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ABSTRACT

This paper is a case study description of the
major techniques used in the design of a Search and
Rescue (SAR) model, how the methods contribute to
flexibility, and how these software engineering prin-
ciples relate to a formal methodology (Zeigler 1987)
that has been proposed specifically for simulation
development. The techniques described in this paper
can be used with any of the common simulation lan-
guages (e.g., SIMAN, GPSSH, SLAM II, and SIMSCRIPT
I1.5).

1. INTRODUCTION

This paper deals with the practical design of
flexibility in simulations. Designed-in flexibility
contributes to two aspects of model usage: first,
increased latitude in selecting different scenarios
for experimentation without changing the simulation
code; and second, a decrease in the magnitude of the
code change when a concept or function does change.

Flexibility is very important in creating good
simulation programs:

During the analysis phase, what is stated to be con-
stant is not and what is claimed to wvary does not;
one cannot blindly believe what one is told.

Model validation normally occupies a large portion
of the development cycle and significant savings can
result in reducing the overhead -- cost and time.

The model will be used for many additional applica-
tions beyond that initially envisaged ~- both data
and algorithmic variations.

.

A percentage of the initial model will undoubtedly
be wrong and will have to be re-developed.

There have been a number of general discussions
about software engineering as applied to simulation
(e.g., McKay, Buzacott, Moore, and Strang 1986;
Golden 1985; Sheppard 1983; and Ryan 1979). These and
other similar papers provide overviews of the general
principles, but do not present sufficiently rich
examples that illustrate the power of the techniques.
Al though software engineering and simulation has been
written about for at least a decade, it still appears
to be the perception of many simulation programmers
that software engineering principles are not suited
to the real-world problems they face. It is one of
the goals of this paper to illustrate that software
design theories can in fact be used, and that semi~
formal and formal methodologies can work together in
practical situations.

The formal and semi~formal design concepts used in
the SAR model are:
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* experimental frames
» module and data coupling
* finite state automata

To assist in understanding the impact of the design
concepts, the following sections provide a brief
introduction to the SAR domain, model requirements,
and overall development approach. Following the gen-—
eral background discussion, the three design concepts
will be described.

2. SEARCH AND RESCUE

The study performed for the Natiomal Search and
Rescue Secretariat (NSS) of Canada, addresses opera-
tional planning issues regarding SAR operations across
Canada. The domain of the model is the respomse to
land or sea incidents which involve a probable threat
to human life. In essence, SAR is a situation that
involves incidents that result in rescue missions, and
the corresponding assignment of the appropriate intexr-
acting resources at certain times. There are many
stages and events in a rescue mission, some of which
are:

* notifying the appropriate authorities of the problem
* confirming the situation

* locating the incident

* determining what help is required

* performing the on-scene assistance

Many confounding if-then-and-or-buts constraints can
affect what happens during a rescue mission. Wind
speed, icing conditions, terrain, visibility, sea
state, time of the year, day of the week, time of the
day, type of resource, etc. can all ianteract and
affect the outcome. Requirements may change and
resources may be pre-empted as a mission takes place.

3. MODEL REQUIREMENTS

Why simulate SAR? SAR is a large and complex
activity that involves significant funds and resources
to maintain. Long term planning is necessary for
determining location, quantity, and characteristics

of SAR resources (rotary and fixed wing aircraft, and
rescue vessels) for reacting to incidents when they
occur. Analysis is also needed for determining poli~-
cies and standards for public aircraft or ships so
that incidents can be reduced at their source.

The dynamic relationships in the model are complex
and simulation can be used to gain insight into the



factors that can influence SAR operations. It is not
the only analysis tool that will be used; the model
will be used in conjunction with other statistical
methods.

As_an analysis tool, the model is intended to
provide information for scenarios which would reflect
different resource placement, resource capabilities,
and incident characteristics. The model picks up the
SAR incident after it has happened and the regional
authority has been notified.

4, DEVELOPMENT LIFE CYCLE

The model has been developed as part of a major
analysis of SAR operations in Canada. The problem
characteristics were studied and model requirements
established., The information available for analysis
was analysed for strengths (e.g., completeness,
accuracy) and weaknesses (e.g., incomplete, invalid,
and inaccurate data). Once the preliminary require—
ments were established, and it was determined that
simulation was a suitable tool and that sufficient
data existed to feed the model, work began on data
enhancements and model architecture.

