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INTRODUCTION

This panel session is to address the topic "Validation: Expanding
the Boundaries.” A focus presentation has been prepared consisting of
thirteen questions to be addressed. Each of the panelists was asked to
prepare a position statement for the Conference Proceedings addressing a
subset of the questions. The range of responses consisted of long
answers to a single question or topic, medium size answers to a few
questions, short answers to all questions, and a narrative. This panel
session should be "lively" as the boundaries of validation are expanded.

FOCUS PRESENTATION:
VALIDATION: EXPANDING THE BOUNDARIES

Prepared by
Richard E. Nance, Virginia Tech and
Robert G. Sargent, Syracuse University

Model validation is universally recognized as a crucial
responsibility in the model development effort. Both model and data
validation have been cited as keys in the credibility assessment process
leading to the acceptance or rejection of model results in decision
support, However, current research is expanding the boundaries of the
validity determination responsibility, sometimes in subtle ways that
appear not to have been recognized by either simulation reseachers or
practitioners. The questions below provide the core issues for the
panel discussion. -

1. To what extent are statistical validation tests applicable “or
large, complex modeling studies?

2. With large, complex models, how does one assure that the
variables constituting the experimental frame [ZEIGLER 1976, p. 30]
are sufficient? (Are there any ways to detemine if we have the “best"
ones or enough?)

3. Can the verification andfor validation of model components
provide a basis for claiming the validity of the entire model when
behavioral comparisons of model and real (referent) system are not
possible?

4. How can the validation responsibility (including credibility) be
discharged properly when a referent system does not exist, such as with
an SDI system?

5. If an expert system is coupled with a model in the experimental
setting, must the expert system be validated?

6. How are expert systems validated? To what extent is that
responsibility recognized and described in the Al literature?

7. Does an expanding knowledge base in an expert system
mandate an on-going validation responsibility?

8. Can part or all of the validation responsibility be vested in an
expert system?

‘9. Who bears the responsiblity for the validation of simulation
support tools in simulation model development environments -- the
seller, the buyer, or the user?

10. Can the claim of model validity be made in the absence of
validation of the model development environment?
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11. Can an invalid support tool (utility) produce valid models?

12. 'What should be the recourse following the discovery that a
model development utility has a serious error? Who bears what
responsibilities?

13. How should the validation responsibility be incorporated
within the model life cycle? As changes take place within both the
referent system and the model, what responsibility exists for assuring
the continuing validity of the model? (Must this model management
responsibility be discharged in the same way as the initial validation?)

POSITION STATEMENT
Jerry Banks, Georgia Institute of Technology

Issue: To what extent are statistical validation tests applicable for
large, complex, modeling studies?

Appropriate output analysis of a simulation provides a specific
degree of confidence on accuracy. However, there arc many
limitations to the use of statistical methods in large scale simulation
models. The two most important limitations are the (1) high cost (in
terms of time and computer usage) of performing replications of the
simulation and (2) the lack of real world data from which to draw
comparisons about the simulation results. Because of these limitations,
it is usually impossible to perform a complete statistical analysis on a
large-scale simulation,

However, rather than develop new statistical methods I propose
that existing methods can be used to increase the understanding of the
model and obtain some level of confidence that the model is correctly
imitating the system under investigation. Four statistical methods
which have potential application are control charts, acceptance
sampling, fractional factorial analysis, and cluster analysis.

Because of space limitations, only the first of these methods,
control charts, will be discussed in the response. If time is available
during the Panel Session, the other methods will be discussed.

The uses of control charts in large scale simulations are many and
are limited only by the imagination. There are two advantages to using
control charts to analyze simulations. First, replications are not
required. If a long simulation is run, where the factors to be studied are
calculated frequently (or could be calculated frequently), the control
chart can measure the variability and mean of the factors as the
simulation progresses and the user can be confident that these factors are
being developed correctly. (Problems of serial correlation must be
considered!) Second, by monitoring the mean and average of important
factors, understanding of the model should increase. Some sample
applications are listed below.

