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ABSTRACT

The purpose of this paper is to develop a nonparametric
method for obtaining a confidence interval for the mean of a
stationary sequence. As indicated in literature, nonparametric
confidence intervals in practice often have undesirable small-
sample asymmetry and coverage characteristics. These phe-
nomena are partially due to the fact that the third and fourth
cumulants of the point estimator for the stationary mean, un-
like those of the standard normal random variable, are not
zero. We will apply Edgeworth and Cornish-Fisher expansions
theory to obtain asymptotic expansions for the errors associ-
ated with confidence intervals. The analysis isolates various
elements that contribute to errors and makes it possible for
us to estimate each element and hopefully correct the errors
to a smaller order. We will use Glynn’s method to develop
first and second order correction terms for the confidence in-
tervals, These procedures, in the meantime, also improve the
asymptotic order of confidence interval accuracy.

1. INTRODUCTION

The purpose of this paper is to develop a nonparamet-
ric method for obtaining a confidence interval for the mean
of a stationary process with certain regularity conditions. Our
starting point is the batch means method. We hope that by us-
ing the idea of Johnson-Glynn pivotal transformations we can
obtain better confidence intervals for the quantities of interest.
We make no assumption that the observed data are sampled
from either iid, regenerative, or ARMA processes. We believe
this assumption is more general case and robust for the output
analysis of the real world simulation experiments. The proce-
dures we purpose do not require the selection of any critical
constants that can not be reasonably preset. This fact and
the less restrictive nature of the assumptions will also allow us
to implement these procedures as a software package for the
output analysis of many real world simulation studies.

The basic approach of the procedures we purpose follow
from Johnson (1978), Glynn (1982), and Titus (1985). As in-
dicated in Glynn (1982), nonparametric confidence intervals in
practice often have undesirable small-sample asymmetry and
coverage characteristics. We will apply Edgeworth expansion
theory to obtain asymptotic expansions for the errors associ-
ated with confidence intervals. The analysis isolates various el-
ements that contribute to errors. We then use Glynn’s method
to develop first and second order correction terms to the con-
fidence intervals. These procedures, in the meantime, also im-
prove the asymptotic order of confidence interval accuracy in
the sense that the actual coverage rate of the corrected confi-
dence interval is closer to the nominal coverage than previous
methods.

Johnson (1978) is perhaps the first author to use these pro-
cedures. He derives a first order correction for ¢-statistics for
independent and identically distributed samples. Glynn (1982)
extends this idea to a second order correction for ratio estima-
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tors of regenerative processes. Titus (1985) applies the same
idea to asymptotically stationary autoregressive processes of
finite orders.

The organization of this paper is as follows. In Section 2,
we develop the necessary background for cumulants and Edge-
worth expansions, while Cornish-Fisher expansions and some
new uniqueness properties are discussed in Section 3. Section
4 discribes how the cumulants for a stationary process, with
some regularity conditions, can be calculated.

In Section 5, we derive first and second order Johnson-
Glynn pivots for the corrections of the errors in confidence
interval coverage. Finally, some numerical examples are dis-
played in Section 6.

2. EDGEWORTH EXPANSION

Consider a random variable X with distribution function
Fx. The moments g, = EX", r > 0, and central moments
tr = E(X — EX)", r 2 0, are some very useful constants for
measuring the properties of X and, in some cases, uniquely
characterize the distribution function Fy (Chung 1974 pp. 98-
99). For some statistical analyses, however, there is another
series of constants, the cuamulants, which are closely related to
the moments but would be more convenient from a theoretical
point of view.

Let ®x(t) be the characteristic function of X, then subject
to existence the cumulants x.’s of X are formally defined by
(Kendall and Stuart 1977 p. 69)

@X(t) = / 6“’:de

—_0

= 3Gy ot

r=0

= exp { i ff,,.(it)’/r!}

r=1

Thus &, is the coefficient of (it)"/r! in log & x(¢) when the ex-
pansion in power series exists; log @x(¢) may be called as cu-
mulant generating function (c.g.f.) or the second characteristic
function. However, the first terminology is somehow mislead-
ing in the sense that log @x(t) exists (for some neighborhood
of 0) even if the moments and cumulants do not exist.

