p—— I4

/

Proceedings of the 1988 Winter Simulation Conference
M, Abrams, P. Haigh, and’]. Comfort (eds.)

Improving digital circuit simulation:
A knowledge based approach

John A. Benavides
Dana L. Wyatt
Department of Computer Science
University of North Texas
Denton, Texas 76203 .

ABSTRACT

The simulation of digital logic circuits is a common prac-
tice in design automation. Because of advances in integrated
circuit technology, currently available digital circuit simulator
can not model all circuit behavior. Combining artificial intelli-
gence and simulation techniques, a knowledge based simulator
was designed and constructed to model non-standard circuit
behavior. Circuit designer expertise on behavioral phenomena
is used to diagnose, analyize, and emulate this behavior in the
knowledge based simulator. An expert system guides the base
simulator by manipulating its events in order to achieve the
desired behavior. This paper focuses on the prototype system
architecture which integrates features of a an event-driven
gate-level simulator and features of the multiple expert system
architecture, HEARSAY-IL

INTRODUCTION

Simulation in the electrical engineering domain serves
multiple purposes. With a simulator, an engineer can analyize
a circuit before investing time and money in manufacturing.
Once correct functionality of the design is established, the
engineer can also use the simulator to check its performance
speeds, as well as the performance of manufacturing tests
{Terman 1987 and Trimberger 1987).

Currently available simulators for digital circuit design
work with different levels of circuit abstractions. The lowest
level of abstraction models the circuit based on the physics of
its components (Nagel 1975). While this type of continuous
simulation is very accurate, the computation cost prohibits its
use to small circuits, containing no more than several
thousand circuit devices (Terman 1987). Simulators with
higher levels of abstraction model the circuit at a switch level,
logic gate level, functional block level, or at a behavioral level
and use a discrete simulation methodology. However, as the
level of abstraction increases, computation cost decreases but
so does simulation accuracy (Miczo 1986).

As the speed of circuit components increases, circuit
behavior breaks from clean digital switching characteristics.
The problems of simultaneously switching outputs, transmis-
sion line reflections, power supply noise, and crosstalk between
signals become major design concerns (TI 1987). The ability
to simulate these problems requires the modeler have an
expertise with these phenomena.

Several methods of modeling these phenomena are possi-
ble. The first would be a reduction of the entire circuit to a

364

physics level model-abstraction. Then, a continuous simulator
would exhibit the non-standard digital circuit phenomena.
However, because of the prohibitive computation costs, this
can not be done with large circuits. A second method would
be a combination of the abstraction levels, a so-called mixed-
mode simulator (Bloom 1987). By simulating portions of a cir-
cuit at the physics level and portions at a digital circuit level,
a designer might be able to observe these phenomena. How-
ever, this method requires the designer be an expert with
these phenomena in order to recognize where to partition the
circuit. The research reported in this paper is aimed at pursu-
ing a third method using new simulator technology that com-
bines artificial intelligence techniques with simulation. This
method encapsulates expert knowledge of known phenomena
in a knowledge based simulator in order to model non-
standard behavior and avoid difficulties of the previous
methods.

The prototype knowledge based simulator reported herein
combines an event driven digital circuit simulator with a
knowledge based expert system. The digital circuit simulator
brings with it efficient analysis of coupled components
behavior. This is standard behavior and results from formal
connections. The expert system recognizes, analyizes, and ini-
tiates the simulation of behavior resulting from unformal con-
nections. This is possible because such non-standard behavior
may be linked to physical, structural, or topographical infor-
mation not ordinarily used by the digital circuit simulator.
The expert system steers the simulator into non-standard
behavior by modifying its events during operation. This
results in future behavior which reflects a circuit’s reaction to
the initial non-standard behavior.

This knowledge based simulator is envisioned as a design
tool which can be used early in the design process. By discov-
ering and understanding non-standard behavior, a designer
may incorporate appropriate design in order to avoid potential
problems and prevent the expense of manufacturing a non-
functional circuit. The following section explores previous
research efforts of combining knowledge bases and simulation.

Knowledge Based Simulators

Murray and Sheppard (1988) note that knowledge based
simulation systems employing artificial intelligence techniques
have been designed for several purposes. These include:

1) Computer-assisted model construction.
2) Decision-support functions.

3) Intelligent front-ends for assisting in simulation
experimentation and analysising simulation results.

4) Complete simulation environments for supporting
the simulation model life cycle.