The project life cycle has involved:

1. documentation of the requirements, assumptions,
functionality from a software systems viewpoint

2. design of the model architecture using formal and
semi-formal methods that satisfies the stated

3. translation of ‘the model architecture to a detailed
design level (pseudo-code)

4. selection of the appropriate tools for implementa-
tion (database and simulation language)

5., design and implementation of a user interface for
model management

6. dimplementation of prototype and completed versions
of the model

The above activities provided major milestones, task
assignments, and concrete deliverables that assisted
with project management. The activities were struc-
tured to fllustrate early feasibility of the design;
prototyping was crucial and was consciously considered
and plammed for throughout the life cycle. In general,
prototyping should be considered for any non-trivial
undertaking as it will bring to light technical diffi-
culties with the model development environment, and
problems of data integrity, collection, and analysis.

The major tasks remaining are verification (fall
of 1988) and validation (mid 1989).

5. MODEL OVERVIEW

This section briefly describes the simulation
structure. While many details have been necessarily
omitted, it is hoped that the high-lights indicated
will assist in understanding how certain software
engineering concepts have contributed to the model's
flexibility.

requirements

Historical Data

Frames | I

Output Analysis

Figure 1 — System Architecture
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The planning model (Figure 1) is a seamless inte-
gration of a database front-end implemented in PC-
FOCUS and a SIMSCRIPT II.5 simulation model. The
target computer system is a personal computer (80386)
configuration running MS-DOS. The user front-end is
responsible for database maintenance, scenario con-
figuration, and scenario analysis. Data files
describing the scenario, resources, applicable inci-
dents, operating rules, etc. are passed between PC-
FOCUS and SIMSCRIPT II.5. The front-end triggers the
simulation model and then control returns to the
front-end. The front-end provides tools to assist
with the problems of data management and keeping track
of what was simulated in different runs.

PC-FOCUS was selected due to its micro/mainframe
interface and extensive facilities for the manipula-
tion of data. SIMSCRIPT II.5 was chosen primarily
because of its ability to handle the model design
which contains extensive use of logic and advanced
data structure concepts.

The executable simulation model (Figure 2) is
divided into four major sections:
1. the centralized logic that corresponds to the
functions of the Rescue Co-ordination Centre (RCC)
which provides the supervisory control for SAR
operations within a region (there are four across
Canada)

2. the remote or distributed logic that corresponds
to the functions of the resources while they axe
out on missions -- transitting, refueling,
searching, assisting, towing, etc.

de-centralized logic that simulates the functions
of on-the~scene co-ordination for searches and
assists

an experimental frame structure that describes
the current modelling domain: type and location
of resources, resource characteristics, how to
handle certain types of incidents, how to task
the resources, and so on

In the centralized logic, the RCC is notified of
the incident and decides what should be domne, the
order of doing it, what resources should be initially
tasked, which ones will be mobilized later, and which
resources are initially needed for the on-scene assist-
ance. The individual resources are tasked (possibly
pre-empted from current activities), and perform the
actions necessary to locate and process the incident.

The distributed logic is implemented as a finite
state machine with very clear transitions along a
timeline. As resources proceed through the mission,
they communicate to the RCC logic through messages
advising the RCC about what is happening and possibly
walting for instructions about what to do next. This
has been designed to closely match the flow of control
and information that exists during live missions. The
resources also communicate with the de-centralized
logic (Search/Assist Mastex) for controlling searches
and on-scene assistance.

The de-centralized logic decides when the search
is over, and co-ordinates the on-scene resources
rendering assistance. The de-centralized logic is
also respomsible for requesting additional resources
to be tasked by the RCC when the on-scene situation is
discovered to be different from the initial problem
description,

Time Line States
Centralized
' ' * At Base
RCC Logic * Transit
* Search
* ete.
Experimental De—Centralized Control
Frame * Search/Assist Master

Figure 2 — Executable Model Architecture
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6. SOFTWARE ENGINEERING CONCEPTS

The remainder of this paper focusses on several
practical software engineering concepts that can be
used in day to day simulation construction. General
discussions onsoftware engineering (e.g., Yau and Tsai
1986, Bergland 1981, Parnas and Clements 1986, and
Goldberg 1986), or specific texts (e.g., Pressman
1987; Zelkowitz, Shaw and Gannon 1979; and Yourdon and
Constantine 1979) should be referred to for comprehen-
sive descriptions of different techniques and concepts.
A programmer requires a large toolbox in which the
right tool can be found: there is not one tool or
concept that solves every problem.

