Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Linear congruential generators of order K>1

Pierre L’Ecuyer and Frangois Blouin
Département d’informatique
Université Laval
Ste-Foy, Qué., Canada, G1K 7P4.

ABSTRACT

We present. a class of random number generators defined by a
linear congruential recursion of order k£ > 1, modulo m, and
whose period can attain m* — 1. The spectral test can be
extended to this class of generators, and permits the compu-
tation of the distance between the successive t-dimensional
hyperplanes in which lie all the t-tuples of successive values.
In terms of the spectral test, these generators could be al-
most as good as the best regular (order 1) linear congruential
generators with modulus close to m* —1. We discuss the im-
plementation of computer programs to search for maximal
period generators of this kind and to apply the (generalized)
spectral test. We also present the results of a search to find
good vectors of multipliers, for some values of the modulus
m, and give an example of a portable implementation.

1. INTRODUCTION

So called “random number” generators on computers are in
fact simple deterministic functions that produce a periodic
sequence of numbers (see Knuth (1981) or Bratley, Fox and
Schrage (1987)). The most widely used form is the linear
congruential generator (LCG), whose state is a non-negative

integer that evolves according to the recursion

X = (aXn—1 +c) MOD m. (1)
where the modulus m and the multiplier @ < m are positive
integers, and the constant ¢ < m is a non-negative integer.
One often takes ¢ = 0, which gives the (common) special
case called the multiplicative linear congruential generator
(MLCQ), whose state space is {1,2,...,m—1}. The value of
the state X, is usually transformed into a real value between
0 and 1 by

U, = X, /m, (2
and one hopes that {U,, n =0,1,2,...} behaves somewhat
like a sequence of i.i.d. U{0,1) random variables.

The period of a generator is the smallest positive integer
p such that
Xntp = Xn

432

for all n > v, for some integer ¥ > 0. The maximal period
that can be attained by a MLCG is p = m — 1. It is in
fact attained when m is prime and a is a primitive element
modulo m (see Knuth (1981}, page 19). Finding maximal
pefiod MLCGs is quite easy. For m =231 — 1, for instance,
about 25% of the values of a between 1 and m are primitive
elements modulo m.

It is also well known that all the tuples of successive
vaiues produced by a given LLCG have a special lattice struc-
ture. Marsaglia (1968) pointed out this geometric property,
derived from previously known results in the field of the ge-
ometry of numbers. More precisely, for any integer ¢ > 0, all
t-tuples (Upy1,...,Upnyt) of successive values generated by
a LCG lie on a set of at most (¢m)/* equidistant parallel
kyperplanes in the t-dimensional hypercube (0,1)%. This is
usually viewed as a major weakness of LCGs (see Bratley,
Fox and Schrage (1987)). When m is too small, it is ob-
viously a strong limitation to the ¢-dimensional uniformity.
Many microcomputer generators, for instance, present obvi-
ous linear patterns when we use them to place points in the
unit square, or place points in the unit cube and display the
projection of a thin slice of that cube (see L’Ecuyer (1987)).
The structure is much less apparent when a and m are well
chosen. There is an algorithm, called the spectral test (Knuth
(1981)), that permits to compute the actual distance between
successive hyperplanes, in the t-dimensional hypercube, for a
given LCG. Fishman and Moore (1986) and L’Ecuyer ((1986)
and (1988)} have performed extensive computer searches to
find the “best” MLCGs according to a criterion based on the
spectral test in dimensions 2 to 6, for a given set of prime
moduli 7 (all less than 23?).

If m is very large (say m > 2190, for instance) and a
is well chosen, the distance between successive hyperplanes
could be so small that the lattice structure cannot produce
any bad effect, for all practical purposes. The lattice struc-
ture could then be viewed as a desirable property, since it
gives us a theoretical insurance that at least over its entire
period, the generator has no bad correlation structure, and
leaves no holes in the ¢-dimensional hypercube. One problem

is that generators with such large values of m are difficult to
implement efficiently on contemporary 32-bit (or less) ma-
chines.

