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Abstract

We find new confidence intervals for the mean of
a stationary process. The new intervals are based on
orthonormally weighted standardized time series and
asymptotically have smaller half-length mean and vari-
ance than their predecessors.

1 Introduction
In this paper, we find confidence intervals for the mean u of a
stationary process Y1,Y3,.... We generalize the standardized

time series area and weighted area confidence intervals devel-
oped by Schruben [4] and Goldsman and Schruben {3]. An
expanded version of this paper containing proofs and further
properties is [1].

The standardized time series of the process ¥3,Yz,...,¥,

nt](Yo =Y 4
Tn(t)s—---——L dl T Lnt)

where the variance parameter ¢® = lim, o, 7 Var(¥,), ¥; =
1, Yi/§ for j = 1,2,..., and |-} is the greatest integer
function. We assume that g is finite, 02 is well-defined, and

0 < 0% < co. We also assume that

is

for0<t<1,

T,%8,

where B(-) is a standard Brownian bridge process and 2 de-
notes convergence in distribution, and that T,(:) and nY,
are asymptotically independent (cf. Schruben [4] and Glynn
and Iglehart [2]). The remainder of the paper is organized
as follows. Section 2 describes the new confidence intervals.
Analytical and empirical examples appear in Section 3.

2 'The New Confidence Intervals

In this section, we give the confidence intervals. Let

E,l:=1 wi(%)aTn(f)

n

A; (n) =

and

A= .[0 ' w;(t)oB(t)dt,

for continuous weighting functions w;(:), ¢ = 1,2,... which
are not identically zero. The next theorem says that the vec-
tor of A;(n)’s behaves like the vector of the A;’s as » becomes
large.
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Theorem 1 If wi(-) is continuous on [0,1] for ¢ = 1,...,d,
then as n — co

(41(n), ..., Ad(n)) 2 (41,-..,4q) .

The following theorem gives conditions which the weight-
ing functions must satisfy so that 4,,..., 4, are independent,
normal (0, 0?) random variables. First, we need a definition.

Condition O The functions wy, ..., wq satisfy Condition O if
they are orthonormal with respect to (s, ) = (sAt)[1—(sV1)]
over the unit square where A denotes minimum and V denotes
maximum.

Theorem 2 Aj,..., A, are independent, normal (0,0%) ran-
doi variables sff wy,...,wy satisfy Condition O.

_This result has only given us conditions which the weight-
ing functions must satisfy. One method of obtaining orthonor-
mal weighting functions is to take any set of linearly indepen-
dent functions vy,...,vs and use the Gram-Schmidt proce-
dure to orthonormalize them.

Example 1 Suppose we let v{t) = %, i = 1,2,3,4. Note
that the v’s are linearly independent. Applying the Gram-
Schmidt procedure with respect to r(s,t) yields the orthonor-
mal wetghting functions

wit) = Vi2

wa(t) = V720(t - 1/2)

ws(t) = +/25200(t> —¢+1/5)
wy(t) = 60(14¢° — 21¢% + 9t — 1).

Once we have orthonormal weighting functions, we can
compute (4;(n),...,As(r)) and construct confidence inter-
vals for u as follows. Since (4y,...,Aq4) is a vector of in-
dependent, normal (0,0?%) random variables, we immediately
have that T4, A? is 02 times a chi-squared random variable
with d degrees of freedom. Since (Y, — u)/1/o?/n is asymp-
totically normal (0,1) and independent of (Ay,...,A44) (cf.
[4]), we know that

VAT — 1)
?:1 A'2 / d
asymptotically has a ¢ distribution with d degrees of freedom.
Hence, an approximate 100(1 — )% confidence interval for u
is given by
z?:l Atz (n)

?n + td,l—a/Z nd ’




where t41-/; is the 1 — @/2 quantile from the ¢ distribution
with d degrees of freedom. We call

?:1 Alz (n)
d
the weighted area estimator for 0%, The area confidence in-
terval estimator from [4] corresponds to our case with d = 1
and w;(t) = V12 while the weighted area estimator of [3)
corresponds to d = 1.

