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ABSTRACT

‘We continue our investigation of linear combinations of
that are
parameterized by batch size. First we state the mse-optimal

variance-of-the-sample-mean estimators
linear-combination weights in terms of the bias vector and
the covariance matrix of the component estimators for two
cases: weights unconstrained and weights constrained to sum
to one. Then we report a small numerical study that
demonstrates mse reduction of about 80% for unconstrained
weights and about 30% for constrained weights. The mse’s
and the percent reductions are similar for all four estimator
types considered. Such large mse reductions could not be
achieved in practice, since they assume knowledge of
unknown parameters, which would have to be estimated.

Optimal-weight estimation is not considered here.

1. INTRODUCTION

Consider a covariance-stationary sequence of random
variables {X;}}.; having mean p, positive variance R, , and
finite fourth moment y,. Estimating var(f ), the variance of
the sample mean, is a2 prototype problem in the analysis of
simulation output. Several estimation techniques have been
proposed to estimate var(f), including regenerative (Crane
and Iglehart 1975), ARMA time series models (Fishman 1978,
Schriber and Andrew 1984), spectral (Heidelberger and
Weleh 1981), standardized time series (Goldsman 1984,
Schruben 1983), nonoverlapping batch means (Schmeiser
1982), and overlapping batch means (Meketon and Schmeiser
1984).

All of these methods work well only when underlying
assumptions hold. The statistical properties deteriorate as a
function of the degree to which the assumptions are violated.
Also, most of the variance estimators have one or two
parameters that defermine the estimators’ properties. The
most common parameter is batch size, which is used by
batch-means and some standardized-time-series estimators.
Batch-size estimation based on hypothesis testing has been
the classical approach (Bratley, Fox, and Schrage 1087, Law
and Kelton 1883); optimal batch size in terms of the
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covariance structure has been recently discussed by
Goldsman and Meketon (1986) and Song and Schmeiser

(1988b).

We hope to create an estimator with determined
parameter values that works well for any stationary processes
Schmeiser and Song (1987)
reported some Monte Carlo results about linearly combining

under weak assumptions.

some known (component) estimators with low degrees of
freedom and creating a new estimator with more degrees of
freedom. Under their assumption that correlations among
each pair of some known estimators are independent of the
underlying process, the linear combinations provide a better
(than the component estimators) estimator for var(X)
without estimating parameter values.

The component estimators in Schmeiser and Song (1987)
have negligible biases, therefore reducing the variance is the
only issue. They consider a vector of p component
estimators, ¥ = (Vy, V,,
matrix E_Y' The linear combination with minimal-variance
weights, Q=(E_Ell)/(ltzfll) retains negligible bias since

the weight are constrained to sum to one.

ey, Vp) with variance-covariance

If estimators do have non-negligible biases, those.
optimal-weights yield linear combinations with non-negligible
bias, even though the variance is still minimized. In such
case, the linear combination may have a mean-squared-error
(mse), the sum of variance and squared bias, that is no better
than that of some of the component estimators.

In this paper, we further investigate the idea of line .

combinations by no longer restricting the component
estimators to negligible bias. The objective is to form a
linear choosing optimal

minimal-mse combination by

weights. Section 2 is a description of the minimal-mse
study of linear
(NBM),

overlapping-batch-means (OBM), standardized-time-series-

problem. Section 3 is 2 numerical

combinations of nonoverlapping-batch~-means
area (STS.A), and the nonoverlapping-batch-means combined
with standardized-time-series-area (NBM+STS.A) estimators.
Section 4 is a discussion.



2. MINIMAIL-MSE PROBLEMS

Although we are primarily interested in mse, we give
optimal weights for the more general risk function
Bybias® + B,var, where §, >0 and By >0. Mse corresponds to
By =1 and B, =1. We consider two cases: constrained and
unconstrained. The constrained case, in which we require the
weights to sum to one, arises naturally when the component
estimators are unbiased. The unconstrained case allows any
combinations of weights. These two cases are discussed in
Section 2.1 and 2.2 respectively.