L’Ecuyer ((1986) and (1988)) has proposed a simple
and efficient method for combining two or more MLCGs,
to obtain a generator whose period is the least common mul-
tiple of the individual periods. The only mathematically-
demonstrated improvement of the combined generators over
their components is a (much) longer period. Beyond this, the
combination is an intuitively appealing heuristic supported
by empirical tests and by the fact that no structure is ap-
parent in the geometric behavior of the proposed combined
generators, even if the lattice structure of their individual
components can be made visible.

In this paper, we consider a more general form of ML-
CGs, where the value X, is computed as a linear combination
of the k previous values, modulo m. Hence (1) is replaced
by

X, = (a.an_1 Foeeet aan—k) MOD m (3)

where the a; are integers between —m and m (strictly), and
ar # 0. We call these generators MLCGs of order k. As
mentioned in Knuth (1981), page 28, when m is prime, it is
possible to find multipliers a1, ..., ax such that the generator
defined by (3) has period m* — 1 (full period). Furthermore,
the proportion of vectors (a1, ... ,ax) giving rise to full period
generators is usually quite large. For example, if m = 231 —~1
and k = 2, that proportion is about 12.45%. Sufficient condi-
tions for a generator defined by (3) to have a period of length
m¥ — 1 are recalled in section 2 of this paper. Implementing
computer programs to verify these conditions is not an easy
task; we explain how it can be done, and describe an actual

implementation.

A seemingly different class of generators, the (well stud-
ied) Generalized Feedback Shift Register (GFSR) generators
(Fushimi and Tesuka (1983), Fushimi (1988)), are in fact
based on MLCGs generators of large order k, with modulus
m = 2. To produce b-bits integers, they generate b streams
of bits in parallel, using the same basic recursion, but start-
ing with different seeds. Usually, the basic MLCG has only
two a; equal to 1, the others beeing zero, and the recursion
becomes

X 1= Xpn_; XOR Xn—i (4)

where XOR represents an addition modulo 2. These genera-
tors are fast and have excellent (proven) theoretical proper-
ties, provided k and j are well chosen. However, they use a

433

substantial amount of space to keep the state (which is a b by
k array of bits), and the choice of a proper seed (i.e. initial
state) is not trivial and somewhat time consuming. This can
be a serious drawback for simulation applications, especially
when many different generators must be used in parallel (see
Bratley et al. (1987)). In this paper, instead of a small m
and large k, we consider large values of m and small values of
k. The proposed generators are a good compromise between
speed and space efficiency. They are trivial to initialize, and
it is relatively easy to split their sequence into a number of

disjoints subsequences, or to jump ahead into their sequence.

The lattice structure property mentioned above also ap-
plies to MLCGs of order k > 1, and it is possible to generalize
the spectral test to this class of generators. The upper bound
on the number of parallel hyperplanes in the t-dimensional
hypercube, for ¢ > k, is now (¢}(m*—1))1/* instead of (tim)/?
(for t < k, it is obviously m). Hence, with 2 MLCG of order
k and modulus m, one can obtain the good theoretical prop-
erties of the best order 1 MLCGs based on a prime modulus
approximately equal to m* — 1 in dimensions higher than k,
and equidistribution in dimensions < k, while avoiding the
implementation problems associated with the MLCGs that
use large moduli.

To the best of our knowledge, this paper presents the
first systematic search to find good MLCGs of order k > 1.
In section 3, we describe an efficient way to perform such a
computer search, and present the results of a search to find
good MLCGs of order 2 to 7, for some prime values of m. In
section 4, we give an example of a portable implementation.

