multi-
nomial cell which has the largest underlying
probability. It was shown in that paper that
the problem of finding the 'best' one of k
arbitrary competing systems or alternatives
can be formulated as a problem of finding
that one category of a k-nomial distribution
with the highest underlying 'success' prob-
ability.
follow the 'usual' probability distributions,
such multinomial selection procedures are
Furthermore,

Since most real-life systems do not

seen to be very useful.
Goldsman (1984b) discussed various important
roles that simulation plays in the develop~
Motivated by the
discussion in the above~-mentioned articles,

ment of such procedures.

we are presenting multinomial selection pro-
cedures in another approach, namely, the
The goal of the
subset-selection approach is to select a

subset-selection approach.

nonempty random size subset of the k multi-

nomial cells so that the 'best' is included
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in the subset with a guaranteed minimum prob-
ability P*(%<P* <l). There are many practi_—-
cal situations where it may be -better to
select more than one population. For example,
we may need to divide ‘a nunber of competing
systems into two groups--one that we feel
certain the 'best' system and one that we feel
Under this

circumstance, the experimenter may decide to

certain mostly inferior systems.
adopt the subset-selection approach. There
are several fundamental differences between
the indifference-zone approach and subset—
selection approach. For a more complete dis-
cussion concerning these two approaches, the
readers are referred to Gupta and
Panchapakesan (1979) and Gibbons, Olkin, and
Sobel (1977).
mary of the pertinent notation and termin-

In Section 2, we give a sum~

ology for multinomial selection problems. In
Section 3, we review several existing fixed~
sample-size procedurés and sequential pro-
cedures and give examples to illustrate the
use of tables for these procedures. We con—
clude this paper by proposing two sequential

procedures in Selection 4.

2. NOTATION AND TERMINOLOGY

A multinomial distribution with k cells
nl,nz,...,nk is given; let the ordered values
of the unknown cell probabilities p; 20
(1<i<k) with iil p; =1 be denoted by
Pr1j _<_p[2] L.nn <Py and the corresponding
It is
assumed that the values of the p; and P[j]

cell be denoted by “(l)’ﬁ(Z)""'n(k)’

(1<i, j<k) are unknown, and the parings of
the . with p[j]
The goal of the experimenter is to select a

are completely unknown.

random size subset containing the cell "(k)'
A correct selection (CS) is defined as the
selection of any subset of the k cells which



contains the cell “(k)‘ If more than one cell
has a p~value equal to P[k]’ then one of the
cells with the largest value is considered
‘tagged' and the selection is correct if the
'tagged' cell is in the selected subset. Let
P*(%-<P*‘<l) denote a specified constant. We
reguire a procedure R which guarantees that
for all g::(pl,pz,...,pk) we have

P(CS|R) >P* . (1)

Iet n denote the largest number of
vector-observations that the experimenters
will be allowed to take.
have been based on economic considerations.

The value of n may

By stage m (m<n), we shall mean that a total
of m vector-observations have already been
Let the random variables Zi,m
(L<i<k, 1<m<n) denote the frequency in

cell m,
1

taken.
through stage m. We also use the
notations Z[l] 'm_<_Z[2] ,mf ‘e _<_Z[k] ,m to
denote the ordered frequencies at stage m.
For fixed-sample size procedure with size n,
the experimenter may take n observations at
once and thus m=n. For sequential proce-
dures, cbservations are taken one~at-a-time
(up to a limit n) until one call has
'significantly more' successes than the other
cells.

Two important configurations of p[i]'s
are usually used for comparison among pro-

cedures:

(1) Slippage configuration (SC):
p[k]==9*p[i], i=l,...,k=1 where 6% >1
is a fixed constant.

(2) Eqgual probability configuration (EPC):

=1/k i=1,....k.

Pri]

For most multinomial selection proce-
dures (in either indifference-zone approach
or subset-selection approach), SC has been
shown to be the configuration that gives the
minimum probability of a correct selection
under the so called preference-zone:

PZ=[2:p[k]29*p[i], i=1,2,...,k-1}. (2)

For most procedures in subset-selection
approach, EPC has been shown to be the con-
figuration that gives the minimum probability
of a correct selection in the entire para-
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meter space. The expected selected subset
size E(S) is a natural criterion on the

efficiency of a subset selection procedure
which satisfies the probability requirement

(1).

sequential procedures is E(N), the expected

Another criterion for comparing
sample size. For fixed-sample~size procedure
with size n, it is clear that E(N) =n. We
will use E(S) and E(N) under SC and EPC to
compare several selection procedures in next
section.