(1) Analysis of input - This appears to be an excellent area for
application. For example, in a complex military simulation, the user
presumably knows the maximum, minimum, and median number of a
certain weapon type that a unit of a specific size may have. If this data
is being used as input, a control chart can easily highlight any change in
the median or in the specified range so that appropriate action can be
taken, For example, if a typical Blue force division has x 3 y tanks, and
the number of tanks being input lies outside of this bound, the use of a
control chart can cause an error or warning message to be printed and/or
stop the program.

Attribute charts also could be implemented if a user is willing to
have a percentage of the data be incorrect. Attribute charts are normally
used to measure the number or proportion of items that are
nonconforming. In inputting data to a simulation, the goal is to have all
data conform to the standard, So, a variable control chart that stops the
program as soon as a nonconforming input is detected, instead of keeping
track of the number or percentage of nonconforming input, is more
appropriate than an attribute control chart.

An extension to monitoring a one time input of data at the
beginning of a simulation is to use control charts when data is input
frequently to a program. For example, some low resolution Army
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models use input from a second model! whenever a simulated battle
occurs. By monitoring each input an analyst can insure that the input
remains within specified bounds over time.

(2) Analysis of model processes - This method appears to be a
viable use for control charts. Again, we concentrate on compiex
military simulations. While a program is running, key factors such as
attrition, casualty rate, travel rate, etc., can be monitored by a control
chart. An error measure can be printed if these values exceed the
control limits. For example, it is known that dismounted infantry cannot
move more than x kilometers per day. If a control chart monitors the
movement of a dismounted unit during the course of a simulation, and
on a specific day the unit moves more than x kilometers, the amount of
distance the unit moved can be printed, along with the factors that went
into the movement equation. An analyst would then be able to
determine if the input to the movement equation was incorrect or if the
equation itself is overestimating travel.

The Ievel of detail of the control chart is flexible. For example, a
control chart can be implemented when a unit is moving up hill. By
having the program measure the average distance traveled, the analyst
can insure that the movement equation correctly accounts for hilly
terrain, It should be pointed out that the first portion of this example
relied upon the analyst knowing the maximum movement of a specific
unit; while the second portion was based on the program calculating the
average and range of movement in specified terrain.

(3) Analysis of output - All outputs with reasonable (calculable)
means and variances can be monitored with discrepancies noted. One
advantage in employing control charts for output is provision of the
mean and range. This allows a user to understand the model by
observing what ranges on key factors are generated by the model and
how these factors vary as compared to the outcome of the simulation.

POSITION STATEMENT
Jorge Haddock, Rensselaer Polytechnic Institute

Validation of simulation systems such as simulation generators is
different than validation of simulation models. The effort in the
validation of simulation models is concentrated on validating the
distributions used to model the input processes, and validating the input-
output transformations being carried out within the model. In the case
of simulation systems the validation of input-output transformations
gains major significance. In fact, since the simulation generator is not
designed for a specific scenario, validation of input data processes does
not form any part of the validation exercise for a simulation generator,
rather it becomes the responsibility of the simulation analyst using the
simulation generator for modeling a specific system. The purpose of the
validation process in the case of simulation generators is to ensure that it
correctly models the real system as described in the input dataset. Given
a particular dataset, it should lead to such performance measures as
would have been realized in a real system described by that dataset.
(The validity of the input data is assumed.)

The importance of verification and validation of simulation
generators cannot be understated. Obviously, if the generator itself is
not valid, regardless of the effort spent on validation of input data, the
results will be misleading. Morcover, while a simulation model is used
to study one specific system, a gencrator may be used for studying many
different systems.

Verification of simulation generators can follow the same
techniques as followed for simulation models; for example, modular
program development and structured walk through. Models produced
by the simulation generator can be verified and thus verify the
generator. Trace outputs and graphic animations for such modecls can
be examined to verify the generator.

Validation of simulation generators requires using different
approaches than traditionally used for validation of simulation models,
Simulation generators are a rather recent development and only a few
validation techniques have been reported in the literature. There is a
need to address the issue of validation of simulation generators. Some
approaches are described here.