2. FINDING MAXIMAL PERIOD GENERATORS

The maximal possible period for a generator defined by the
recursion (3) is the size of the state space: p = m* — 1. Let
f() be the characteristic polynomial of the recursion (3):

k
flz) =2 - Zaiz""i. (5)

i=1

Theorem 1 below gives sufficient conditions for this maximal
period to be attained. For the remainder of this paper, we
assume that m is prime, and let

k_
T=m 1=mk‘1+mk_2+---+m+1. (6)
m—1
THEOREM 1.

If m is prime and if the following conditions are satisfied,
then the generator defined by (3) has period p = m* — 1:

(a) ((—1)*+1az)(m—1/2 mod m # 1 for each prime factor g
of m—1;

(b) ((z" mod f(z)) mod m) = ((—1)*+az) mod m;

(¢) ((z"/? mod f(z)) mod m) has degree > 0 for each prime
factor g of r. 1

Unfortunately, these conditions are not so easy to ver-
ify in practice. The major difficulty is the factorization of
r: factoring large numbers is (under the present state of
the art) a very hard problem, for which no polynomial-time
algorithm is known (Brassard and Bratley (1987)). Take
for instance m = 23! — 1 and k = 7; then r has 56 deci-
mal digits and its factorization can take hours of CPU time
on a mainframe, even with the currently most sophisticated
algorithms (Montgomery (1987), Silverman (1987)). When
k is even, m + 1 is always a factor of r, and one also has
r = (mF2 4+ 1)(m*2 —1)/(m — 1). When k is odd, it might
happen that r is prime, which is a very desirable situation,
since besides eliminating the factorization problem, this sim-
plifies the verification of condition (¢} in Theorem 1. Thus,
it could be a really good idea to select m and & such that r is
prime. The difficulties don’t stop there: primality testing is
also a problem. The best currently known exact algorithms
(see, for instance, Cohen and Lenstra (1987)) can test num-
bers of up to about 200 decimal digits, but are quite involved
and difficult to implement. For the results presented below,
we have used a probabilistic primality test proposed by Ra-
bin (see Brassard and Bratley (1987) or Rabin (1980)). This

434

test consists of j iterations of a loop, and at each iteration,
one tries (randomly) to find a “proof”, based on Fermat’s
theorem, that the number n to be checked is not prime, If
n is prime, then the test always says so, while if 7 is odd
and composite, the test can also say (erroneously) that n is
prime, but only with probability smaller than 4~7. The con-
ditional probability that n is effectively prime when the test
says so depends on the (constant) a priori probability that
n is prime, through the theorem of Bayes. It can be made
arbitrarily small by increasing 7. In practice, one can take
say J = 1000, and the probability of a bad answer by the test
will probably be smaller than the probability of an error by
the computer! This is what we did.

3. THE SPECTRAL TEST AND RESULTS OF A
COMPUTER SEARCH

We have implemented a computer program to verify the
conditions of Theorem 1, and a generalization of the spec-
tral test (Knuth (1981)) to MLCGs of order k. Such a gen-
eralization has been discussed previously by Grube (1973).
The programs are written in Modula~2, and they use another
Modula-2 package (L'Ecuyer, Perron and Blouin (1988)). for
doing arithmetic with arbitrary large integers. They work for
any values of m and k < 7, but they assume that » has al-
ready been factorized. We also performed a computer search
to find good generators of orders 2 to 7, for 16-bit and 32-
bit computers. This work was done on a VAX-11/780 and a
Microvax II computers.

For the spectral test, we use a criterion similar to
those in Fishman and Moore (1986) and L’Ecuyer (1988).
For a given order k, modulo m and vector of multipliers
a = (a1,...,ax), let dy(k,m,a) be the maximal distance be-
tween adjacent parallel hyperplanes in dimension ¢, the max-
imum being taken over all families of parallel hyperplanes
that cover all the points (Unt1se. oy Untt), n > 0, where
U, is defined by (2). The smaller that maximal distance,
the better it is, since this implies smaller empty “slices” in
the hypercube. If the generator has maximal period, then
di(k,m,a) = 1/m for 1 < t < k, since its sequence is k-
distributed (every k-tuple (Xnt1,... » Xntk) except the zero
tuple appears exactly once over the full period). A theoreti-
cal lower bound on d¢(k, m,a) is given by:

m"k/t/’Yt ift>k;

* f
de(ke,m, a) > df (k,m) {l/m <k

where
(4/3)1/4 if ¢t = 2;
21;6 if t=3;
21/4 if t = 4;
e ={ 9310 1= 5. ®
(64/3)1/32 ift =6;
23/7 ift="T;
21/2 ift=8.