2.1. Constrained Weights

Let JZ'=( 1}1, s ,V’F)t be a linearly independent vector
of estimators. Let E_ﬁ be the pxp dispersion matrix of ¥,
and let Ay be the pxp matrix with the (3,j) entry bi b,
where b; = bia.s(V;). Let & be a weighting vector containing
p real values o; which is the weight associated with V; used
to form a linear combination. The value of & then can be
chosen to minimize the risk. This problem can be
formulated as

(P1) minimize: Bibias’ (o} V) + Byvar(al V)
subject to : af1=1 s
where f; >0, >0, and 3y has full rank.

Proposition 1: For any covariance-stationary
process X, the optimal solution of (P1) is the
minimal-risk linear combination with the weights
a=(A7'1)/(!A7*1) and the resulting
minimal mse is { 1 A_ﬁl 1)7Y, where Ay is defined
to be ﬁlA_Y -+ ,BZEf.

In our application, bias is defined with respect to var(f ).

We now state three lemmas necessary for proving
Proposition 1. They are proven in Appendices A, B, and C,

respectively.
Lemma 1: (P1) can be written as
(P1)  minimize : of Ay o
subject to ¢ odi=1.

Lemma 2: Ay in the objective function of (P1') is

positive definite.

Lemma 3: Let W be a pxp matrix that can be
decomposed into T'T?, where T is a nonsingular
matrix and let o be any px1 scalar vector. Then

(QtWQ() > _(_Qt_l)2_ R
= twly

Proof of Proposition 1: From Lemma 1, problem (P1') and
problem (P1) are equivalent, so we focus on problem (P1).
From Lemma 2 and the Cholesky decomposition, there exists
a nonsingular matrix T such that AJZ‘ = TT!. Applying the

Lemma 3, we have

tay2
A ,0) > &L
(Q _IZQ) = ltAJ?—ll

-1
Az

since o1 = 1. Finally, when

o= (Ap™)
@A,y 7

o Ay a reaches its lower bound. ®

When both B, and @, are 1, problem (P1) becomes the
optimal-mse problem

(P1.1) minimize: mse(a’¥)
subject to: of1=1.
Corollary 1: Problem (P1.1) has optimal weights
a=(AF'1)/(1*AF'1) and the resulting

minimal mse is ( 1} AF' 1)7Y, where Ay is defined
to be Ar -+ E_Q .

The special case of (P1.1) with two component
estimators is

(P1.1.1) minimize: mse(oy Vy+0,V,)

subject to: oty =1.

Corollary 2: Problem (P1.1.1) has optimal weights

(9 +b3) — (o35 + byby)
(of + b))+ (0F +53) — 2012 + b1dy)

oy =
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and oy =1 — o4. The resulling minimal mse is

[(93+53) — (o1a + b1by) |?
(of+bf) + (07 +03) — 2(012+b1bs)’

o3 +b5 —

where of, 03, and 0y, are variance of V;, V,, and
the covariance of V; and V,, respectively; b, and

b, are bias of V; and V,, respectively.

Corollary 2 follows from Corollary 1 by writing
o2 4+ b2

» —(o12 + b1b3)

LT (0 + 07)(0F +b3) — (o1 + b1boF

—(o13 + b1by)

of + b7

and

o+ o+ b +bE —207, —2b.b,
(07 + )05 + bF) — (03 + byby)

A, 1=

Alternatively Corollary 2 can be obtained directly by taking
first derivatives.

2.2. Unconstrained Weights
In this section, we formulate and solve
(P2) minimize: Bbias’(af V) + Byvar(af V),

which is (P1) without the constraint on the weights o We
still assume that E.i’ has full rank. Here the optimal linear

combination may be biased even when all of the component
estimators are unbiased.

Proposition 2. For any covariance-stationary

process X, the optimal solution of (P2) is
a = Byvar(X)(B, €y + BeSy) VE(X),

where B(¥) is the vector of the component-

estimator means and E_Q is the matrix of cross
products of means, E(V)E(F)!.

Proposition 2 is obtained by taking first derivatives after
expressing the bias as the difference of expected value and
var(X).