The cumulants that involve two or more random variables
are also of interest. Consider random variables X;,...,X,,
such that E|X;[" < oo, j = 1,...,7. The rth order joint cu-
mulant of X3, . .., X, is given by cum(Xy, ..., X,) = > (-1)*
(p—DUE TL;e, X5) - - (E ;e X;) where the summation ex-
tends over all partitions 14,...,4, p = 1,...,7, of the set
{1,...,7} (Billinger 1981 p.19). For convenience we will define



k;(X,Y) = cum(X, ...

% terms 7 terms

Suppose Fx, ®x(t), and {«.(X),r > 1}, and Fy, ®y(?),
and {#.(Y),r > 1} are distribution function, characteristic
function, and cumulants of random variables X and Y, respec-

tively. Since ®x(t) = exp { Yo k(X)) r!} and @y (t) =
exp{ &.(Y) (i) /r'} we have

0o
e

x(t) = exp { _ln(X) ~ m(VNGEY /7 } By (2).

Now if the characteristic function ®y (t) is absolutely integrable
over (—o0, 00), then Fy would be absolutely continuous and

r =R =5 [ epl-imleroi

The density fy would be bounded and continuous (Chung 1974
p. 155). It follows that, subject to existence, the characteristic
function of D" Fy will be (—it)" @y (¢), where D denotes the
differential operator. The uniqueness of the Fourier transform
will now give

Fx(z) = exp { Z[n,(X) - /c,(Y

r=1

}Fy(x),

and similarly

=exp { Z[lc,.

r=1

W2 ().

'-'ICT

The special case that ¥ is a normal random variable is
most important. Let a(y) = (1/v/27)exp{—t*/2}. I ¥ has
density function fy(y) = B(y) = a((y — m)/c) then By (t) =
exp{imt — o%t*/2}, we have £1(Y) = m, £o(Y) = o?, and
&:(Y) = 0, for each r > 2. The above equation becomes

R
-8l poy S pe Y pta)

This is the Edgeworth expansion of Type A (Kendall and Stu-
art 1977 p. 170).

Up to this point an underlying assumption is that the func-
tions fx and Fy possess convergent Type A series. That thisis
not always the case. For a discussion of the convergence prop-
erties see Kendall and Stuart (1977) pp. 173-174 and Cramér
(1946) p. 223.

For practical applications, however, it is usually of little
value to know the convergence properties of the expansions.
What we are really interested in is whether a small number of
terms would suffice to give good approximations of the func-
tions fx and Fx. If this is the case, we would not be too con-
cerned about the convergence properties. On the other hand, if
the series actually converges but a satisfactory approximation
can only be obtained after a large number of terms have been
calculated, then this Type A series would be of very little use.

3. CORNISH-FISHER EXPANSIONS

Suppose that we have a sequence of random variables {¥;}
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which are asymptotically normal in the sense that there exist
sequences {g,} and {o,} so that, as n increases, (Y, — fn)/0n
= N(0,1). For large n, it is often possible to approximate the
distribution of (¥, — p»)/0w by a normal, but for small to mod-
erate n this may not be a good approximation. Under some

circumstance we are able to use a polynomial transformation
such as

:Yn"'n Y;l,_n
€n = bup + by (<2EBy 45, (2 E

n n

)2+...,

where b,;’s are of order n/? or smaller. By choosing b,’s
appropriately, we may make the distribution of ¢,, much closer
to normality than that of (¥, — pn)/0n.

It turns out that this problem is embedded in the follow-
ing larger and more natural question. Suppose Z, has distri-
bution function Fz,, and ¢ is a N(0,1) variate. If = and ¢
are corresponding quantiles of Fz, and ® respectively, namely,
Fyz () = ®(¢), solving ¢ in terms of z and ¢ in terms of { will
be of interest.