Sensitivity Analysis: Sensitivity analysis consists of comparing the
effect of change in major input parameters, indicated by simulation
results, to the expected trends. The expected effect on the output
factors will be realized only when the respective base cases are being
significantly affected by the particular input factor.

The sensitivity analysis for validation requires the following:
(1) identifying the major input factors in the system;

(2) estimating the effect of changes in values of major input factors
on major output factors;

(3) identifying base case configurations for examining the effect of
changes in the input factors;

(4) carrying out the simulation runs and analyzing the outputs;

(5) exploring and explaining the unexpected trends. If required,
modify the model and repeat runs.

When all the effects of changes are shown to be as expected,
confidence in the validity of the simulation model is increased.

Extreme Situations: This method consists of carrying out runs to
simulate extreme situations and to verify that the model performs as
intended in such situations. Successful completion of these extreme
situation runs will verify the ability of the computer coded model to
perform correctly in such situations. This method complements other
methods, which concentrate on validating/verifying the ability to model
typical situations.

Comparison with Other Models: Simulation analysts agree that the
best way to validate a simulation model is to compare the results
predicted by the model with performance of the real system, i.e.,
predictive validation. In the process of validation of a simulation
generator, comparison of simulation results with a particular real system
(assuming access to one is available) might change the emphasis from
validating the input-output transformation in the generated models to
input data validation for the system (testing the distributions, etc.),
Unless the input data processes are validated, the validity of input-
output transformations cannot be established. Also after spending all
the effort, the generator will be validated only for that particular dataset.
A better approach to validating the input-output transformations in the
generator would be to compare the results against results obtained using
other models operating with the same datasets. Models which may be
used for comparison purposes can be any of the following: (1)
analytical models; (2) simulation models developed for specific systems;
(3) other simulation generators for similar systems.

Comparison with analytical models results is perhaps the most
credible option here. The only drawback is that anlytical solutions are
available only for simple scenarios. The other two options, namely
comparison with other simulation models and other simulation
generators, suffer from a major drawback - the validity of the other
model/generator needs to be established first. In addition, the option of
comparing with simulation models for specific system can prove to be
very time consuming if such models do not already exist and thus the
exercise may not be worth the effort. For these reasons, the latter two
options are not recommended.

Comparison with analytical model requires dealing with another
issue - point estimates given by analytical models are to be compared
with confidence intervals generated by analysis of replications of
simulation runs. If the point estimate falls outside the confidence
interval, the simulation model needs to be reexamined. However, if the
point estimate falls inside the interval, does it indicate that model is
valid regardless of exact placement of the point within the interval?
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POSITION STATEMENT
Kenneth N. McKay, University of Watedoo

The following responses refer to the numbered questions
addressed to the panel. The responses were generated by the following
individuals associated with the WATMIMS research group: John A.
Buzacott, Elizabeth M. Jewkes, Kenneth N, McKay, and John Trebish.
The responses are in the context-of our experience with medium to large
scale manufacturing models.

1. Statistical validation tests are applicable for sub-models of the
complete system, or very special cases of the general problem for which
there are analytical results. Medium to large models are usually too
complex and have too many variables for a detailed statistical
validation.

2. If a referent system exists, and there are recognized experts, it
may be possible to identify the probable 'best' variables and their range
of acceptable values. It is then possible using experimenal design
methods to determine the contribution of the variables. The referent
system can be studied as to the significance of the variables and their
interactions. However, there are three major difficulties: finding the
right expert, setting the right level of detail to include (the more
detailed the question, the more variables are required), and establishing
the deterministic criteria with which to validate the inclusion or
exclusion of variables. While it may be possible to claim sufficiency
for complex models, it is probably infeasible to perform the necessary
work to substantiate that claim. If a referent system does not exist, it is
not clear how a confident claim of sufficiency could ever be made.

3. If there is little or no feedback from one stage of the model to
another, it is possible to sequentially validate and thread the sub-
components together. However, if there is feedback which results in
changes in the submodel execution, the serial approach is inadequate
and a macro approach is warranted.