Vw

3 Examples

From the above, it is clear that we would like the weighting
functions to satisfy Condition O. In an expanded version of
this paper [1], we define another condition for the weights.

Condition U The weighting function w; is said to satisfy
Condition U if W;(1) = W;(1) = 0 where

t
/ wi(s)ds, and
0

Wi(t)

i

— 1t
W) = ;[ Wis)ds.

Conditions O and U together yield several desirable prop-
erties for Viy. One such property, first-order unbiased, is that
the bias of Vi as an estimator of 02 is of order o(1/n).

Example 2 The following are two polynomial weighting func-
tions which satisfy Conditions O and U:

-2 31t 25t%
wl(t) = V574560(ﬁ + _776— —t? -—3—8—
63000,1 Ot
wlt) = V55 G+t

For some simple stochastic processes and low-order poly-
nomial weighting functions, it is possible to carry out the
algebra to exactly compute the expected value of Viy.

Example 3 Consider an MA(1) process Yiy1 = O6;+€i41,8 =
1,2,... where the €’s are i.i.d. normal (0,1) random variables.
In (1], we calculate the E[Viy] for both of the weighting func-
tions of Example 2. The result is

EVw] = (1 +6)* + 0(1/n?) = 6* + O(1/n?).
Thus, Vi ts first-order unbiased as clatmed.

Example 4 We can also give an infinite sequence of weight-
ing functions which satisfy both conditions by letting w;(t)
VBricos(2nit), i =1,2,....

Now we give preliminary empirical results comparing sev-
eral methods of confidence interval estimation. Consider the
AR(1) process, Yiy; = ¢¥; + €41, ¢ = 1,2,... where the ¢’s
are i.i.d. normal (0,1—¢?) random variables and Y is a stan-
dard normal random variable. Let ¢ = 0.9; such a process
is stationary. We compared the performance of five confi-
dence interval methods: batch means with 2 batches (Vg),
the area estimator from {4] (V,4), and the weighted area esti-
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mators from Example 4 using weighting functions ws,...,wy
with d = 1,2, and 3 (Viy1, Viwz, Virs, resp.). The results are
presented in the following two tables. These results are for
estimated coverages and expected half-lengths and are based
on 2000 independent replications of the appropriate simula-
tion experiments. Coverage of 90% was desired; hence, the
standard error of the coverage estimates is about 0.007. The
first table shows that Vp and Vi, have better coverage for
small sample sizes, but all methods attain the desired cov-
erage as n increases. Also note that for very small sample
sizes the coverages of the weighted area confidence intervals
with d > 1 are worse than those of the other methods, but all
methods seem to reach the desired coverage at roughly the
same sample size.

The second table shows that the expected half-lengths for
Vire and Viys are much smaller than those of the other meth-
ods. Similar results hold for the variances of the half-lengths.

In another paper [1], we give additional analytical and
empirical results for AR(1), MA(1), and M/M/1 processes.
In a sense, our weighted area estimator is at the opposite end
of the spectrum from those in [3,4]; they have one estimator
(d = 1) with multiple batches, while we have one batch with
several estimators (d > 1). The “best” procedure most likely
lies between the two ends of the spectrum.

n | Vo | Va [ Vs ]| Ve | Vs
32 || .856 | .856 | .853 | .711 | .645
64 | .888 | .870 | .884 | .805 | .760
128 || .888 | .876 | .898 | .882 | .836
256 | .893 | .890 | .891 | .892 | .876
512 | .891 | .904 | .903 | .901 { .903

Table 1: Coverage Results for the AR(1) Example

n [ Ve | Va [ Vw1 ] Vwe | Viws |
32 |} 2.20 | 2.34 | 2.23 | 0.89 | 0.65
64 || 2.07 | 2.05 | 2.15 | 0.92 | 0.68
128 | 1.73 | 1.64 | 1.76 { 0.84 | 0.64
256 || 1.27 | 1.24 | 1.33 | 0.66 | 0.54
512 || 0.92 | 0.94 | 0.95 | 0.50 { 0.41

Table 2: Expected Half-Lengths—AR(1) Example
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