Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Intelligent simulation environments:
Identification of the basics

Jordan Snyder and

Systems Engineer
Motorola Inc - GEG
Tempe, Arizona

ABSTRACT

A problem exists in efficiently combining a
non-deterministic decision capability with a
current discrete event simulation language
for use by the simulationist (programmer and
in the future the user). This papexr explores
this problem in the context of the discrete
event simulation problem domain implemented
in Siman [tml. The purpose is (1) to provide
an ontological definition of abstract ideas
from data to wisdom, (2) identify a taxonomy
of simulation and artificial intelligence
combination dialects, and (3) establish the
need for and then introduce a "decide node"
which will assist the simulationist in
incorporating a broader spectrum of the
ontology more easily than current dialects
allow.

INTRODUCTION

Research and commercial software applications
have been combining principles of artificial
intelligence and simulation for many years.
Attaining an efficient marriage of these
paradigms will provide an environment which
provides both qualitative and quantitative
decision support. Taxonomies have been
stipulated which have described the methods
of combination (O'Keefe 1986). Environments
have been developed and tested which
investigate approaches for combination

[(Reddy and Fox 1982) and (Umphress 1987)1].
This paper investigates past taxonomies and
current thrusts. Basic knowledge
representations, their relative semantic
definitions, and combination methodologies
are also discussed. The objective is to
discuss these taxonomies and methodologies
relative to current and proposed simulation
environments. The "decide" node is presented
as an efficient means of providing the
simulationist with the capability to model
non-deterministic decisions.

The domain of discrete event simulation will
bound this discussion. OQur approach
illustrates a situation where the activity
points (ie., nodes or blocks depending on the
particular software implementation) and
process times may be known with some
statistical significance, but decisions made
at each activity point are not necessarily
based on probability or conditional
branching. These decision points, instead,
will be based on abstractions based on non-
quantitative concepts.

Dr. Gerald T. Mackulack
Assoclate Professor of Engineering
Arizona State University

Tempe, Arizona

BACKGROUND

"Simulation is a tool by which a user defines
a computerized representation of a real-world
system and observes the behavior of the
system as it progresses though time" (Banks
and Carson 1984).

Not all real-world systems can be modeled in
quantitative representations: this statement
is based on experience and common sense. To
represent more real world systems both
quantitative and qualitative evaluators must
be incorporated into a model.

Traditional simulation languages, such as
Siman (Pegden 1985) and Slam II (Pritsker
1986), can provide adequate gquantitative
representation and analysis. These languages
lack the capability to represent heuristic
decision relations or algorithms in an easy
rannexr. Traditional simulation languages
allow predefined control mechanisms (ie.,
branch points, resource allocation/preemption,
et al.). These low level control mechanisms,
however, do not easily provide the user with
the tools necessary to implement high level
decisions. O'Keefe (1986) provides an
interesting point, "a queue priority rule is
knowledge". The semantic definition of items
presented in this paper, Figure 1, prefers to
classify queue priority rules and related
items of predefined procedure as information.
Information is static, hence it can be
prescribed before model execution. Knowledge,
however, is dynamic and therefore can not be
instantiated until a certain state or
condition(s) exist.

Pure artificial intelligence development
languages start with the traditional symbolic
environments; Prolog (Clocksin and Mellish
1984), Lisp (Winston and Horn 1984), and OPS5
(Brownston, et. al. 1985). Many simulation
dialects have been built upon these languages.
These dialects include ROSS (McArthur and
Klahr:82), SIMKIT (Intellicorp 1985), and KBS
(Reddy and Fox 1982) to reference just a few.
These environments provide the flexibility to
represent non-deterministic heuristic rules or
statements. The current approach to marketing
modern dialects is combining the core
simulation code with user interface utilities.
These utilities range from simple operating
system calls to embedding word processing
systems, control of peripherals and I/0 ports,
and debuggers. The addition of a graphical
WIMP (widows, icons, menus, pull~downs/pop-
ups) user interface with these utilities and