Two approaches have been used to achieve these capabilities.

One approach has been to use a knowledge base expert
system as the base system. Murray and Sheppard (1988) built
a computer-assisted model constructor system for SIMAN
models by combining model construction knowledge and
SIMAN knowledge in an expert system. Moser (1986) imple-
mented a decision-support system using an expert system
knowledgeable on corporate business to analyize simulation
results of a corporate model. Borden and Hugh (1985) incor-
porated temporal knowledge into an OPS5 expert system in
order to simulate electronic warfare threats. System architec-
tures which use expert systems as their base represent
knowledge in rule bases and through inference strategies.

The second design approach for knowledge based systems
has been to use an object-oriented programming paradigm.
Kim and Zeigler (1988) note this approach is popular because
of its similarity to the discrete event formalismas. In object-
oriented programming, objects represent world entities con-
taining methods and properties. These methods are behavior
rules used to respond to messages representing world changes.
All communications between objects is accomplished with
messages which may represent passage of time, changes in
object relations, or requests for object action. If an object does
not contain a method for a specific message, it may inherit a
method from a object defined to be superior to it in its object
hierarchy {Adelsberger et al. 1986). One example of this
approach is ROSS which was designed by the RAND corpora-
tion (Klahr and Waterman 1986). ROSS supports the simula-~
tion model life cycle and has been applied to military battle
simulations. KBS is a second example of an object-oriented
system (Reddy et al. 1986). KBS is a decision support
environment for intelligent management of business opera-
tions. Simulation, model verification, and result analysis are
all parts of the KBS environment. Systems using object-
oriented programming, represent knowledge through methods,
object properties, and inheritance.

SWIM Prototype

A prototype simulator called SWIM, Simulate What I
Mean, has been constructed on a Texas Instrument’s Explorer
Workstation in Common LISP. Using this workstation
environment has facilitated rapid programming, debugging,
and testing of a prototype system.

The approach used in the SWIM prototype differs from
the expert system shell and object-oriented language
approaches because it integrates the expert system directly
into the simulator. The expert system becomes a controlling
component of the base simulator in order to increase simula-
tion capability. In the following section, an overview of the
system architecture is presented. Following the architecture
description, an example using a2 knowledge source for simul-
taneously switching pads cells in a integrated circuit is
described. The paper concludes with implementation notes
and ideas on this research.

365

SWIM SYSTEM ARCHITECTURE

The prototype system developed at the University of
North Texas integrates features of an event-driven gate-level
simulator (Lightner 1987 and Dillinger 1988) and features of
the multiple expert system architecture, HEARSAY-IT
(Hayes-Roth 1983). Using this hybrid architecture, simulation
of a digital circuit is controlled through a menu-driven interac-
tive window. From the simulation window, a designer can:

1) load a circuit description from a file into the simula-
tor.

2) construct simulation stimulus for a circuit.

3) initialize a circuit’s state by setting nets and memory
element values.

4) collect simulation results in a file.
5) manipulate the expert system’s knowledge base.
6) start, stop, or step through a simulation.

7) switch into a ZMACS text editor window to create
or modify a circuit description.

8) save a simulation session for later reuse.

The major components of the system architecture are the
world data base, the model base, the simulator, the expert sys-
tem, and the evaluator (see figure 1). The world data base
contains all information on the circuit being simulated. Both
the evaluator and the expert system interrogate the world
data base. The model base contains component simulation
models. The simulator coordinates events, manipulates sys-
tem time, tracks system operation, and schedules behavioral
evaluation with the evaluator. The evaluator determines com-
ponent behavior through model analysis and expert system
consultation; when expert knowledge may be available the
evaluator modifies its behavioral interpretation based on
model analysis.

World Data Base

The world data base describes the circuit being designed
to the simulator as well as the expert system. When a circuit
is loaded into the simulator its corresponding knowledge is
added into the world data base. There are four types of infor-
mation in this data base: structural, functional, physical and
dynamic. Structural information describes component connec-
tions (coupling). Components connected together will share a

common net. Functional information maps a component to its
simulation model. A simulation model describes the behavior
of a component’s output pins when its input pins are stimu-
lated. Physical information describes the planned geometric
properties of the final circuit. For example, two types of phy-
sical information are net lengths and component coordinates
in the physical design space. Dynamic information describes
the states of all nets connecting components in the circuit, as
well as any memory devices that may exist in a component.
During a simulation, nets and memory devices change their
values to one of three discrete values: high, low, and unknown.
Both the simulator and the expert system can access all four
types of information.