4. Yes, if the problem has sufficiently few enough interactions
and interdependencies that a panel of experts can ‘understand’ what is
happening. Depending on interactions, it might be possible to work
with a higher level than molecular - this depends on problem context
and if macro modelling is possible. There are other issues of course:
there might not be any true experts yet in a new field (they may be
competent but not experts), or there may be erroneous assumptions
made about interactions between model components that are never
challenged nor brought to light.

5. Yes, against its functional requirements. The extent of
validation depends on what the expert system is doing; database control,
deterministic data selection, stochastic manipulation, operational
‘heuristic generation, or output analysis. It is possible for the front-end
(expert or otherwise) to bias and confound the simulation - therefore, it
must be analyzed with the same care that would be afforded other
software. The less it does, the closer validation gets to the normal
software verification procedure.

6. The topic of expert system validation and verification appears
to be poorly addressed in the Al literature, Validation and verification
seem to be blended together because of the computational complexity
inherent in expert systems (i.e., large decision trees). In the Al literature
we have reviewed, mathematical andfor statistical validation is not
mentioned. Two forms of validation are often mentioned: face
validation to the original expert, and a peer review by other experts of
the computer and original expert's solutions to problems. In our
opinion, validation of expert systems is not any different from validation
of simulations: careful analysis of cause and effort relations through the
controlled manipulation of variables and their values. The face
validation is also important but can be very myopic and misleading - it is
necessary but not sufficient.

7. Yes, if the ¢xpanding knowledge is interrelated to other
elements and can result in a different scenario being played out.
Ongoing validation is required to ensure that biases and confounding
factors are not introduced.



It is possible to add information to a knowledge base that will not
contaminate the system, but this has to be decided on a case by case
basis.

8. Verification, yes; validation, no! It is possible to construct
automated test suites that can expertly analyze and subsequently
exercise software to ensure that the software executes correctly
(boundary cases, loop execution, etc.). However, the validation
process depends a great deal on ‘know-how' and often what is missing
is more important than what is present. Expert systems are not capable
of understanding what the implications are of observed and unobserved
events unless every implication is explicitly coded; hence validation by
expert systems is not feasible.

9. This depends on who has claimed what, For example, if the
vendor of the software tool being used claims accuracy in a specific
domain or application, the vendor is primarily responsible for the major
validation effort. The consumer has the responsibility, during the tool
acceptance phase, of ensuring that the tool is suitable for their domain.
If the vendor is supplying general purpose software, the vendor assures
the accuracy of individual statements and the major validation
responsibility resides with the user (for their specific domain and
application).

10. No, some form of validation must be performed on the model
development environment. It is necessary to know where the weak
areas are and where care must be taken in the model. For example, if a
random number generator is known to generate inadequate sequences,
an alternate routine may possibly be added to circumvent the problem.
If validation is not performed (by someone), the model's execution can
never be said to be valid (ie., is something a problem, or is it a
symptomn?). The tools must be known to be deterministic and capable
of repeatable performance.

11.  Possibly, it depends om the model's nature and the
characteristics of the tool. If the model builder is aware of weak areas
in the tool, it is possible to avoid the problem spots, or perform extra
validation in those areas. A high degree of user sophistication is
required to make a claim of model validity when using a tool that is
questionable, An analogy may explain why it is possible to have a
valid model when the tool isn't perfect: imagine an aircraft that is only
capable of making cold coffee - is this an indication that the craft will
not fly - hopefully not.

12. This depends on the claim of the vendor - if the tool has a
functional error or theoretical -weakness - then it is the vendor's
responsibility. If the user is using the tool for something other than
what it was intended for, the user has the problem and should pay the
vendor to enhance the utility. The user has the responsibility to provide
a reproducible problem with all of the necessary data/files to the vendor
and also has a responsibility to validate the correction.