Specifically, suppose we are given random variables Sy, n =
1,2,..., with ES, = 0, and for each ¢ > 2, the ith cumulant
of Sy, k:(Ss) = O(n) as n — oo. We are interested in the

standardized random variable Z, = S,/k}/* (Sn) as n — oo,

We use this notation: &; = &:;(Sn), i = #:(Z,) = /c,-//c’zlz.
It is easy to see that {; = 0, Iz = 1, and for each 7 > 2,
I; = O(n'~*/?). By taking m = 0 and ¢® = 1, the Edgeworth
expansion of Type A becomes

_é_D3+l4D4 I 5 ps

fzo(z) = exp { 6 130

+--- Jalo).

If we apply a similar argument to Fy, expand the operator,
and retain only the leading terms, we will have (Cramér 1946)

Fau(e)  8(e) — 2 Hy(o)a(e) ~ (1 Halo) + s Hu(ollate)
~ (s Ho(e) + S Hio(z) + 2 a(oaz).

We can see that if we only include the first term on the right
hand side this is the usunal central limit theorem while all the
remaining terms, with coefficients of small order of n, represent
the error terms in the approximation of central limit theorem.

From Kendall and Stuart (1977) the problems of the rela-
tionship between ¢ and z have the following formal solution.

[ (=? ——1)]+[ (4:1: —Tz) —

(:1:3 — 3z)].

2
et %(52 1)+ (€~ 30) — (26 5]

Notice that for each of these equations the three terms on the
right hand side are of orders O(1), O(n~%2), and O(n™?), re-
spectively. These equations are the Cornish-Fisher expansions.

We state the following new interpretation of Cornish-Fisher
expansions. These properties also uniquely characterize the
Cornish-Fisher expansions. We note that similar interpreta-
tions of Cornish-Fisher expansions with one more term can
also be derived; see Chien (1988) for details.



Proposition 1.

Suppose £ is a N(0,1) random variable, g(X;) = X, +
ao + a1 X, + a2 X2, where X, is a random variable such that
£1(Xn) = b = O(mY2), sy(X,) = 14+ 1y 1+ 0O(n71),
k3(Xn) = Iy = O(n™?).  a; = O(n~Y2),i =0, 1, 2, then
9(Xn) = Xn — I — 1/613(X2 — 1) is the unique (up to the
order of O(r~/?)) second order polynomial of X,, such that
I5:(6) = welg (X)) = O(n) for each 4,1 <6 < 3,

Proposition 2.

Suppose £ is a N(0,1) random variable, h(€) = £ -+ ap +
a1l + a2€?, and X, is 2 random variable such that k1 (Xn) =
h=0nY2), ko(Xn) =141l =1+0(n"1), k(X)) =l =
O(n~Y2). ¥ a; = O(n~¥2),i =0, 1, 2, then h(¢) = £+, +
1/615(£2 1) is the unique (up to the order of O(n~%/?)) second
order polynomial of £ such that [£:(X,) — £:(R(£))] = O(n™1)
for each 4,1 <1< 3.

4. CUMULANTS FOR STATIONARY PROCESSES

Suppose {X,.} is a discrete time stationary process with
mixing constants {a,} in the sense that | P(ANB)—P(A)P(B)|
< oy for A € 0(Xa,...,X}), which is the o-field generated by
random variables X1,.. ., Xg, B € 6(Xt4n, Xitny1i...), which
is the o-field generated by random variables Xpin, Xirnsis - - -
foreach kandn, k> 1,n > 1. f @, — 0, then X and Xpy,
are approximately independent for large n.

We now cite a theorem from Titus (1985) p. 16.
Theorem (Titus).

For a stationary sequence {X,} such that (1) for some pos-
itive integer j, each mixed moments of the form EX,, --+ X,
is bounded for all I, [ < 4(5 — 1). (2) the sequence is mixing
with o, = O(n~20-1%9) for some ¢ > 0. Then &;(S,), where
Sn= Y, X, is of O(n) as n — co.

5. JOHNSON-GLYNN PIVOTS

Suppose {X;,1 < ¢ £ m} is a discrete time stationary
process which satisfies some regularity conditions; e.g., such as
those in Section 4, so that £;(Sm) = O(m) as m — co. We first
review the batch means method for obtaining a point estimate
and confidence interval for the true mean value EX, where X
is a generic X;.