Blackboard

Transition Model
Report Base
Cumrent
Transitions \
Expert System
MEn“SSer —>____> Evaluator

T

Stmulator

New
Transitions

\

Event
Queue
Manager

Because engineering design is an iterative process, not all
information will initially be in the world data base. Using
multiple simulations, a designer successively refines a design
until it fulfills all its specifications. Consequently, design infor-
mation not initially available in the world data base is added
as a result of the design process. The physical information
does not become available until the structural view of the cir-
cuit is converted to a physical representation. With the physi-
cal inforimation available, a more accurate simulation model for
the entire circuit is derivable. Simulation with the resulting
circuit model verifies that preceding design decisions continue
to support design specifications (Dillinger 1988).

The world data base fragments the four types of informa-
tion into PIN, NET, and PART records. Figure 2 illustrates
the Common LISP structures for these records. Pins
represent the port through which a part (component) is con-
nected to a net (signal). A pin can have one of three direc-
tions from the net to the part: in, out, or inout. All pins con-
nected to a net are referenced in the pin list of a NET record.
Similarly, all pins connected to a part are referenced in the pin
list of a PART record.

During simulation, the records in the world data base are
accessed in a NET, PIN, PART, PIN, NET order. When a
net changes value, the parts connected to the net through an
input pin are examined for behavior changes. A model defin-
ing the part’s behavior is referenced in the PART record.
Using this model, values for this part’s output pins are deter-
mined. Consequently, these output pins may change other
nets, and the access loop (NET, PIN, PART, PIN, NET) is
repeated.

366

World Data Base

Figure 1. SWIM Operational Architecture

Knowledge
Source

Knowledge
Base

Multiple Knowledge Sources

Model Base

The model base is a data base containing all component
behavioral models. The SWIM prototype system is currently
constructed with gate level behavioral models. Available com-
ponent models represent logic functions AND, OR, NOT, and
NAND, as well as memory elements D, SR, and JK flip flops.
Each component model is a LISP function which returns a list
of resulting event(s) when called with a list containing the
current value of input pins. Increasing the level of component
model complexity is planned as a future enhancement.

Simulator

The simulator of the system is a discrete-event simulator
containing event and time handling utilities and a simulation
clock. One utility, the event queue manager, maintains the
event queue. Another utility, the time manager/sequencer,
tracks the simulation time, generates trace information, and
schedules event handling.

Simulation activity proceeds according to the following
basic control algorithm.

1) The event queue manager passes all event(s)
scheduled to occur next to the time manager.

2) The time manager updates the system clock, records
these changes on the trace output, and schedules
evaluation of all events with the evaluator.

3) The evaluator determines behavior of models being

excited, consults the expert system for any simula-
tion advice, and passes any resulting events to the
event queue manager.

t2d

(defstruct net
" Stgnal net”
(name ‘unknown)
(type ’core) ;CORE or

;peripheral net (IN, OUT, INOUT)

(value z) ;Current net value
(change-time 0) ;Time of last change (Absolute time)
(pin-list nil) ;All pins connected to this signal net
(physical-list nil) ;Physical information

;7

(defstruct pin
" Pin instance”
(name ’unknown)
(number 0) ;Pin number
(type ‘inout) ;Legal types are: in, out, or fnout
{part nil) ;Points to owning part
(net nil) ;Points to owning signal net
(physical-list nil} ;Physical information

I

(defstruct part
“ Part instance”

i

{name *unknown)
(type *unknown)
(eval-bit nil}
(pin-list nil)
(physical-list nil)
)

;Points to functional model

;A flag showing pending evaluation
;All its own pins; ordered
;Physical information

Figure 2. Lisp structures for world data base.

Event Queue Manager. The event queue manager main-
tains the event queue. Events may represent net transitions
scheduled at a specific time or re-ignition of a knowledge
source at a specific time. During initial system set-up, the
event queue manager constructs an event queue from simula-
tion input waveforms. During system operation, the event
queue manager inserts all new events in the event queue when
delivered by the evaluator.

The event queue is an array of 500 lists treated as a cir-
cular queue, called a time wheel. Each list represents a time
step, contains event(s) occurring at the same time, and will be
accessed through its array index. One index of the array will
represent the current time. The array index following the
current-time array index will represent one time step into the
future. Because the array is circular, the array index proceed-
ing the current-time array index will represent 499 time steps
into the future. Anything beyond 500 time steps is stored in
an unordered list referred to as the “farlist”. The time wheel
data structure was first designed by Ulrich and Suetsugu
(1986).