‘When both 8, and B, are 1, problem (P2) becomes the
optimal-mse problem

(P2.1) minimize: mse(a’Y) .
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Corollary 3: Problem (P2.1) has optimal weights
a=var(X)(éy + ) EX).
Restriction to two component estimations lead us to
(P2.1.1) minimize: mse{cy V;+0,V,)
and Corollary 4.
Corollary 4. Problem (P2.1.1) has optimal weights

var(f) (“310'22 — €5013)

o=
2 2, .2 2, 2
ef 3 +e3 of +0fo5 —2e 6,01 — 0%
and
= 2
e var(X) (e201 — e1015)
=

2 2, .22, .22 2 !
€1 0z -+ey 0f + 0705 —2e1€5015— 07y

where e, and e, are the expected values of V, and

172, respectively.

3. NUMERICAL STUDY

The objective of the numerical study in this section is to
see how much the use of linear combinations can improve
(reduce) the mse and to study how the optimal component
estimators behave as a function of estimator type, batch size,
and statistical properties (bias, variance, and mse).

Specifics of the study are as follows. The component
estimators are NBM, OBM, STS.A, and NBM+STS.A. The
sample size n is 30. The data process is steady-state first-
order autoregressive (AR(1)) with the parameter ¢; = 0.8082.
This value of ¢; corresponds to vy = Y152 _..0; = 10, where
o, denotes the lag-h autocorrelation corr (X;, X;.;). The
arbitrarily value 1 is used for var(}? ). The biases, variances,
and mse’s are calculated numerically, using the approach
discussed in Song and Schmeiser (1988a).

Before considering linear combinations in Section 3.2, we
investigate the optimal mse for individual component
estimators in Section 3.1.°

3.1. Optimal Mse: Component Estimators

For the four component estimator types, we numerically
compute their optimal batch sizes and optimal mse’s, as well
These
properties are reported here primarily for comparison to the

as associated biases and variances. statistical



statistical properties of the linear combinations studied in
Section 3.2. Goldsman and Meketon (1986) and Song and
Schmeiser (1988b) contain a more complete study of the four
component estimator types for this process.

Let m denote the batch size and V(m) denote the
estimator type of NBM, OBM, STS.A, and NBM+STS.A
with bateh size m. Let m* denote the mse-optimal batch
size; i.e., mse(V(m¥)) < mse(V(m)) for all batch sizes m.
The numerically determined optimal batch size, squared bias,
variance, and mse for V(m*) of the four estimator types are
shown in Table 1.

Table 1: Optimal Batch Size and Their Properties
Property Estimator Type
NBM | OBM { STS.A | NBM+STS.A
m* 7 8 15 15
bias?(V(m*))x10? || 33.6 | 33.6 | 39.3 28.9
var(V(m*))x10® || 13.7 | 141 | 15.0 16.6
mse(V(m*))x10% || 47.3 | 47.7 | 54.3 45.5

The order of the estimator types in increasing values of
mse( V(m*)) shown in the last row, is NBM+STS.A, NBM,
OBM, and STS.A, which differs from the results in Song and
Schmeiser (1988b) where the order is OBM, NBM,
NBM+STS.A, and STS.A for the same process and n = 500.
‘We emphasize this difference to discourage the reader from
based
information in this study. Our only current purpose is to

making type comparisons on the insufficient

demonstrate mse-reduction with linear combinations.

3.2. Optimal Mse: Linear Combinations

In this section we numerically demonstrate the mse-

reduction obtained with linear combinations of two
component estimators for the sample size and process
described
considered are (P1.1.1), weights constrained to sum to one,
and (P2.1.1), unconstrained weights. The numerical results

for these two problems are discussed in Section 3.2.1 and

in Section 3.1. The minimal-mse problems

Section 3.2.2, respectively.

In each linear combination, let Vy(m;) and V,(my)
denote the two component estimators with batch size m; and
Let V¥ =oy* Vi(m,*)+op* Vy(my*)

denote the mse-optimal linear combination of V(m,) and

my, respectively.

Vy(m,) with corresponding weights o* and op* and
The
weights and batch sizes are simultaneously optimal in the

corresponding optimal batch sizes m;* and m,*.
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sense that for any values of o, o, my, and m,
mse(V*) =xmse( o1 * Vy(m1*)+ ¥ Vy(my*))
Smse( oy Vy(my)+a Vy(msy)).