The following sections explain some of the soft-
ware engineering concepts used in the SAR model and
how they contribute to flexibility. In most cases, if
a designer or developer is not familiar with a tool or
concept, they should experiment with it and not expect
immediate results as Larkin, McDermott, Simon and
Simon (1980) point out in a discussion on expertise in
physics: dindividuals have to solve a problem first to
discover how the problem should have been solved
properly.

It should be pointed out that the concepts are
interrelated and together form a philosophy of design
for the 'SAR model. Different models would likely
emphasize different concepts -~ dogmatic application
of any tool or set of tools should be avoided.

6.1 Experimental Frames

Programs can be described as being algorithms and
data; and simulation programs are no different. There
are two ways to exploit this statement in the context
of program flexibility. First, there can be flexibil-
ity in the data that is being used. Second, flexibil-
ity can exist in selecting what logic to execute.

A common software engineering principle is to use
constants, or variables and not hardwlre data in the
executable code. The grouping and isolation of input,
output, and control variables is commonly called an
experimental frame in simulation literature and is
thoroughly described in Zeigler (1976). As Zeigler
(1987) points out, the experimental frame concept
shares a resemblance with the frame structure in
Artificial Intelligence and objects in object-oriented
programming. The frame can identify properties,
values, ranges, and object specific routimes that
should be invoked while using the object. All of the
relevant information required to perform a simulation
run or a series of runs exists within the frame. Some
simulation languages provide this separation naturally
(i.e., SIMAN with experimental frames). Other lan-
guages such as SIMSCRIPT II.5, GPSSH, and SLAM II
require the simulation programmer to create their own
frame structures.

Working with the experimental frame concept can
create data management problems. Typically, there is
a collection of data (possibly in a database) from
which the various experimental frame components are
selected. The multiple experimental frames must also
be matched to the output for analysis and audit pur-—
poses. Some simulation environments such as TESS
(Standridge and Pritsker 1987) provide a data manage-
ment system which can be manipulated to synthesize the
frame concept. Others, such as SIMAN (Pegden 1986)
provide the experimental frame directly, but leave the
data management problem in the hands of the programmer.
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The approach chosen for the SAR model was to use a
PC-based database system and design a system that
integrated the database describing the domain, pro-
vided a selection mechanism with which to create ex~
perimental frames, and also provided the data manage-
ment tools for manipulating simulation scenarios. The
PC database system also provided the file hand-off
mechanism to the executable model.

In the SAR SIMSCRIPT II.5 model, all of the static
data structures that define what resources are avail-
able, what they can do, etc. are loaded from separate
files on disk; the logical grouping of files repre-
sents the experimental frame. The SIMSCRIPT model
processes the files in a pre-specified oxder and dy-
namically creates all of the necessary structures and
variables for executing the model.

The front-end system provides the necessary model
management functions that exploit the concept of ex~
perimental frames. Without the integrated system,
model verification, validation and subsequent use
would be difficult to perform.

The other part of software is of course the algo-
rithms. The algorithms form the structure of the
system and control what happens in what order in a
simulation. Changing this level in the simulation
usually requires a great deal of work before the simu-
lation works again. Two things have been done in the
SAR model to enhance the experimental frame and sub-
sequently minimize the effect of changing the algo-
rithms.

First, whenever there are multiple choices, there
are flags and codes in the experimental frame that
indicate what option is active., In the executable
code, a CASE structure is typically used to invoke the
appropriate logic based on the current control blocks
being used. For example, this allows local overrides
on a mission by mission basis, as well as, global
option selection for all migsions. Clues for deciding
what should be implemented this fashion came from
the requirements analysis. enever maybe, sometimes,
or yes but is expressed often enough, a flexible
structure was considered. Instead of making a decision
to do one or anmother, it is better to support both
concepts (within reason) and allow the validation phase
the power to eliminate meaningless options. Discrimi-
nation is mneeded and it is through experience that
developers will learn what to include or not.