During simulation, the event queue manager manipulates
the time wheel. When all the events of the current time step
are processed, time is advanced by incrementing the current-
time array index until an non-empty event list is found. Each
time the starting array index is reached, the far list is scanned
once and any events occurring in the next 500 time steps are
moved into the time wheel. When receiving new events, the
event queue manager places any events scheduled for the next
500 time steps directly into the time wheel; remaining events
go into the far list.

Time Manager. The time manager updates the simula-
tion clock, generates trace information, and schedules event
evaluation with the evaluator. The event queue manager
sends the time manager a list containing event(s) scheduled to
occur next in the simulation. The time manager then updates
the clock to the time of these scheduled events. Next, any
events occurring on nets designated to be traced by the simu-
lation window interface are recorded in a trace file. The trace
information includes the net name, the transition type, and
the transition time. In addition, if the event was influenced
by the expert system, this is noted in the trace file. Lastly,
the time manager passes the list of events to the evaluator for
behavioral analysis.

Clock. The clock is a globally accessible object which is
used by the evaluator and expert system. The evaluator uses
the clock time to calculate the time for future events. Expert
system rules can also read the clock time. The clock is
updated by the time manager based on the event queue and is
the same as the most imminent event(s).

Expert System

The expert system is actually comprised of multiple
expert systems, referred to as a knowledge source. Each
knowledge source contains a rule set, private working memory,
and a suggestion buffer for communications to the evaluator.
Working memory is used by a knowledge source to hold facts
derived by its rules during operation. In addition, there is a
public memory where knowledge sources can store and modify
facts. This public memory may serve as a channel for coordi-
nating communications between different knowledge sources.

Knowledge Sources. Knowledge sources are expert sys-
tems defined to perform over a sub-circuit or reduced domain.
A knowledge source is defined using three parts. The first
part describes a subcircuit on which the knowledge source
contains knowledge. The second part is a rule base or rule set
applying to the subcircuit pattern. The third part, the igni-
tion statement, defines events or starting conditions which will
activate a knowledge source and began processing of its rule
base using the inference engine.

The knowledge source description is constructed using
the simulation window interface and the parts are applied at
different times during a simulation. The subcircuit descrip-
tion is described using a domain definition statement. Two
types of domain definitions can be made, TREE and SET.
TREE type domain definitions define a subcircuit with con-
nections between the components. SET type domain defini-
tions group a number of components which may or may not
be connected into a set. Figure 3 illustrates a TREE type
domain definition and its corresponding circuit. A later sec-
tion will use the SET type domain definition in an example
based on simultaneously switching bond pads. While the rule
base and ignition statement information will be used during
simulation, the subcircuit description will be used when a cir-
cuit is entered into the simulator to search for instances of this
knowledge source. This searching is called knowledge source
instantiation time.

367

a
AND
NOT b
enable
AND
b

7
(def-domain '(TREE (OR:ref ort
(AND:ref ani

a
(NOT:ref ni enable))
(AND:ref an®
enable

)

Figure 3. Exataple of a TREE type domain definition

During knowledge source instantiation time, when an
instance of a knowledge source is recognized, it is cataloged in
the blackboard by creating entries for (1) a relative-to-absolute
mapping, (2) a trigger, (3) a working memory area, (4) a
suggestion area, and (5) a status word. The relative-to-
absolute mapping is used during inference time to map all rule
base references to parts, pins, and nets to their absolute items
in the world data base. The trigger is a translation of the igni-
tion statement to an executable LISP predicate which has had
all relative references mapped to the world data base absolute
entities. The working memory area, suggestion area, and
status word are used during the inference operation on a
knowledge source.

The ignition state is a boolean statement which references
parts and nets in its domain to define the conditions which
might require expert help from a knowledge source. For
instance, if a knowledge source were defined to be activated
every time a net s became high, the statement would look like
“(becomes (net “s) ’high)”.

Rule Base. The knowledge source rule base is con-
structed with if-then rules modeled after the CLIPS language
(Culbert 1987). CLIPS is an expert system shell constructed
by NASA and is written in the C language. Additional utili-
ties were added to the rule language for accessing the event
queue, the world data base, and the LISP language. These
rules are used in a forward chaining inference engine. Sugges-
tions to the evaluator result in event manipulation. Events
associated with nets or knowledge sources can be changed,
created, or destroyed.