The values of squared bias, variance, covariance, and mse in
Table 2 through Table 4 are multiplied by 10? because some
values are very small.

3.2.1.
Consider the minimal-mse problem (P1.1.1) where the

Constrained Weights Summing to One.

optimal weights sum to one. In this section we use ¢ and
1 — o rather than ¢ and «y, since the constraint makes this
The
estimators to be combined can be of common type or of

an inherently one-weight problem. component
different types. The results of combining common types are

shown in Table 2 and different types in Table 3.

In Table 2 we combine common types of estimators
(with different batch sizes), allowing us to temporarily drop
the subscript on V.

Table 2: Optimal Linear Combinations:
Common Types of Component Estimators.
Optimal Weights Summing to One.

Property Estimator Type
NBM |OBM | STS.A | NBM+STS.A
(m*, my¥) (1, 2) |(1, 2)| (2, 5) (2, 3)
bias?(V(m,*))x107 82.9 |82.9| 95.7 82.9
bias?( V(m4 *))x10? 70.3 [70.5| 83.4 76.0
var(V(m; *))x10? 0.227 [0.227/0.00643|  0.227
var(V(my*))x10° 0.940 [0.935] 0.272 0.525
cov(V(m;*), V(my*))x10%|0.460 |0.458| 0.0112 |  0.345
corr(V(my*),V(my*)) |{0.996 |0.996| 0.268 0.999
at -7.25 |-7.33| -8.37 -15.0
1—at 8.25 [8.33 | 0.37 16.0
bias?( V*)x10? 9.80 |10.3 | 13.7 8.45
var(V*)x10% 20.9 [21.1| 22.6 20.1
mse( V*)x10? 30.7 |31.4| 36.2 28.6
g —mee(V4) 35% |34%| 33% | 37%
mse(V(m*))

Now observe the individual component estimators that

comprise the optimal linear combinations in Table 2. The



optimal pairs of batch sizes m,* and my,* have relative small
values, as shown in the first row. Such batch sizes correspond
to large biases, as shown in the second and third rows; and
small variances, as shown in the fourth and fifth rows.

Now observe the relationships among the component
estimators that comprise the optimal linear combinations.

The covariances and correlations of the itwo optimal
component estimators, shown in the sixth and seventh rows,

Except for the STS.A estimator, the
correlations are close to one.

are positive.

The optimal weights a* and 1 —a* have different signs,
which both partially cancels the large biases of the two
component estimators and uses the positive correlation to
obtain small variance. These effects can be seen in the
formulas for the bias and variance of the linear combination,

which are

bias(V*) = a* bias(V;*) + (1 — a*) bias(V,*)
and

var(V*) = (a*Pvar(Vy %)+ (1 — a*)var(V, %)

+2a* (@—a*)cov(V,*, V,*).

Now observe the mean squared error. Comparing
mse( V¥) to mse( V(m*)), which is.obtained in Section 3.1, we
see the mse-reduction is about 35% for any of the four
estimator types. This consistency across types of estimators
is reminiscent of Schmeiser and Song (1987), where the linear
combinations considered resulted in variance decreases that

were similar across types of estimators.

To provide some insight into the nature of the
performance of the optimal linear combination compared to
that of component estimators, consider Figure 1, which
shows the statistical properties (bias, variance, and mse) of
the NBM estimators corresponding to various batch sizes and
of the optimal linear combination. The small variances and
large biases associated with batch sizes m;* =1 and
mq* =2, which are used in the optimal linear combination,
are shown on the left side of the figure. The squared bias,
variance, and mse of the optimal linear combination are
shown as horizontal lines through the figure. We see that in
addition to the 35% mse reduction, the bias is less than the
bias of NBM with any batch size and the variance is less than
NBM variances for batch sizes greater than seven. Although
not shown, the analogous figures for OBM, STS.A, and
NBM-+STS.A show similar results.
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AR(1), v =10, n = 30

1.00 1 mse(I?)
g var(V)
0.75 4
8
i
g 0.50
2
Q“ Py
+ mse( V¥)
o2s{ e var(P%)
/ bias?( V)
f—e—e—s—a s e—o—a—8—8—5—8—5-0 bas’(V¥)
0-00 T T T T T T 1