3. SOME SELECTION PROCEDURES

In this section, we state four existing
procedures for selecting a random size subset
that contains the multinomial cell which has
Procedure RGN
is a fixed-sample-size procedure proposed by
Gupta and Nagel (1967). Procedure RBc
curtailed version of RGN studied by Bechhofer
and Chen (1987). Procedure RP
sampling procedure proposed by Panchapakesan
(1971). is a truncated version
of R, proposed by Chen (1987).

the largest cell probability.
is a
is an inverse

Procedure Pc

Procedure RGN:

A total of n observations is taken in a

A fixed-sample-size procedure

single stage. Include in the selected subset

the cell m,
i

if and only if zi,nzz[k],n

predetermined non-negative integer.

with the observed frequency Zin
z

-D where D is a

Remark 3.1l: Gupta and Nagel (1967) proved
that the configuration of the parameters that
minimizes the probability of a correct sel~
ection in the entire parameter space (which
is called the least favorable configuration,
abbreviated as IFC) is of the form

g=(m0“.”0ahmp“.”p)ereOssgp. (3)

They have done numerical computation to show
that s#0 in only one case for the cases
D=0(1)4, k=2(1)10 and n=2(1)15, namely,
for the case k=3, n=6 and D=4, Notice that
(3) can be simplified to EPC when s=0.

Tables of P(CS) and E(S)/k of various combin-
ations of D, k,
their paper for EPC and for SC with €% =3 and
5.

and n were provided in



Example 3.l: Suppose that k=4 and p* =.75,
Table 1 is abstracted from Gupta and Nagel!
(1967)

Table 1: P(CS) and E(S)/k for €* =1

n\D 0 1 2

3 .4375 .6719 .9531
4 .3555 .6367 .8945
5 .3379 .6309 .8359
6 .3672 .5869 .7957

Notice that P(CS) =E(S)/k for 6* =1 under EPC.
It can be seen that P(CS) is not an increasing
function in n, but it is increasing in D.
For all the fixed-sample size n=3,4,5, and 6,
the experimenter would have to use D=2 in
ordexr that P*=_.75 is guaranteed. However,
n=6 gives the smallest E(S)/k. Thus if the
experimenter can choose among n=3,4,5, and 6,
he will use n=6 to keep E(S)/k as small as
possible.

Procedure RBC: A curtailed sequential pro~
Mrvations are taken one at a time.
Stop sampling at the first stage m at which
there exists a cell m, such that

i,m >Zj,m+ n-m+D for all j#i (i,3=1,2,
-..;k). Having stopped, include in the
selected subset the cell "y with frequency‘

z

-
i,m l,m=—
is a predetermined non-negative integer.

if and only if =z, >Z[k] ,m-D where D

Remark 3.2: Bechhofer and Chen (1987) provéd
that both RGN and RBC select the same subset
of the k cells if both use the same D. The

result is uniform in (pl'PZ""'pk)' As a |
consequence of the above result, the LFC is
the same for both procedures uniformly in n
and k. However the sequential procedure
accomplishes the same P(CS) and E(S)/k with a
smaller expected nunber of cobservations E(N)
than required by Ran+

Example 3.2: Suppose that k=4 and that we
specify P*=.90 and ©* =3.0. Table 2 gives
P(CS) and Table 3 gives respective E(S) /k.
Both tables are abstracted from Gupta and
Nagel (1967).

Table 2: P(CS IRGN)

n\D 0 1 2

9 .8578 .9351 .9747
10 .8734 .9398 .9761
13 .9064 .9546 . 9804
14 .9161 .9585 .9818

Table 3: E(S|Ry.)/k

n\D 0 1 2

9 .2894 . 3911 .5159
10 .2870 .3714 .4837
13 .2738 .3331 .4111
14 L2719 3146 .3926

It is clear that {n=13, D=0} is the
best combination to achieve P{CS) >P* since
it gives the smallest E(S)/k. Now we look at
E(N) for the procedure Rpce  The following
table is abstracted from Bechhofer and Chen
(1987).