Let X = (1/m) ¥, X; be the sample mean, which we
shall use as the point estimate. Assume m = nb. Here b is
the batch size and n» is the number of batches. For each 2,

1 <i<n, let ¥ = (1/6) Xty X(i—1p4, the ith batch mean,
and V,, = (1/n) 3i,(¥i~ X)?. Then by central limit theorem
for stationary processes (Brillinger 1981) we have

_ (X -EX)
b = (M,/TL)I/Z

so that we can construct a confidence interval for EX.

t = N(0,1),

Define 02 = m - var(X) then V;, ~ var(¥;) = o2/b so that
(Vi/(c?/b) — 1) is small and we have
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X -EX
tn,b:ﬂ'lﬂ—VlT'
m1/2__ 1, V.
~ (X - BX){1 - 555~ D)
SV BV ya
t5an Y Tl Dtk

It is clear that if we could calculate various mixed cumulants of
(X-EX), (X=EX)(Va/(c*[0)-1), (X—EX)(Va[(o*/0)-1)?,
..., then we would be able to obtain various cumulants of ¢, 4.
The results are summarized as follows.

Proposition 3.

Leading terms of the first four cumulants of ¢,; are as
follows:

£1(tnp) & —(1/2)(v/mb]o®)k11 (7, (1/m) T Y7)
Ka(tnp) = 1+ (b/0%)2ka((1/0) T YP)

— (mb/o?)k21(Y, (1/m) 1 Y7)

= B[(1/n) 32 Y?/(c*/b) = 1] + 3/n
3(tnp) = (Vmfo)?{ks(Y)

—3(o?/m)r1a(Y, (L/n) Y2/ (0?/8))}

Ka(tnp) & —6(mbfo*) k2 (¥, (1/m) L Y?)

+3(b/0?)ky (/) YF) +12/n

It can also be shown that we have #1(t,3) = O(m=*/?),
Kaltup) = 14 O(n™Y) + O(b™Y), ra(tny) = O(m~'2), and
k4(tap) = O(n™?). We also note that the O(b71) term in
k2(tn,p) would disappear should {¥;} be independent.

The first four cumulants of a standard normal random vari-
able are 0, 1, 0, and 0. If we want to use a normal approxima-
tion to generate a confidence interval, we would like to have the
curnulants of ¢, to be as close to those of the standard normal
random variable as possible. This argument leads to two naive,
but natural, approaches: (1) Minimizing maxigica |%i(tas) —
&:(€)]. (2) Minimizing 3y [x:i(tp) — £:(€)]%. In both cases
we can see that the optimal b should be chosen such that b
and n are of the same order. This relationship of the batch
size and the number of batches gives us a ¢, ; which is closer
to a standard normal random variable. Hence we feel this is a
preflelrrsd choice of batch size for the traditional batch means
method.

Based on the choice that & ~ O(m/?) we can derive the
formal Edgeworth expansion

" R(@) ~ 0(@) + 6(0){(ks/6 — 1) + (a3 — (12 — 1)/2)e
—(r3/6)3> — (ka/24)z5]
and the formal Cornish-Fisher expansions
£~ g(z) m 4 [(13/6 ~ k1) + (£4/8 — (k2 — 1)/2)a
—(r3/6)a” — (r4/24)a7]
@ ~ h() B § + [(r1 — £3/6) + (k2 — 1)/2 — (k4/8))¢
+(ks/6)¢ + (k4/24)87]
Again we can have the following new uniqueness properties
of the Cornish-Fisher expansions for the batch means method.

For the Cornish-Fisher expansions with one more term see
Chien (1988) for details.

Proposition 4.

Suppose £ is a N(0,1) random variable, g(X,) = X, +
ap + a1.X, + a2 X2, where X, is a random variable such that



Kil(Xn) =l = 0(n_1/2), Kz(.Xn) =14+0L =1+ O(n‘1/2),
k3(Xn) = Iz = O(n~Y?). I a; = O(n~Y?), i = 0, 1, 2, then
9(Xn) = X — h —1/2LX, — 1/613(X2 — 1) is the unique (up
to the order of O(n~Y/?)) second order polynomial of X, such
that |ki(€) — #:(g(Xn))] = O(n~1) foreach ¢, 1 <7 < 3.