1 3 5 7 g 11 13 15

batch size m

Figure 1: Statistical Properties of the NBM Estimators and
of the Optimal Linear Cambination

Table 3 is similar to Table 2, except that it contains the
results for linear combinations composed of two different
types of component estimators. The second, third and fourth
columns of Table 3 show results for the linear combinations
of (NBM, STS.A), (OBM, STS.A) and (NBM, OBM),
respectively. Again, we see that the batch sizes in the
optimal linear combination are small, with corresponding
large biases and small variances. The covariances and
correlations of the two component estimators are positive.
The optimal weights &* and 1 — o* have different signs,
again allowing the biases to partially cancel and the variance
to be small. The mse-reduction is about 30% compared to
mse( Vyparesrs.a (m*)) Table 2. We use

Vsas+sTs.a(m*) as the basis to compute the mse reduction

from

because it has the smallest mse in the last row of Table 1.

3.2.2. Consider the
minimal-mse problem {(P2.1.1). Since the optimal weights

Unconstrained Weights.

are unrestricted, the mse(V*) must be smaller than or equal
to the optimal mse’s obtained in Section 3.2.1.

Using the same process and sample size, we show the
optimal linear combination for common component types in
Table 4.

The batch sizes m, * and my* shown in the first row are
again small. These batch sizes still correspond to large biases

and small variances.



Table 3: Optimal Linear Combinations: Table 4: Optimal Linear Combinations:
Different Component Estimators Types. Common Component Estimators Types.
Optimal Weights Summing to One. Unconstrained Weights.
Property Estimator Types (171, 172) Property Estimator Type
(NBM,STS.A] (OBM,STS.A) NBM,0BM); NBM |OBM | STS.A | NBM+STS.A
(my*, my*) (2,2) (1, 2) (1,2) (my*,my* ) (1, 8) |(1, 2)| (2,3) (2, 5)
bias?(V,(m, *))x10? 70.2 82.9 82.9 bias?( V(m, *))x10? 82.9 [82.9| 95.7 82.9
bias?( Vy(my*))x10? 95.7 95.7 70.5 bias?(V{my*))x10? 59.9 170.5| 92.2 58.8
var(V(m, *))x10? 0.940 0.227 0.227 var( V(m, *))x10 0.227 [0.227/0.00643|  0.227
var(Vy(m, *))x10? 0.00643 | 0.00643 0.935 var(V(my *))x10? 2.18 {0.935| 0.0327 1.54
cov(Vy(m *), Vo(my *))x10%| 0.0114 0.00882 | 0.458 | lcov(V(m*),V(m,*))x10%/0.696 [0.458/0.00568|  0.588
corr(Vy(my *), Vo(my*)) 0.147 0.231 0.998 corr(V(m; *), V(m,*)) ||0.990 [0.996| 0.302 | 0.995
a* 4.75 9.83 -7.33 ot 30.2 |56.2| 27.8 51.3
1—a* -3.75 -8.83 8.33 ay* -11.5 (-25.8| 7.44 -18.4
bias?( V*)x10% 9.83 9.87 10.3 bias?®( V¥)x10? 0.980 | 1.06 | 1.03 0.827
var(V¥)x10? 20.9 20.9 21.1 var(V¥)x10? 8.92 {9.25 | 9.11 8.27
mse( V*)x102 30.7 30.8 314 mse( V+)x10? 9.90 [10.3| 10.1 9.09
o "

1- — VNIE:ES‘;;A(m*)) 33% 32% 31% 1-— % 79% |78% | 81% 80%

The optimal weights o; ¥ and o,* do not sum to ome.
For the first time, we see an example where the signs are
both positive — STS.A. The bias of the optimal linear
combination is

bias(V*) = o bias(V;) + oy bias(Vy)
+ (g 40 —1) var(X) .

Because of the last term, the signs of the optimal weights
need not be different for the biases to partially offset each
other.

The bias?, var, and mse shown in the fourth-to-last,
third-to-last, and next-to-last row, respectively, are much
smaller than the corresponding values in Table 2. The mse
reduction is about 80%, which is far larger than 35% in the
last row of Table 2 and the 30% in the last row of Table 3.