Blackboard. The blackboard is a data base containing
knowledge source information and information required for
communications between the simulator and the expert system.
Working memory for each knowledge source, knowledge source

368

status flags, ignition state information, and resulting expert
system suggestions are the types of information held in the
blackboard.

Evaluator

Using current events specified by the time manager, the
evaluator modifies the world data base and determines circuit
behavior. Events reaching their scheduled time will either
represent net transitions or re-ignition of knowledge sources.
If the event is a net transition, and the transition will change
the world data base, then the evaluator changes the net’s
value. Otherwise, net transitions which will not cause a
change in the world data base are ignored. During a simula-
tion, the evaluator is the only module which modifies the
world data base. Events calling for re-ignition of a knowledge
source do not require that the knowledge source’s trigger be
met., These types of events can be created by a knowledge
source to continue monitoring circuit behavior after an initial
ignition.

When a net transition changes the world data base, the
evaluator determines which components and knowledge
sources are affected. Components with changing input pin
values have their behavior analyzed first. Next, knowledge
sources becoming ignited, according to their triggers, are
started. The evaluator determines that all knowledge sources
are completed by examining the “Ready”section of the black-
board. If a knowledge source surmises a behavior different
from the simulator, it stores suggested changes in the modifi-
cation section of the blackboard. The evaluator uses these
modifications to edit previously created events. When all
events for a time step have been processed the evaluator
passes behavioral results to the event queue manager as future
events.

EXAMPLE KNOWLEDGE SOURCE

In this section an example of a knowledge source designed
to detect simultaneously switching outputs of an integrated
circuit is described. In advanced CMOS integrated circuits,
switching multiple outputs of a circuit simultaneously can
cause noise in the resulting output waveforms (TI 1987). For
a short time the outputs should be considered unknown and
thus unusable. The knowledge source in figure 4 and figure 5
is designed to detect simultaneous switching of three or more
output pins in the fictitious device of figure 6.

Figure 4 describes the pattern domain and ignition state-
ment for this knowledge source, called switching-pads. The
domain definition fulfills two purposes; it defines a sub-circuit
upon which the knowledge source has knowledge and assigns
relative references to the sub-circuit. The domain definition
uses the SET keyword which specifies that the set of objects
following may or may not be connected. In this case, the set
of objects contains four parts of type outpad. The ignition
statement and rule base will reference these parts by the
names outpadl, outpad?, outpad3, and ouipad{. The
knowledge source is defined fo be triggered when any of the
four parts outpadl, outpad2, outpad3, or ouipad{ have their
second pin’s signal go high.

; Define a knowledge source;
; pattern domain and tgnition state.
(defks switching-pads
(def-domain *(SET (part outpad outpadi)
(part outpad outpad?)
(part outpad outpads)
(part outpad outpadf}))
(def-ignition *(or (becomes (part-pin outpadl 2) high)
(becomes (pari-pin outpad2 2) *high)
(becomes (pari-pin outpad3 2) *high)
(becomes (pari-pin outpad} 2) *high)))

Figure 4, Start of a Knowledge Source description.

Figure 5 illustrates the rule base for the knowledge source
switching-pads. There are six rules in the set. The first rule,
called start, initializes our knowledge source. When any
knowledge source is started, an initial fact, tnitial-fact, is
placed in its working memory. The initial fact activates the
first rule in this rule base which counts the number of simul-
taneously switching outputs using the “dolist” loop. A dolist
takes each item in a list and binds it to a loop variable for one
pass through the body of the loop. In this case, the loop vari-
able is Pstg and the values in the list are pin 2 of part outpadl,
pin 2 of part outpad2, etc. The "dolist” also checks to see if
any of the outputs are going high or will go high in the near
future by using the “went” construct. As the first rule is
counting, facts are created specifying which outpad parts are
switching to high and an additional fact counted is created to
fire future rules.

All facts generated by a rule are placed in working
memory concurrently when the rule is completed firing.
When the fact counted is place in working memory after rule
one is completed, it will cause the second rule to fire. Rule
two, called determine-delays, will determine if a simultaneous
switching state exists and, if so, an appropriate delay factor is
computed. Rules three through six are all similar; each of
them determines if one of the four different outpads is switch-
ing and the appropriate actions to take. For rule three, if out-
padi is switching, then an event is created to model noise gen-
erated by the switching. Following the period of noise the sig-
nal should stablize and change as planned. A second event is
created to show the eventual transition of outpadl’s second
pin to high. A final action carried out by the rule is to note
the behavior discovered by printing a message.