13. Developers and users of the model must jointly agree upon a
strategy for ongoing model validity. Models are rarcly one-shot
exercises, yet are usually budgeted as if they were; nor are they usually
revalidated when used for a different purpose. Developed internally,
simulation models are not given the same scrutiny and planning that
other software would be given within the organization. That is, a
company may have a software development life cycle established for
software they create for end-users, but the life cycle will not be followed
for internal support software (i.e., simulations). The simulation life
cycle must have clearly identified phases where major updates are
performed and the system completely re-validated. Minor changes and
bug fixes, may not require a complete re-test. The model developer is
responsible for monitoring the referent system and detecting the
significant changes. The people dircctly involved in the referent
system are probably too close to the slowly evolving system to
recognize what should be changed in the model.

POSITION STATEMENT
Nelson Pacheco, Mitre Corporation

1. To what extent are statistical validation tests applicable for
large, complex modeling studies?

405

‘We should first differentiate between modeling for the purpose of
understanding an existing system and modeling for the purpose of making
inferences about a system which does not yet exist. In the case of
existing systems, classical statistical validation tests which compare
simulation versus actual system data are well known and proven (at
least for terminating simulations). Large, complex modeling studies,
however, are often used in the concept evaluation phase of proposed
systems which do not yet exist. In this setting, the concept of a
simulation as an experiment is more applicable. In physical
experiments, there is no a priori truth known; only predictions from
theories and assumptions. The experimenter tests a view of reality
which can be tested further by other experiments. The validity of
these experiments depends on their reproducibility; any other
experimenter should be able to observe the same results, given a
similar set of experimental conditions.

In an analogous fashion, the modeling of large complex systems
which do not yet exist may be viewed as an experiment. As in physical
experiments, the validity of these modeling studies can be based upon
their reproducibility.  Reproducibility in this sense implies that
other modelers working independently, perhaps using other paradigms,
frameworks, tools, etc, but with the same conceptual system
specification and initial conditions, should be able to reproduce the
same output measures from their simulations. Failure to do so, of
course, does not necessarily imply incorrectness, but may instead lead
to a challenge on the correctness of the other simulations.

In the case of deterministic simulations, reproducibility can be
measured by establishing a priori tolerance intervals, with simulation
outputs within the tolerance interval assumed to be equivalent. Given
several independently-produced terminating Monte Carlo simulations,
statistical validation tests such as Analysis of Variance (ANOVA) for
testing equality of means, or multiple comparison procedures (e.g.,
Least Significant Difference, Duncan's Multiple Range Test, etc.) for
comparing confidence intervals are appropriate. For steady-state Monte
Carlo simulations, the output sequences may be viewed and tested as
being independent sample paths from the same stochastic process.

3. Can the verification and/or validation of model components
provide a basis for claiming the validity of the entire model when
behavioral comparisons of model and real (referent) system are not
possible?

Although the validation of model components is necessary for
validation of a system model, it is not sufficient. The very concept
of a system model implies the existence of interactions between
components which may be highly complex and non-linear. This is
particularly true for military systems wherein command and control
elements typically introduce human interactions with the various
components which are highly scenario-dependent. For example, a valid
model of a sensor and a valid model of a weapon may not combine into a
valid model for the employment of the sensor-weapon combination within
a command and control context. Not only must the sensor and weapon
"work" individually, but they must be effectively employed within a set
of threat environment and enemy countermeasures. Without observing the
referent system, it is not possible to unequivocally state that the
system will behave as the model predicts.

On the other hand, validation of model componenis can lead to
identification of those critical functional interfaces between
components whose behavior strongly influences system performance. At
this point, explicit assumptions can be stated and agreed upon
regarding interactions between these components, Although this does
not validate the system model as such, it may enhance the credibility
of the simulation study to a sufficient level to allow informed
decisions to be made regarding system development. Analysis of the
sensitivity of the system to the assumptions can also lead to a better
understanding of the critical assumptions,

4, How can the validation responsibility (including credibility)
be discharged properly when a referent does not exist, such as with an
SDI system?