If the problem is complex enough that simulation
is warranted, then it is probably complex enough that
many decisions cannot be decided upon in the early
stages of model development: it is far cheaper and
easier to build in the options from the beginning than
later. The use of built-in options should be a state-
ment of policy and once adopted, it is easy to imple-
ment.

The second concept added to the experimental frame
specifically for flexibility in algorithms was a spe-
cial table. During a mission there are many events
that occur which can be sequence dependent and inter-
related. For example, dropping survival supplies
should be done before the people are evacuated, or the
service should be forgotten. Or, a fixed wing air-
craft may remain in the area after it has done its own
duty to support a helicopter until it has also fin-
ished. There are many combinations and possible oper-
ation guidelines that can affect what a resource does.
The requirements analysis phase hi-lighted this area
as one that many what-if questions will be directed



toward. Thus, the ACTIVITY CONTROL table was created
that describes the time line, stages along the time
line, relationship of activities with the time line
and with each other. The model has been designed with
a general purpose time line manager (co-ordinator)
that processes the ACTIVITY CONTROL table to obtain
information about what resources do next, how resources
are to react to each other along the time line, etc.
The model user can alter this table which is analogous
to an expert system rule-~base and thus alter a major
algorithmic component in the model from the experi-
mental frame.

Placing the ACTIVITY CONTROL logic in the experi-
mental frame is expected to eliminate many what-if
changes to the executable code. Simulation code
changes should be avoided whenever possible since they
require programming staff plus the model user and
could possibly jeopardize the verification and valida-
tion status of the model.

6.2 Module and Data Coupling

A common problem with any kind of software design
is the level of coupling within the software. By
coupling we mean both logical and physical relation-
ships:

how much does one subroutine know about the syntax
of the data compared to the semantics

what one subroutine assumes about the subroutines
that call it and about the subroutines it calls in
turn

what is the nature of the interface between two
routines -~ implicit and explicit data sharing

Understanding the coupling present in a simulation is
very important and it can assist in establishing appro-
priate test~-beds -— where and what do they have to
emulate (Zeigler 1987). Coupling is a significant
issue when software has to be debugged, verified, and
changed on a continual basis.

While there are many aspects of coupling that can
be discussed, two stand out in affecting long-term
flexibility of the model: data awareness and internal
assumptions.

One set of routines should be aware of the physical
representation of a specific data structure and these
routines provide the interface point for all access --
inquiry and manipulation. This prevents dozens of
locations in the code from being semnsitive to the
actual data. For example, it is very common in the SAR
model to use distances as part of decision making pro-
cesses. Distance calculations can use absolute or
relative origins, and can be specified using cartesian
or latitude/longitude co-ordinates, Should every
module in the software be aware of these ifssues? If
they were, it would be very hard to experiment with
and determine the strength and weaknesses of the dif-
ferent approaches, or it would be hard to correct a
bug in the distance algorithm -— in how many places
does it occur? Therefore, there is only one place in
the simulation that knows what the data structure
fields mean and what to do with them when it comes to
distance calculations. Anything to do with distance
must come from this module.

When subroutines and modules are designed, there
should not be assumptions made between callers and
called subprograms. It should be assumed that if the
interface is satisfied (e.g., provision of data,

385

instructions, and results), the subroutine will per-
form a specific task., It should not make use of any
other information about who is using the interface and
infer values of data or control options to execute.
The modules should be decoupled and if every routine
is written like a subroutine library member, then
maintenance will experience a lower risk of failure.
If routines are too smart and make inferences, the
task of changing the code is significantly greater:
all software must be checked to see what is being
agssumed where,

The SAR model has been designed with both types of
coupling in mind. The overall structure is relatively
flat and resembles a subroutine library. The modules
do not make assumptions about callers and callees —-
they work strictly with the data in the passed control
blocks. Information that is used in decision making
is hid from global view and library utilities arxe pro-
vided that permit the syntax to change without chang-
ing the semantics.