CONCLUSION

This paper has described a knowledge based simulator
which combines expert system and digital-circuit simulator
technologies. Using this simulator, a novice circuit designer
can simulate circuit behavior phenomena which differs from
the standard digital circuit behavior. These phenomena are
not simulatable with standard digital circuit simulators and
the conditions leading to the phenomena are only recognized
by expert designers. The expert system part of the simulator
recognizes conditions leading to phenomenal behavior, deter-
mines their consequences, and manipulates the simulator in
order to emulate the phenomenal behavior.

369

;Count the number of pins switching and
;assert facts for each switching pad.
(defrule start
(ff (instial-fact))
(then (bind Zcount 0)
(assert (counted))
(dolist ?sig ’((part-pin outpadl 2)
(vart-pin outpad? 2)
(part-pin outpad3 2)
(part-pin outpadf 2))
(if (went ’high ?sig :within 5 *ns)
(bind Pcount (+ Pcount 1))
(assert (Psig switching to high))))))

;Determine the delay factor due to stmultaneous switching.
; For every pad swilching above the count of 2 add
; a 10% delay to signal.
(defrule determine-delays

(if (counted)

(test (>= fcount 3)))
(then (bind 2delay-factor (+ 1 (* (- Pcount 2) .10)))
(assert (modify events))))

’
sTake action:
; First create an event for period of noise, make signal
; unknown (z); then add delay to actual event.
(defrule check-switch-outpadl
(¥f ((and (modify event)
(vart-pin outpadl 2) switching to high)))
(then (create-event (part-pin outpadl 2)
stime (get-event-field (part-pin outpadl 2)
:time)
:value °X)
(modify-event (part-pin outpadl 2)
time (* 2delay-factor
(gei-eveni-field (pari-pin outpadl 2)
stime)))
(print-msg " Simultaneous switching behavior found...”
(vart-pin outpadl 2))))

Figure 5. Knowledge source rule base.

(M
—» Inpad]
Core circuit
——p inpad l=-
L J
— inpad /] | 1 \ 1 \ 1

outpad outpad outpad
lz lz lz

Figure 6. Output pad circuit

outpad

lz

The knowledge source characterization of knowledge is
attractive because it collects all information for one behavior
into a single package. This lends itself to maintainability
because rules are not dispersed through out a large unwieldy
rule base. Also, the knowledge source package facilitates reu-
sability because knowledge source can be grouped in libraries
defined for specific circuit technologies where they are applica-
ble. As a library grows, so does the power of the simulator.

Knowledge sources differ from the objects in an object-
oriented system in the way knowledge is applied. Knowledge
sources apply knowledge bottom-up, using pattern recognition.
Objects apply knowledge top-down, using inheritance. An
interesting enhancement to the prototype would be to modify
components to be objects.

Currently, only slightly hard phenomenal behavior has
been simulated with the SWIM prototype. Knowledge for the
knowledge sources constructed was taken from design guides
and textbooks aimed at circuit design. Translating this
knowledge into rules and verifying its performance has been
the most difficult facet of this work.

Future work on the prototype will center on behavioral
knowledge verification, SWIM’s interface for knowledge
acquisition/manipulation, physical translation tools, and
increasing the level of component model abstraction. The
behavioral knowledge is the most important part of this
knowledge based system because it directly influences its per-
formance. It is impractical to manufacture a circuit to verify
every iota of behavioral knowledge therefore, a more feasible
alternative must be investigated.

The knowledge acquisition/manipulation interface of
SWIM is tedious because it prompts a user for every portion
of its knowledge base. After several sessions with the inter-
face, a user becomes hindered by the interfaces inflexibility.
More flexible interfaces will also be investigated. A graphic
interface would probably be preferred for specifying a
knowledge source’s domain description. Presently, there is no
automatic way to translate a circuit from its structural view to
a physical representation. Entering this information by hand
prohibits us from verifying larger circuits. Acquiring access to
place and route software for creating a physical representation
of a circuit is a solution being pursued. Place and route
software facilitates the building of a floor-plan for laying out
circuit components and attaching wires between them to real-
ize the physical circuit.