Proposition 5.

Suppose ¢ is a N(0,1) random variable, A(¢) = £ + ap +
ar€ + ay8?, where X, is a random variable such that x,(X,) =
L = O(n"llz), Iﬂz(X,-,,) =14+6L =1+ O(n‘llz), Ka(Xn) =
I3 = O(n~Y?). If a; = O(n~Y?%), ¢ = 0, 1, 2, then A(¢) =
4+ I+ 1/21¢ +1/613(¢% — 1) is the unique (up to the order
of O(n~Y/?)) second order polynomial of £ such that |x:(X,) —
ki(R(€))] = O(n~*) for each 4,1 <i < 3.

We now discuss how to use the Cornish-Fisher expansions
to produce the corrected confidence intervals. Following the
terminology in Glynn (1982) we define t= (X —EX)/(V,/n)'/?
as the 0th order correction (no correction); T' = ¢ + [(x3/6 —
k1) — (k2 — 1)/2t — (k3/6)t?] as the Lst order correction; and
T = t+[(l€3/6—.‘€1)+(fi4/8—(l€2 - 1)/2)t—(f‘53/6)t2—(I‘&4/24)t3]
as the 2nd order correction. Notice that ¢ is the traditional ¢-
statistic associated with the traditional batch means method;
T is the unique second order polynomial of ¢ in the sense of
Proposition 4; and T* is the unique third order polynomial of
£,

To construct confidence intervals it is more convenient to
use the inverted Cornish-Fisher expansions (Hall 1983). For 6-
quantile point z; of the standard normal distribution function,
the confidence intervals for the three corrections are

(X = K (26)(Va/n)%, X — B (=25)(Va /) /7],

where h'(2) = z for £, h'(2) = z+ [(k1 — £3/6) + (k2 — 1) /22 +
(r3/6)2%] for T, and h'(2) = z + [(#1 — k3/6) + ((k2 —1)/2 —
(£4/8))z + (k3/6)2% + (r4/24)2%] for T™.

6. NUMERICAL EXAMPLES

In this section, we report the results of two Monte Carlo
studies of the coverage statistics of “normal quantile” confi-
dence intervals based on the Johnson-Glynn pivots t,5, T34,
and Ty,

Example 1.

Let ¥; have an exponential distribution centered at 0. (i.e.
P(Y; > y) = e~W¥) y > —1; 0, otherwise). This example was
studied in Efron (1981) and Glynn (1982). See Table 1 for the
empirical results.

Example 2.

Let {W;: ¢ > 1} be the sequence of consecutive customer
waiting times in an M/M/1 queue with arrival rate A = 0.5
and service rate p = 1. This example was studied in Glynn
(1982) and Titus (1985). See Tables 2 and 3 for the empirical
results.

Let us define I, In, I3 as follows: Ij represents the percent-
age of replications for which the exact value lies to the left of
the confidence interval; I represents the percentage that the
exact value lies in the confidence interval; and I3 represents
the percentage that the exact value lies to the right of the con-
fidence interval. Thus I is the usual coverage percentage, and
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I, and Ij are the tails.

For each of these examples, we will repeat 2500 indepen-
dent replications and report empirical coverage percentages Iy,
1o, I3, sample mean of the length of the confidence interval
(SM), sample standard deviation (SSD), and sample coefficient
of variation (SCV), which is the ratio of sample standard de-
viation over sample mean (SSD/SM) of the 90% confidence
interval,