Normalizing di(k,m, a), we obtain the figure of merit

. di (k,m)

Si(k,m,a) = %k, m,0)

©
which lies between 0 and 1. The higher the value, the better
it is. In this paper, we decided (somewhat arbitrarily) to
rate the maximal period generators according to their worst

case measure

def .
Mg(k,m,a) = kxglggSg(k,m,a). (10
To be selected, a generator must perform well in every di-
mension from 1 to 8.

For large m and k > 1, the number of possible gen-
erators is astronomical. An exhaustive search for the best
vector a is out of the question and, after some empirical in-
vestigations, it appeared to us that the best way to find good
generators is through a (Monte-Carlo) random search. Our
general method of search was as follows:

1. Select m and k; factorize m — 1 and r.

2. For { = 1,...,k, choose b;, ¢; and k; such that —m <
b;<e;<mand 0L h; < ¢ — b

3. Select n and repeat n times:

3a. For 7 = 1,...,k, generate o; from a discrete uni-

form distribution over {b;,...,¢; — ki}.
3b. Examine each vector of multipliers a = (a1,...,ex)
such that o; < a; < «; + h; for all 7. To examine a
vector, we verify the conditions of Theorem 1, and
if the generator has maximal period, we apply the
spectral test. The best ones according to Mz are
kept in the final results.

In step 3b, we take care to verify condition (2) of Theorem
1 only once for each distinct value of ax. This is one of
the main reasons why for each randomly generated point,
we examine all the vectors contained in some hyperrectangle
containing that point: many of them have the same value

435

of ax. In practice, one usually chooses smaller values of h;
as k increases. In our experiments, for k = 7, most h; were
set to zero, while for k = 2 we often had h; = 10. To force
one specific a; to be zero, one selects by = ¢; = h; = 0,
while to force a? < m, one selects ¢; = |/m] and b; =
—|v/m}. The value of n would depend on the CPU time one
is willing to spend for the search. For the results given here,
we spent in total more than 500 hours of CPU time on a
VAX-780 and a Microvax II. For some entries in tables 1-2,
we examined around 3000 generators, while for others, we
examined many more. For example, for the fourth entry of
table 2, we examined about 107 generators.

Ease of implementation and speed are also important
factors in the selection of a generator. In our case, things
are better if some of the a; are zero, so we looked for good
generators with a few zero multipliers, too. In fact, it is
usually possible to obtain maximal period generators with
only ar and one other a; different from zero. Generators are
also easier to implement when each a? is less than m, and m
is representable as a regular integer on the target computer
(L'Ecuyer (1988)). For this reason, we also looked for good
generators for which every a? is smaller than m, some of
them being equal to zero.

Partial results of our computer search appear in tables
1-2.
while the second and third give the values of d;(k,m,a) and

For each entry, the first line gives the nonzero a;,

Si(k,m,a),t = 2,...,8, respectively. For k > 1, each entry
is the best (highest Mg (k,m,a)} that we found so far in its
class, except for third and sixth entries in table 2 which were
proposed by Grube (1973). In some cases, a class is defined
by the constraints discussed in the previous paragraph. For
k = 1, multipliers 219 in table 1 and 39373 in table 2 were
analysed in previous work (L’Ecuyer (1988)). The first en-
try in table 2 shows the multiplier 742938285 suggested by
Fishman and Moore (1986). For k = 7 we were not able to
perform the search with m = 28! — 1 because we don’t know
the factorization of r.