6.3 Finite State Automata

The experimental frames and coupling approaches
used in the SAR model are not specified in a formal
specification language such as DEVS (Zeigler 1987).
The experimental frames are described as data struc-
tures: fields, contents, purposes. The coupling is
a direct artifact of the finite state automata and is
documented as inputs and outputs to the modules in the
design's pseudo-code. As such, the frames and coupling
can be considered semi-formal. However, the actual
design is described as a formal deterministic finite
automata state structure:

an initial state
set of possible states
set of external stimuld to a state

set of internal stimuli generated within a state

set of possible states following a state

set of transforms taking a given state, a stimulus,
and mapping this to the next state

The finite state structure has been used for many years
in designing complex software systems (e.g., communica-
tion protocols, operating systems, etc.) and a concise
readable explanation can be found in Zelkowitz et al.
(1979). As a formal definition, the finite state
automata provides a mechanism for documenting and
studying the system. The method hi-lights what logic
should be in a state, and how states are coupled.

Figure 3 illustrates how the automata concept can
describe a resource transitting to a search site taking
fuel consumption into account (note: this is a small
and incomplete subset of the SAR states and stimuli
required for the transit phase of a mission). When in
transit, a ship or plane may run short of fuel and
require refueling. The TRANSIT state is limited in
knowledge and simply moves a resource from point A to
point B. The required fuel is initially determined
and if the resource cannot make the trip without re-
fueling, a phased trip is planned. The resource will
travel from fuel depot to fuel depot until the search
area is reached. Arriving at a fuel depot triggers
the internal stimulus that causes the REFUEL state to
be activated. After refueling, the trip continues.
When the resource reaches its final destination, the
search phase may commence.
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Figure 3 — Finite
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Fuel Required

State Automata

In the SAR model, there are states, stimuli, and
transforms. The automata model has been used to
validate the operational requirements of the model
during design reviews and has provided the coupling
for the major model components. Being finite and
rigorous permitted the thorough analysis of the prob-
lem before pseudo-code and detailed design started.
The detailed design was then created using the finite
state automata as the structure. An informal pseudo-
code was then used to describe the detailed design
which allowed the review of the design by experts in
the SAR domain,

The general structure of a state in the SAR model
is shown in figure 4. There are three sources of
stimuli to the state. TFirst, prior states can send
a resource to the state as a stimulus. Second, the
co“ordinating software can send an external stimulus
(e.g., pre—emption, or search has finished), Third,
there can be internal stimulus.created within the
state.

Within a state, the logic is normally structured
to execute general housekeeping tasks first (inde—
pendent of stimulus, ete.), followed by establishing
any state-wide timers (such as sunset), and then
special processing for each stimulus coming into the
state, The type of resource/entity will cause a
number of internal stimuli to be investigated. If
the internal stimulus is time based, the minimum
elapsed time will be used as the over-riding stimulus.
That is, the earliest event out of a number of

possibilities will be used: running out of fuel,
reaching destination, etc. The state is configured
with a single WAIT point that will be triggered by
the state-wide, external, or internal stimulus., Fol~
lowing the wait point is general housekeeping logic
again and then depending on the trigger, the appro-
priate next state is activated, The logic within the
state makes no assumptions regarding the prior states,
or the states following.

The use of finite state design can be applied to
any of the common simulation languages assuming that
the implementers have adequate programming experience
and training. That is, it is doubtful if a scientific
programmer enlisted to create a simulation would have
the required skills to design and program the finite
state structures from scratch. Special training can
occur, or special environments can be used that support
the concepts of state analysis, experimental frames,
and controlled coupling. One environment that has
these concepts is the DEVS-Scheme (Zeigler 1987).
DEVS is a model specification scheme that formalizes
the complete process and integrates the specification
with a model development environment.

To summarize, the reasons for using finite state
automata are many:

+ first and foremost, it is a design tool with which
the designer can organize the dynamics of a situa-
tion and play mental what-if games: is anything
missing, or what else can happen that was not forseen
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Figure 4 — General State Structure

¢ describing and documenting the results of the data
flow analysis

* provision of a thorough analysis to ensure that
major events and flows have indeed been captured

clear identification of how the simulation code can
be structured and what the interface is between each
process

assistance in specifying what the normal execution
path is compared to exception processing, which can
also be used as the basis for determining what
should be in a prototype

7. CONCLUSION

We have indicated how three major software engin~
eering principles have been applied to a complex simu—
lation problem and how formal and semi-formal
approaches can be used together in a practical situa-
tion. We feel that the resulting model exhibits
operational and structural traits that will allow the
model to be used for many experiments (data and algo-
rithmic) without modifying the simulation code and
when changes to the code must be made, the impact is
minimized and risk reduced.
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