Table 1: Centered-Exp(1) Random Variables

Centered exp(1) r.v. 2500 replications

Sample Coverage Rate Length of C.L
Size Pivot I I I3 SM | SSD [ SCV
normal | 4.08 | 71.40 | 24.52 | 1.12 | 0.65 | 0.58
t 1.88 | 78.64 | 19.48 | 1.45 | 0.84 | 0.58
m=>5 1st 1.52 | 82.20 | 16.28 | 1.61 | 1.01 | 0.63
2nd | 1.60 | 81.88 | 16.52 | 1.58 | 0.98 | 0.62
normal | 3.08 | 79.04 | 17.88 | 0.91 | 0.39 | 0.42
t 1.88 | 82.52 | 15.60 | 1.01 | 0.43 | 0.42
m=10 st 2.16 | 86.60 | 11.24 | 1.17 | 0.58 | 0.49
2nd | 2.16 | 86.52 | 11.32 | 1.15 | 0.56 | 0.48
normal | 2.76 | 82.76 | 14.48 | 0.78 | 0.27 | 0.34
t 1.76 | 84.88 | 13.36 | 0.84 | 0.29 | 0.34
m=1% 1st 2.64 | 88.84 | 852 |0.96 | 0.39 | 0.41
2nd | 2.64 | 88.80 | 8.56 | 0.94 | 0.38 | 0.40
normal | 2.40 | 85.48 [ 12.12 1 0.69 | 0.21 | 0.30
1.92 | 86.68 | 11.40 [ 0.73 | 0.22 | 0.30
m=20 1st 24418992 | 7.64|0.82)0.29 | 0.36
2nd 1 2.64 | 89.52 | 7.84 [ 0.81 | 0.28 | 0.35
normal | 2.28 | 86.32 | 11.44 [ 0.63 | 0.17 | 0.27
t 1.84 | 87.44 | 10.72 | 0.65 | 0.18 | 0.27
m=25 1st 272 1 89.84 [ 744 ]0.72 | 0.24 | 0.32
2nd [ 2.84 |1 89.68 | 7.48!0.72]0.23 ] 0.32

Table 2: M/M/1 Waiting Times

M/M/1 Waiting Times p=05 2500 replications
Sample Size m=1000
Batch Coverage Rate Length of C.L
Size Pivot I I I SM | SSD | SCV
normal | 4.56 | 81.04 | 14.40 | 0.45 | 0.15 | 0.33
t 4.12 | 82.00 | 13.88 | 0.46 | 0.15 | 0.33
b=20 1st 6.08 | 84.08 | 9.84 { 0.52 | 0.21 | 0.40
2nd 6.44 | 83.68 | 9.88 | 0.51 | 0.20 | 0.39
normal | 3.92 | 82.08 | 14.00 | 0.47 | 0.16 | 0.35
t 3.76 | 82.68 | 13.56 | 0.48 | 0.17 | 0.35
b=25 1st 520 | 85.68 | 9.12 | 0.54 | 0.28 | 0.43
2nd 540 | 8524 [ 9.34 | 0.53 | 0.22 | 0.42
normal | 3.56 | 82.72 | 13.72 | 0.48 | 0.19 | 0.39
2.92 | 84.00 | 13.08 | 0.50 | 0.19 | 0.39
b=40 1st 4.00 | 86.68 | 9.32 | 0.57 | 0.29 | 0.50
2nd 4.16 | 86.48 | 9.36 | 0.56 | 0.28 | 0.49
normal | 3.72 | 82.12 | 14.16 | 0.48 | 0.19 | 0.40
t 2.92 | 84.08 | 13.00 { 0.51 | 0.20 { 0.40
b=50 1st 4.20 | 86.08 [ 9.72 | 0.58 | 0.29 | 0.50
2nd 4.40 | 85.84 1 9.76 | 0.57 | 0.28 | 0.49
normal | 3.88 | 81.24 | 14.88 | 0.48 | 0.21 | 0.44
t 2.60 | 84.92 | 12.48 | 0.53 | 0.23 | 0.44
b=100 1st 2.84 18764 | 9.52 ) 0.60 | 0.32 | 0.53
2nd | 2.96 [ 8744 | 9.60 | 0.59 | 0.31 | 0.52
normal | 4.84 | 79.80 | 15.36 | 0.47 | 0.22 | 0.47
t 3.00 | 84.32 | 12.68 | 0.54 | 0.25 | 0.47
b=125 1st 3.12 | 86.72 | 10.16 | 0.61 | 0.34 | 0.56
2nd | 3.32 | 86.36 | 10.32 | 0.60 | 0.33 | 0.55