Table 1. Some generators with m = 21% — 19 = 32749,
For the missing entries, d; = 1/ m = .0000305.

t=2 t=3 t=4 t=5 t=6 t=1 t=8

(a1 = 219)

dy .00653 .03510 08610 .14i .180 .229 .267

o .9209 .7930 .7263 .7180 .7628 .7334 .T214
(a1 = 32385,a9 = —29316)

ds .00104 .00601 .0167 .0201 .0616 .0897

Sy .8339 L7729 .7605 .8334 .7378 .7544
(a1 =180, a5 = ~176)

ds .00397 .00713 .0351 .0356 .0928 .0928

Sy .2101 .6513 .8615 .6808 .4104 .5661
(@1 = 25129, a5 = 15046, a3 = 28484)

dy .00047 .00213 .0058 .0112 .0198

Sy .7403 .7440 .7384 L7720 .7224
(a1 = 25716,a3 = 931)

d .00089 .00257 .00575 .0118 .0243

Sy .3878 .6184 7442 L7290 .5892
(a1 = 15696, az = 22006, a3 = 24592, a4 = 4283)

dy .000264 .00098 .00257 .0051

A .7817 .7693 .7609 .7696
(a1 =538, a4 = 16201)

dy .000905 .00250 .00361 .0062

Sy .2193 .8024 .5408 .6316
(a1 = 31939, a5 = 24837)

dy .000926 .00246 .00248

Sy .1448 .1798 .4294
(a1 = 28779, a6 = 28742)

ds .000916 .00267

Sy .1093 .1087
(61 = 15707, a7 = 30363)

dy .00090

Sy .0875

436

Table 2. Some generators with m = 231 — 1 = 2147483647.
For the missing entries, d; = 1/m = .000000000465 = 4.65E-10.

t=2 t=3 t=4 t=35 t=26 t=17 t=38
(@1 = T42938285)(Fishman and Moore (1986))
.000023 .000802 .00453 .0133 .0259 .0B53 .0682
.8673 . 8607 .8627 .8319 .8341 .6239 L7067
(a1 = 39373)
.000025 .000915 .00497 .0146 .0286 .0443 .0861
. 7907 . 7549 .7866 .7680 .7648 L7792 .5600
(a1 = 337190270, ay = 268152554)(Grube (1978))
.0000009 .0000268 .000259 .000839 .00245 .00492
.6127 .6766 .B792 L7155 .6550 .6674
(a1 = 268152228, a2 = —337190548)
.0000007 .0000212 .000192 .000782 .00209 .00445
.7410 .8643 .7843 .7683 .7654 .7381
(a1 = 46339, a; = —46336)
.0000163 .00002B2 .00310 .00310 .00310 .00504
.0351 L7211 .0484 .1935 .B161 .6622

(a1 = 518175991, a; = 510332243, a3 = 71324449)(Grube (1979))

.0000001 .0000031 .0000286 .000101 .000456
.8182 .6628 .5843 . 7369 .4906

(a1 = 928528895, a2 = 664504896, a3 = 714296896)

.0000001 .0000026 .0000233 .000098 .000307
.8114 .7824 L7171 .7660 . 7287

(az = 518621249, a3 = 666838593)

.0000006 .0000038 .0000266 .000122 .000337
.1609 .b345 .6292 .6095 .6648

(a1 = 43825, a5 = 45465, a3 = 44940)
.0000129 .0000169 .0000222 .000124 .000434

.0065 .1284 .7529 .6008 .51656
(a1 = 45187, ag = 45777)

.00001686 .00001565 .00002564 .000100 .000308

.0054 .1315 .6593 . 7406 .7263

(a1 = 1734821887, a4 = 510316546)