4. DISCUSSION

We
combinations and numerically studied estimator performance

have given formulas for mse-optimal linear

for a particular AR(1) process. The formulas, which are
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functions of the biases, variances, and covariances of the
the
unconstrained cases. The numerical study demonstrated mse
of about 30% all
combinations and about 80% for all unconstrained linear

component estimators, consider constrained and

reductions for constrained linear

combinations.

The various estimator types all lead to similar optimal
is that the choice of
component estimator type is relatively unimportant.

mse’s. The tentative conclusion

In practice, the variance of the sample mean, the bias
vector, and the covariance matrix are unknown. Estimation
of the batch sizes and optimal weights, which is not studied
here, may be difficult. We do not yet know the relative
difficulties
estimators,

of estimating batch sizes for component

single weights for constrained linear
combinations, and double weights for unconstrained linear
combinations. Therefore, the extent to which we can benefit

from the mse reductions demonstrated here is unknown.

Some results necessary for estimating properties of
component estimators are available. Schmeiser and Song
(1987) discuss correlations among estimators with large batch

size and hypothesize that the asymptotic correlations are not



a function of the process and are good approximations for
even small sample sizes. Goldsman and Meketon (1986) and
Song and Schmeiser (1988b) discuss optimal batch sizes for
component estimators. The component estimator §2 /n;
which is NBM with batch size one, OBM with baich size one,
or NBM+-STS.A with batch size 2; arises repeatedly in our
numerical results and has easily computed bias (e.g., David
(1985)). We know of no other component estimator with
known bias.

Keep in mind that the numerical results are for a single
sample size and process. The sample size is quite small;
n =30 is only three times the sum of the correlations
~o = 10. However, the example reported is consistent with a
limited amount of other experience, so we think the example
is not misleading. The small sample size was used because
(1) it allowed numerical (rather than Monte Carlo) mse
calculations and (2) our experience indicates that even such a
small sample size yield results consistent with large sample
sizes. Nevertheless, results should be extrapolated only with
caution. All that can be claimed with certainty is that this

one example has demonstrably large potential mse reduction.
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APPENDIX A: PROOF OF LEMMA 1

Define bias(¥) to be the bias vector, b=(by, **, b, ),
where b; = bias(V;) = E(V;) — var(X). Then

bias(a! ¥) =a' b +var(X) (o' 1—1)
=go'h
since o 1 =1. Let Ay =5 b*. Then
Bibias? (&' V) =G (o b bt a)
=B Ay o)
=o' (BAy)a.

Also

Bivar(a! V) =By & Ty )

I

Qﬁt(ﬂzzy)ﬂ-

Theréfore

Bibias® (el V) + fyvar(al V) =t [BiAg + £5y)
= g Aj o, 1

APPENDIX B: PROOF OF LEMMA 2

We show that the objective function of (P1), Ay =
BiAy + BaZiy, is positive definite, where £; >0 and f,>0.

By definition, Ay =bbt, where b=[by, by, -, bp]t,

and
5y =E ([¥—B@)] [Z-ED)} )
For any nonzero real vector s,
s Aps =5 (BiAy + 6Zy)s
%ﬁf (BiAy)s +5* (B, 5p)s
= Bi(sfbbts) + BE [ﬁf [¥ ~E@)| ¥ -E@)! ,s]
=B, (& b)? + BE [[.s.%JZ——E(.@] 2 ] >0,

sinee B; > 0; (s b)? > 0; B, > 0; and since 3y has full rank,
which that ' (¥ —E(¥)) o,
E [[ﬁ’(_f —E(¥)] 2] > 0. 8o, Ay is positive definite. B

implies therefore,

APPENDIX C: PROOF OF LEMMA 3

(1) =(211)?
=(af (TT Y1)
=[( T)(T 1)}
<(ef T THT DHT 1) (A.C.1)
= (o TT)(1* ((T7Y) T H)
=(@Wa) (PW) (A.C.2)

Inequality {A.C.1) follows by applying the Cauchy-Schwartz
Inequality (X* ¥)? <(X'X)(Y'X). From (A.C.2) we have

@1’ < (@W 'Ww ),
which implies

ot 1)*

i
oWa) >
( )2 Tw
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