Table 3: M/M/1 Waiting Times

M/M/1 Waiting Times p=05 2500 replications
Sample Size m=2000
Batch Coverage Rate Length of C.L
Size Pivot I I, I SM | 8SD |SCV
normal | 4.76 | 82.24 | 13.00 | 0.32 | 0.082 | 0.25
4.64 | 82.56 | 12.80 | 0.33 | 0.083 | 0.25
b=20 1st 6.56 | 83.72 | 9.72 [ 0.36 | 0.10 | 0.29
2nd | 6.80 18348 | 9.72 1 0.35 | 0.10 | 0.29
normal | 4.00 | 83.36 | 12.64 | 0.34 | 0.089 | 0.27
3.92 | 83.48 | 12.60 { 0.34 | 0.090 { 0.27
b=25 1st 568 | 85.12 | 9.20 ({ 0.37 ] 0.12 1} 0.32
2nd 5.80 [ 85.00 | 9.20 | 0.37 | 0.11 | 0.31
normal | 3.36 | 84.36 | 12.28 | 0.35 | 0.10 [ 0.30
3.08 | 84.88 | 12.04 | 0.36 | 0.11 | 0.30
b=40 1st 4,92 | 86.52 | 8.56 | 0.39 | 0.15 | 0.38
2nd 5.04 186.24 | 8.72 (0.39 | 0.14 | 0.37
normal | 3.00 | 84.84 { 12.16 | 0.35 | 0.11 | 0.31
t 2.92 | 85.16 | 11.92 | 0.38 | 0.11 | 0.31
b=50 1st 4.48 | 86.92 | 8.60 | 0.40 | 0.16 | 0.39
2nd 4.68 | 86.60 | 8.72 ]| 0.40 | 0.15 | 0.38
normal | 3.24 | 84.80 [ 11.96 | 0.36 | 0.12 [ 0.34
t 2.52 | 86.20 | 11.28 | 0.38 { 0.13 | 0.34
b=100 1st 3.40 [ 87.88 [ 8.72 | 0.42 | 0.18 | 0.42
2nd 3.80 | 8748 [ 8.72 | 0.41 | 0.17 | 0.41
normal | 3.76 | 83.28 | 12.96 | 0.35 | 0.13 | 0.36
t 2.88 1 85.16 | 11.96 | 0.38 | 0.14 | 0.36
b=125 1st 3.56 | 87.20 | 9.24 | 0.42 [ 0.19 | 0.46
2nd 3.60 | 87.12 | 9.28 | 0.42 | 0.19 | 0.44

Notice that the empirical coverage percentages are essen-
tially the sample means of iid binomial random variables with
suitable parameter p. For 2500 replications and the fixed 90%
confidence interval, I; /100 and I3/100 are the sample means
of 2500 iid binomial random variables with p approximately
equals 0.05 (5%) which has standard deviation to be about
0.00436 (0.44%). Similarly, for I;/100 the p value of the corre-
sponding iid binomial random variables is approximately 0.90
(90%), thus the standard deviation of the sample mean is 0.006
(0.6%). These are, we feel, acceptable levels of accuracy for
such experiment.

From these examples, the first and second order correc-
tions, as to be expected, tend to balance the one-seded cover-
age probabilities, moving them towards their required values
of 0.05 (5%). This confirms the asymptotic corrections in-
duced by Johnson-Glynn pivotal transformations. Note that
essentially in every case, there is some improvement in actual
coverage percentage from Oth order pivot (the traditional way)
to the 1st and 2nd order pivots.

7. DISCUSSION

Johnson-Glynn pivotal transformations have provided a
new way of generating confidence intervals. In applying this
approach to the batch means method, they appear to behave
well empirically and seem to be a robust procedure. However,
there are three possible defects from a mathematical viewpoint:
more computation time needed, longer confidence intervals on
average, and more variable intervals. On the other hand, as
shown in Chien (1988), the increase of computing time is rel-
atively small, and the increase of length in confidence interval
is asymptotically negligible as n increases. Moreover, due to
the fact that many confidence intervals do have undercoverage
problem, this increase of length seems to be a necessity rather
than a nuisance.
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