Finally, increasing the level of model abstraction to a
functional or behavior level is also being considered because
system design is evolving toward these more abstract levels.
This occurs because circuit design in now moving toward sys-
tem design methodologies.

The SWIM prototype was successful in demonstrating
the ability to use expert knowledge to simulate. Using SWIM,
the knowledge source approach was used to simulate small real
world circuits successfully. This demonstrates the utility of an
artificial intelligence based approach to digital circuit simula-
tion.

370

REFERENCES

Adelsberger, H.H., Pooch, U.W., Shannon, R.E., and
Williams, G.N.(1986). Rule based object oriented simulation
systems. In: Intelligent Simulation Environments (P.A. Luker
and H.H. Adelsberger, eds.).Stmulation Series, 17:1, Society
for Computer Simulation, San Diego, California, 107-112.

Bloom, M.(1987). Mixed-mode simulators bridge the gap
between analog and digital design. COMPUTER DESIGN,
January 15, 51-65.

Borden, A. and Hugh, K.(1985). OPS5 as an electronic
warfare design tool. In: Artificial Intelligence and
Stmulation (W.M. Holmes ed.). Society for Computer
Simulation, San Diego, California, 71-75.

Culbert, C.(1987). CLIPS Reference Manual. NASA Johnson
Space Flight Center [Published by Computer Software
Management and Information Center (COSMIC),

The University of Georgia, Athens, Georgial.

Dillinger, T.E.(1988). VLSI Engineering. Prentice-Hall,
Englewood Cliffs, New Jersy.

Hayes-Roth, F., Waterman D.A., and Lenat D.B.(1983).
Building Ezpert Systems. Addison-Wesley, Reading,
Massachusetts.

Kim, G.T., and Zeigler B.P.(1988). The Class Kernal-Models
in DEVS-Scheme: A Hypercube Architecture Example.
SIMULETER, 19:2, 20-30.

Klahr, P., and Waterman, D.A.(1986). Expert Systems:
Techniques, Tools, and Applications. Addison-Wesley,
Reading, Massachusetts.

Lightner, M.R.(1987). Modeling and Simulation of VLSI
Digital Systems. Proceedings of the IEEE, 75:6, 786-T96.

Miczo, A.(1986). Digital Logic Testing and Simulation.
John Wiley and Sons, Inc., New York.

Moser, J.G.(1986). Integration of artificial intelligence and
simulation in a comprehensive decision-support system.
SIMULATION, 47:6, 223-229.

Murray, K.J., and Sheppard 8.V.(1988). Knowledge-based
simulation model specification. SIMULA TION, 50:3, 112-119.

Nagel, L.(1975). SPICE2: A Computer Program to Simulate
Semiconductor Circuits. ERL Memo No. ERL-M520,
University of California, Berkeley.

Reddy, Y.V., Fox, M.S., Husain, N., and McRoberts M.(1986).
The Knowledge-Based Simulation System. IEEE
SOFTWARE, 3:2, 26-31.

Terman C.J.(1987). Simulation Tools for VLSL. In: VLSI
CAD Tools and Applications (W. Fichtner, and M. Morf,
eds.). Kluwer Academic Publishers, Boston, Massachusetts.

Texas Instruments (1987). Advanced CMOS Logic Designer’s
Handbook. Texas Instruments Inc., Dallas, Texas.

Trimberger, S.M.(1987). An Introduction to CAD for VLS.
Kluwer Academic Publishers, Boston, Massachusetts.

Ulrich, E., and Suetsugu, I.(1986). Techniques for Logic and
Fault Simulation. VLSI Systems Design, October.

AUTHOR’S BIOGRAPHIES

JOHN A. BENAVIDES is a graduate student in the
Department of Computer Science at the University of North
Texas. He received his BS in Electrical Engineering from the
University of Texas at Austin in 1983. His research interests
include simulation and VLSI design. He is currently a
member of ACM, and IEEE.

Department of Computer Science
University of North Texas
Denton, Texas 76203

(817) 565-2767

DANA L. WYATT is an Assistant Professor of Computer
Science at the University of North Texas. Her research
interests include simulation, software engineering, databases,
and distributed systems. She received her Ph.D. in 1986 from
Texas A & M University where she worked on an NSF funded
distributed simulation project. She is currently a member of
ACM, IEEE, and SCS.

Department of Computer Science
University of North Texas
Denton, Texas 76203

(817) 565-2767

371