357

wisdom

fact meaning
reality accepted practice
ontology

intelligence thought
I power of
- reflection
l interpretation
knowledge abstraction
| capacity to reason
ability to infer
ability to learn
selective observation
information heuristic
processed experience
capacity of memory
L iterative logic processing
data relationship

defined structure
standard procedures

Figure 1l: Hierarchical semantic definition of "Relative" knowledge along the

continuum from fact to wisdom

the simulation dialect provides very flexible
analysis environments. Balci and Nance
(1987) provide ‘an overview of some of the
available simulation environments and discuss
their requirements for a simulation model
development environment. Their description
of environments provide the basis for the
current discussion of environments and the
combination of symbolic processing and
traditional simulation dialects.

when contrasting traditional simulation
environments with pure symbolic environments
we discover that both approaches have
limitations. Traditional environments:

- lack direct ability to represent non-
deterministic heuristics

- require the use of an event calendar to
track universal time and schedule
sequential events

Environments based solely on symbolic
languages:

- usually require special hardware/software
architectures

may not guarantee optimal conclusions based
on the traditional search algorithms
usually employed in these dialects

may not necessarily include the proper
statistical analysis procedures to perform
output analysis

usually require the model representation
and experimental data to be tightly
coupled in the code

358

i

RESEARCH CONTRIBUTION
Ontological Identlfication

strictly speaking, ontology refers to a branch
of metaphysics relating the nature and
relationships of being. Current literature
discussing prototypes or implemented
artificial intelligence based systems mention
"knowledge bases", Databases contain data;
what do knowledge bases contain - knowledge?
Webster's Dictionary defines knowledge in many
terms, ranging from cognition to the body of
known truth. This definition does not
satisfactorily identify what a knowledge base
contains. This paper introduces a definition
of knowledge in terms of a continuum based on
the nature and relationships of being; an
ontology.

Dan Appleton (1984) first introduced the idea
of an ontological approach to the definition
of datum. Dr. Appleton applies database
analysis to datum and facts via 1:1 and l:Many
relationships to discern the difference
between what is known and what is inferred.
For example, "12345" may be considered a
sequence of integers or a zip code depending
on the context in which interpretation occurs.
This approach was used ln Figure 1 which
illustrates a hierarchical definition of
knowledge relative to the semantics of a
continuum from fact to wisdom., For example,
"data" is considered the result of applying
meaning to fact ("12345" occurs on the front
of an envelope). "“Information" is the
application of one or many relations among
ohe or many pieces of data (the envelope is
one of many given to a sorting machine used in
a post office which is empirically studying

(DOS shell)

FORTRAN

Operating System (DOS) Command Interpreter and interrupts

PROLOG

Figure 2: A multi-language platform used to investigate a
heterogeneous mixture of qualitative evaluation
and quantitative analysis

the efficiency of various sorting
algorithms). As defined, knowledge is not
just a rule, knowledge is the dynanic
application of some heuristic to static
information. Neither the heuristic nox
information need be guantitative in nature.
The application of this type of knowledge in
a simulation is termed a "declsion point".
Traditional simulation languages do not
easily provide the general user with the
ability to incorporate these "decision
points".

Combination Classification

The ensuing discussion provides descriptions
of the three methods of combining symbolic
processing techniques with current simulation
methodologies. Symbolic processing
techniques refer to artificial intelligence,
knowledge base processing, heuristic search
algorithms, expert systems, or wherever
qualitative evaluations would be used.

Symbolic processing techniques and current
simulation methodologies can be combined in
three distinct groupings based on source code
organization and intexaction:

1. a homogeneous mixture

2. a separated, serial or pseudo-parallel,
cooperation

3. a heterogenous mixture

Homogeneous Mixture:

A homogeneous mixture usually codes the
simulation paradigm (including event
scheduler/calendar for discrete event
systems) in a symbolic (primarily
qualitative) language. This approach relies
on the symbolic language and its utilities to
perform traditional simulation methods while
having access to the flexibility of a
symbolic language. Current approaches in the
object oriented paradigm use the built-in
messaging capability of symbolic languages to
control the flow of data and information
between the various entities (reference
Figure 4 for a description of the five basic
types of entities). Much research has

359

addressed this approach [(Futo and Gergely
1987), (Rosenblit and Zeigler 1985), (Zeigler
1987), and (Reddy and Fox 1982)]. Some
commercial packages are available which allow
the implementation of frames and general
symbolic processing [(Dahl and Nygaard 1966),
(Goldberg and Robson 1983), and (Intellicorp
1985)1.