Table 4: P E(NIRBC)

n\D 0 1 2
9 7.961 8.459 .8725
10 8.830 9.293 9.645

13 11.276 11.859 12,281
14 12.104 12.679 13.153

The E(N) value of Ry, for {n=13, D=0}
is 11.276 which is about 13% saving in the
sample size over RGN' If the sample size is a
more important issue than the subset size for
the experimenter, he may choose {n=9, D=1}
since it provides p(cisBc) =P(CS|RGN) =.9351>
P* and E(NIRBC) =8.459 gives 34% saving in the

sample size over RGN‘

Procedure RP: An inverse sampling procedure
‘Observations are taken one at a time and the
sampling is terminated at stage N when any
one of the cell frequencies, say fj,N reaches
M. .Include in the selected subset the cell
m with the observed frequency zi,N if and

only if Z; y2M-D where M and D are pre~
,

determined integers.

Remark 3.3 M is a positive integer that deter—
mines the stopping time of the sampling and D
is a non-negative integer that determines the
cells that are to be included in the selected
subset.
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Remark 3.4: The LFC for the procedure RP was
conjectured in Panchapakesan (1971) as EPC.
It was proved by Chen (1986) the conjecture
The tables of M and D for var-

P* are currently being prepared.

is correct.
ious k and

Procedure RC:

procedure,

A truncated inverse sampling
Observations are taken one at a
time until either (1) the freguency in any
cell reaches M or (2) the total frequency
reaches n. Suppose that the sampling is
terminated at stage N.
before (2),
cell y with the observed frequency Z5 N if
NZM_D‘ As soon as (2) occurs
include in the selected subset

As soon as (1) occurs
include in the selected subset the

and only if z;

L4
before (1),
the cell "j

i d i N -
if and only if zj,n—-z[k],n

with the observed frequency zj n
r

D.

Remark 3.5: It was proved by Chen (1987)

that the ILFC for the procedure RC is EPC.
Remark 3.6: This procedure is a composite of
Procedures R It is clear that R, is

c and RP. c
exactly Rp when n>k(M-1). It was proved by

Chen (1987) that

P(CSlRC) =P(CS|RGN)
and (4)
E(S|Rc) =E(S|RGN)

uniformly in p= (Pl'Pz""’Pk) when 2M >D+ N.
It is also clear from the earlier termination
of the sampling rule in RC that

E(NIRC)_<_n=E(N|RGN) (5)

Remark 3.7: Different combinations of M and
D provide different P(CS) for the procedure

Ra- We often choose the combination of M and
D that provides the P(CS) as close as possible
to the P*-requirement to keep E(N) as small as
possible. The following examples illustrate
that neither R, nor Ry, dominates the other

uniformly in n,k,P* and 8%,

Example 3.3: Suppose that n=6, k=5, P*=,80
and ¥ =1. From Table 1A of Gupta and Nagel
(1967), D=2, gives P(CS) =E(S)/k = .8054.

From Table in Bechhofer and Chen (1987), we
find E(NlRBC) =5.998. From Table in Chen
(1987), we find that {M=4 and D=2} gives

P(CS) =E(S) /k = .8042, Furthermore,
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E(NIRC) =5.959. Thus R, is superior to R
in both E(S) and E(N) in this example.

BC

Example 3.4: Suppose that n=6, k=4, P* =,80
and 6% =3. From Table 1A of Gutpa and Nagel
(1967), the smallest D (which will provide
the smallest E(S)) that guarantees P* = .80 is
D=0. The following values are found in Gupta
and Nagel (1967) and Bechhofer and Chen (1987):

P(CSIRBC, D=0) =.8125

E(SIRBC, D=0) =.3207

E(NIRBC, D=0) =5.475.
From Table in Chen (1987), the combination
{M=4, D=0} gives the smallest E(N) among
all the combinations of M and D that achieve
P(CS) > .80. From the same table, we find

D(CS\RC, m=4, d=0) =.8125

E(Sch, M=4, D=0) =.3207

E(N|R,, M=4, D=0) =5.738.
Thus RBc is superior to RC in E(N) in this
example.

4, CONCIUDING REMARKS

Bechhofer and Goldsman (1985,1986) sug-
gested procedures which are truncations of
Bechhofer-Kiefer-Sobel (abbreviated as BKS)
sequential procedure for indifference-zone
approach. Numerical evidences show that
their procedures give better sampling
efficiency (i.e. smaller E(N)) than most of
other multinomial selection procedures in
indifference-zone approach. The sampling and
stopping rules of BKS procedure can also be
Thus

far no article has been published using BXS

utilized in subset selection approach.

sequential procedure for multinomial selection
in subset selection approach. It is desirable
to study the characteristic performances of

both the open and truncated versions of BKS

procedure in multinomial subset selection
approach.
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