.0000006 .0000030 .0000053 .0000257
.0488 .1542 .6b83 .5941

(a1 = 46310, a4 = 41976)
.0000160 .0000160 .0000160 .0000292

di
St

.0017

.0201

.2160

.5233

(a1 = 43102, a5 = 46092)
.0000158 .0000158 .0000158
.0008 .0101 .0656

(a1 = —45137, a6 = 41275)
.0000163 .0000163
.0005 .0043

437

4. A PORTABLE IMPLEMENTATION

As an example, we give in figure 1 a Pascal implementation of
a fifth order generator, with m = 231 — 1, k = 5, a; = 43102,
as = 46092 and ¢z = ag = a4 = 0. It is a maximal period
generator and it appears as the next to last entry of table
2. The product modulo m is computed using the technique
described in Bratley et al. (1987) and in section 3 of L’Ecuyer
(1988). One has m = 49823 X a;+12701 = 46591 X a5+11275.
The following code will work correctly provided all integers
in the range [-231, 231 —1] are well represented. The integer
variables x1 to x5 are global and hold the current generator
state. They must be initialized, before the first call, to values
in the range [0, 23! — 2], with at least one x; # 0. These five
initial values constitute the seed. The function Random will
return an integer in the range [0, 231 — 2]. DOUBLE denotes
the double precision type. Using this type, Uniform01 will
never return 0.0 or 1.0. However, it might return 1.0 if the
result is returned as a single precision variable with 23-bit
mantissa (the standard case for 32-bit machines). Specific
seeds, spaced say 2% values apart in the sequence for some
integer d, can be computed along the lines of I’Ecuyer and
Coté (1987).

VAR
x1, x2, x3, x4, x5 : INTEGER;

FUNCTION Random : INTEGER;
VAR
h, p : INTEGER;
BEGIN
h := x5 DIV 46591;
p = 46092 * (xB
IF p < O THEN p

h % 46591) - h * 11275;
p + 2147483647;

xb 1= x4; x4 = x3; x3 := x2; x2 = x1;

h := x1 DIV 49823;
x1 := 48102 % (x1 - h % 49823) - h * 12701;
IF x1 <= O THEN x1 :=x1 + p

ELSE x1 := x1 + (p - 2147483647);
IF x1 < O THEN x1 := x1 + 2147483647;

Random := x1
END;
FUNCTION UniformO1 : DOUBLE;
VAR
Z : INTEGER;
BEGIN
Z := Random;

IF Z = O THEN Z := 2147483647;
UniformO1i := Z % 4.65661273077393D~-10
END;

Figure 1. A portable generator for 32-bit computers.

The generator given here has not been tested statiscally
vet. It is presented only to illustrate our suggested imple-
mentation technique, and should not be viewed (yet) as a
“recommended” generator.

There are alternative ways of obtaining a U(0, 1) value
from the state of the generator. This issue is discussed in
Monahan (1985). The technique suggested here is rather
simple. As suggested by Bruce Schimeiser (private commu-
nication}, one can also transform xi—x5 into fAoating point
numbers between zero and one before adding them mod-
ulo one to obtain the output of Uniform01. This additional
“scrambling” will increase the number of possible output val-
ues, and might make the values look more random.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant
Ab463 and FCAR-Quebec grant # EQ2831 to the first
author. We wish to thank Peter L. Monigomery, from
Unisys, who provided us with a list of factorizations of
(m* — 1)/(m — 1) for prime values of m near 23,

REFERENCES

Brassard, G. and Bratley P. (1987). Algorithmique, concep-
tion et analyse (in french), Masson, Paris, and Les Presses
de PUniversité de Montréal.

Bratley, P., Fox, B. L. and Schrage, L. E. (1987). A Guide to
Simulation, second edition. Springer-Verlag, New York.

Cohen, H. and Lenstra, A. X. (1987). Implementation of a
New Primality Test. Mathematics of Computation, 48,
177, 103-121.