For such systems, the term "validation" as classically used does
not apply. One can never state that the overall system (which does not



exist) will behave exactly as predicted by the model. Credibility,
however, is 2 human judgement which is based upon many other factors:
previous modeling experience, support tools available, the model
development environment, assumptions made, etc. Whereas validation
requires a positive determination of fit between the model and reality,
credibility emphasizes a guarding against as many potential errors as
possible. In other words, to be credible a model should be able to
answer its critics. A criticism often heard in the SDI context is that
models can not be validated because of lack of real world data. Viewed
in an experimental setting, however (see response to question 1), the
role of the model is precisely to generate data upon which to base
inferences regarding predicted system performance. These inferences
should be based on an explicit and well-examined set of assumptions,
and may in turn be used to focus research on those issues which are
critical to the overall system effectiveness. As limited tests and
demonstrations are conducted, and real world data becomes available,
changes in the model and/or the system design may become necessary,
increasing the level of credibility of simulation studies.

13. How should the validation responsibility be incorporated
within the model life cycle? As changes take place within both the
referent system and the model, what responsibility exists for assuring
the continuing validity of the model?

Responsibility for initial validation testing rests with the
developer; this should include the development of test cases which
explore the region of validity. However, this does not absolve the
user from the responsibility for independent verification and
validation (IV&YV). The developer's initial validation testing should
be checked and expanded, as required, by an independent agency
knowledgeable of the referent system but not dependent on the system in
order to maintain unbiasedness.

A model should only be validated against a specific referent
system, which should be explicitly defined. As the referent system
evolves, the model may become 'dated' and may no longer accurately
represent the system. Although it may not be necessary to update the
model with every change in the system, the model's validation must be
revisited each time that it is used in a study, to determine whether it
is still valid, or if it requires modification and revalidation before
it can be used.

POSITION STATEMENT
Jeff Rothenberg, The Rand Corporation

It is necessary to distinguish between a model's validity and its
validation. The validity of a model is an objective (though often
unknown) fact, its validation is a proof or demonstration of its validity.
Our concem here is to show how models can be validated, not to discuss
which models are valid.

As suggested in Rothenberg, 1986 (WSC '86) any model can be
characterized by ‘three criteria: (1) it must be a modcl of some real-
world referent, (2) it must have some purpose with respect to its referent
(such as prediction, comprehension, communication, etc.), and (3) it
must be more cost-effective to use the model for this purpose than to use
the referent itself (where cost-effectiveness encompasses costs like
time, safety, convenience, etc.).

If "validation” is taken to mean the assurance that a model
correctly represents its referent (reality), then this is equivalent to the
above definition of modeling, which says that a good model must cost-
effectively represent its referent for the intended purpose. Validation
considered outside of this context is a vacuous abstraction. Validation
must mean the proof that a model cost-effectively fulfills its purpose
with respect to its referent (according to its given cost-effectiveness
criterion).

Validation always refers to a reality outside the model itself, but
there are several distinct cases. The first (and easiest) cases involves a
known, accessible referent. Here validation can be performed by direct
experimentation: whatever the purpose of the model, it can be tried for
this purpose and compared to the direct use of the referent for the same
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purpose, to see which is more cost-effective. For example, suppose the
purpose of a computerized model of a bouncing ball is prediction, and
that the cost-effectiveness criterion is to minimize the time required for
prediction. Then validation consists of using the model to predict the
behavior of the ball, while assessing the accuracy of this prediction
(fulfillment of the model's purpose) and timing it to see if it is faster
(more cost-effective) to run the model than to bounce the ball.

In many cases, however, the referent of a model is not directly
accessible for such experiments. Stars cannot be exploded at will,
airplanes cannot (safely) be flown into the ground, security systems
cannot always be tested, etc. In such cases, validation must be done
indirectly by extrapolating from the known, observable behavior of the
referent or conducting indirect observations or experiments on it by
whatever means are available. Similarly, it is often reasonable to use
modeling as a way of gaining understanding about a referent, for
example, trying various mathematical constructs as possible models and
attempting to validate each one to find out which one best approximates
the referent (as opposed to deriving a model from a pre-existing
understanding of the referent).