Fishman, G. S. and Moore III, L. 8. (1986). An Exhaustive
Analysis of Multiplicative Congruential Random Num-
ber Generators with Modulus 23! — 1. STAM J. on Sei-
enttfic and Statistical Computing 7, 1, 2445,

Fushimi, M and Tezuka, S. (1983). The k-Distribution
of Generalized Feedback Shift Register Pseudorandom
Numbers. Communications of the ACM, 26, 7, 516—
523.

438

Fushimi, M. (1988). Designing 2 Uniform Random Num-
ber Generator Whose Subsequences Are k-Distributed.
SIAM J. on Computing, 17, 1, 89-99.

Grube, A. (1973). Mehrfach rekursiv-erzeugte Pseudo-Zu-
fallszahlen (in german), Zeitschrift fiir angewandte Math.
und Mechantk 53, T223-T225.

Knuth, D. E. (1981). The Art of Computer Programming :
Seminumerical Algorithms, vol. 2, second edition. Ad-

dison-Wesley.

L’Ecuyer, P. (1986). Efficient and Portable 32-Bit Ran-
dom Variate Generators. Proceedings of the 1986 Winter
Simulation Conference, 275-277.

L’Bcuyer, P. (1987). A Portable Random Number Genera-
tor for 16-Bit Computers. Modeling and Simulation on
Mierocomputers: 1987, The Society for Computer Sim-
ulation, 45-49.

L’Ecuyer, P. (1988). Efficient and Portable Combined Ran-
dom Number Generators. Communications of the ACM,
31, 6, 742-749 and 774.

L’Ecuyer, P. and Cété, S. (1987). A Random Number Pack-
age with Splitting Facilities. Report no. DIUL-RR-8705,
dépt. d’informatique, Univ. Laval (submitted to ACM
Trans. on Math. Software).

L'Ecuyer, P., Perron, G. and Blouin, F. (1988). SEN-
TIERS: Un logiciel Modula~2 pour l’arithmétique sur
DIUL-RT-8802, dépt.

les grands entiers. Report no.

d’informatique, Univ. Laval.

Marsaglia, G. (1968). Random Numbers Fall Mainly in the
Planes. Proceedings of the National Academy of Sciences
of the Untted States of America 60, 25-28.

Monahan, J. F. (1985). Accuracy in Random Number Gen-
eration. Mathematics of Computation, 45,172, 559-568.

Montgomery, P. L. (1987). Speeding the Pollard and Elliptic
Curve Methods of Factorization. Mathematics of Com-
putation, 48, 177, 243-264.

Rabin, M. O. (1980). Probabilistic Algorithms for Primality
Testing. J. Number Theory, 12, 128-138.

439

Silverman, R. D. (1987). The Multiple Polynomial Quadratic
Sieve. Mathematics of Computation, 48, 177, 329-339.

AUTHOR’S BIOGRAPHIES

PIERRE L’ECUYER is an associate professor in the
Computer Science Department at Laval University, Ste-Foy,
Québec, Canada. He received the B.Sc. degree in mathemat-
ics in 1972, and was a college teacher in mathematics from
1973 to 1978. He then received the M.Sc. degree in opera-
tions research and the Ph.D. degree in computer science, in
1980 and 1983 respectively, both from the University of Mon-~
treal. From 1980 to 1983, he was also a research assistant at
I’Ecole des Hautes Etudes Commerciales, in Montreal. His
research interests are in Markov renewal decision processes,
approximation methods in dynamic programming, optimiza-
tion in stochastic processes, random number generation, and

discrete-event simulation software. He is a member of ACM,
IEEE, ORSA and SCS.

Pierre L’Ecuyer
Département d’informatique
Pavillon Pouliot

Université Laval

Ste-Foy, Qué., Canada

G1K TP4

(418) 656-3226

FRANCOIS BLOUIN is a master’s student in computer
science at Laval University. He received a B.Sc. in computer
science from Laval University in 1987, and worked there as
a research assistant. He is a member of ACM.

Frangois Blouin

862 Moreau

Ste-Foy Qué., Canada
G1V 3B4

(418) 659-4045