In some cases, the "referent” of a model is unreal, a fantasy reality
with no concrete form at all. For example, a video game might be
thought of as modeling an imaginary reality. This is really a misuse of
the term "modeling", since there is no referent. Given something that
Dposes as a model (i.e., a "pseudo” model), it is possible to "back project”
a reality that might be modeled by this pseudo model, but this is an
empty, non-deterministic, and misleading exercise. A pseudo model is
something that poses as a model but for which there is no referent; it is
therefore meaningless to speak of validating a pseudo model.

Closely related to this, however, is the case in which a model
appears to be built before the reality to which it refers; for example, a
design or prototype is often thought of as a model for a proposed
referent. To the extent that the referent is unspecified initially, it does
not yet exist; therefore, the "model" is a pseudo model, which cannot be
validated. The design process can then be thought of as one of "back
projecting” the pseudo model onto one of its possible referents. A more
useful view may be to consider a design (or specification of any sort) to
be a referent on which an eventual system is itself modeled. Once a
prototype has been built (whether or not it is modeled on some prior
specification or design) it then becomes a referent which can in turn be
modeled by a refined implementation.

Extending this argument, a (computerized) implementation of a
specification can be thought of as a model of that specification. If M is
a conceptual model of some real-world phenomenon, then a particular
computer program P that implements M can be thought of as modcl of
M. The purpose and cost-effectiveness criterion here involve the
ability to run the implementation on a computer, as opposed to
interpreting the specification "manually". ‘This view unifies validation
with verification.

Verification is usually distinguished from validation as meaning
the assurance that an implementation of a model is correct, i.e., that a
model meets its specifications (which may, however, be invalid).
Verification concerns the intemal consistency of a model, whercas
validation concerns the model's relation to its referent. To paraphrase
Barry Boehm, validation means building the right system, whereas
verification means building the system right. However, verification
can be viewed as validation with respect to a specification rather than an
external phenomenon or artifact. This view is recursive down to the
level of machine instructions, where, for example, an add instruction
using limited precision arithmetic is an imperfect model of true
addition.

Validation of a conceptual model may or may not be harder than
validation of an implementation of that model (ie., verification of a
program), but both are equally vital if one is to use the implementation
as a valid model. This implies the need to verify modeling
environments, expert systems used in conjunction with models, etc.

Note that the expert system paradigm assumes that a system is
developed in close coordination with an expert (or experts) who can



validate the behavior of the system directly. To the extent that this
knowledge acquisition process can elicit "meta-knowledge" that
provides consistency criteria for the knowledge base, additions and
modifications to the knowledge base might be verified against this meta
knowledge. Similarly, it may be possible to develop "validation suites"
of tests (i.e., verification criteria) that can be run against a model
whenever it is changed.

Validation and credibility are logically independent of each other,
If a model can be validated (i.e., proven valid), it should be credible,
provided the proof itself is credible. On the other hand, credibility by
itself cannot confer validity; at best (or perhaps worst) it confers "face
validity", meaning that the model appears to be valid, whether or not it
really is. Though it is possible for a model to be credible (or even
validated) purely on the basis of behavioral comparison between the
model and its referent, this is rarely convincing for complex models,
since their range of behavior is difficult to explore exhaustively. A
convincing demonstration of validity (or even credibility) in such cases
requires that the model be comprehensible. This argues for modern
software engineering approaches to maximize comprehensibility,
including the explicit, declarative representation of “"knowledge" in
models, as pioneered by expert systems and related knowledge based
techniques. (For the purpose of this discussion, "knowledge" can be
defined operationally as the explicit representation of information in a
form that is at once meaningful to a human reader and interpretable by a
computer program.)

The lack of comprehensibility in most large models presents an
insurmountable obstacle to their validation. Knowledge-based, object-
oriented and modular techniques, as well as the liberal use of metadata
to provide motivation, rationale, and traceability of data, assumptions,
algorithms, etc. can go a long way toward improving comprehensibility,
thereby facilitating validation.
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