Separated Cooperation:

The separate cooperation principle is the
basis for intelligent front ends that act much
the same way as fourth generation code
generators. In most instances, symbolic-based
code (AI/ES) interacts with the user to
determine objectives, goals, performance
criteria, and behaviors. The symbolic-based
code then acts as a program generator,
constructing the simulation model and
experimental parameters in an existing
quantitative-based simulation language.

The simulation is run and results are passed
back to the symbolic environment, where
relevant declisions regarding simulation
continuation or control variable modification
are made., This continues until the symbolic
code (gqualitative environment) Is satisfled.
The results are then passed back to the user
in the form of recommended decision rules.

A very interesting twist (possibly a exception
to this ontology) is provided by Flitman and
Hurrion (1987). 1In their paper, "Linking
Discrete-Event Simulation Models with Expert
Systems", they describe the use of two
separate microcomputer systems. One system
supports a Fortran simulation language and
model. The other system supports a Prolog
simulation engine which is capable of
monitoring and control (via parameter
adjustment) the Fortran based simulation
model. The two computer systems are linked
via serial ports across a standard RS232C
interface.

Heterogeneous Mixture:

The third combination methodology is a
heterogeneous mixture at macro-code level.
Ruiz-Mier and Talavage (1987) identify this
type of approach in terms of a hybrid
paradigm. Macro-code level involves tightly

"in-the
BLACK"

REIITT
X%k
xk
Y] ek 2
*%
*%
E2I13]

(positive
cash
balance)
"in-the
RED"

3

(negative
cash
balance)

% % %k k

‘ ETTY

BEY

* %

*x Time of
6 7
* % Project
* % Duration

Figure 3: Example diagram of the changing interpretation of
a qualitative evaluatiqn -- the evaluation "GOOD".

coupled interaction of different languages.
This allows the designer to use the tool
(ie., language) best suited for the
particular problem at hand. A tool currently
unavailable is the "decide" node/block (node
or block 1s dependent upon the simulation
language paradigm; both descriptions are
interchangeable for thls particular
discussion). This "decide" node should
utilize qualitative analysis to assist in
logic branching or decision points., Data,
variables, and files created and maintained
by the simulation may be accessed and
modified by the symbolic-based code.
universal language paradigm and
implementation becomes available which both
efficiently and effectively combines
gualitative evaluations and gquantitative
analysis, the heterogeneous mixture is the
closest approximation.

Until a

PROPOSED SOLUTION

The problem of providing an easy method to
include non-deterministic decision points
still exists. Incorporation of the
heterogeneous method with intelligent front
and rear ends (the second method) would
provide a modular and flexible environment
with commercial applications. Efforts are
currently being pursued within Arizona State
University's Systems Simulation Lab to
identify the applicability of a heterogeneous
mixture using common dialects [(Cochran and
Mackulak 1987), (Cochran et.al. 1987), and
{Mackulak and Cochran 1987)]. An intelligent
simulation environment is described by Hong
et al. (1988). This environment uses
standard tools currently available for the
Intel 86x86 based microcomputers.

The environment includes:

design goal formulation

generic model selection

experiment execution

output interpretation and validation

model/output documentation word
processing

360

various data/information/knowledge bases
-- user goals

-~ statistics domain

~~ historical results

-- error/debug codes

A'subset research issue of this intelligent
simulation environment is the driving force
behind the identifications and classifications
of this paper. Subsequent research results
will describe the applicability of adding a
non-monotonic "decide" node capability to an
existing discrete event simulation language.

what capability is actually being added with a
"non-monotonic decide node"? First, the
application of non-monotonic logic must be
understood. Elaine Rich's (1983) description
is the basis for this discussion. In this
particular case systems based on predicate
logic constructs are monotonic in the sense
that the numbexr of statements known to be true
is strictly increasing over time. New
statements can be added to the system and new
theorems can be proved, but neither of these
events will ever cause a previously known or
proven statement to become invalid. The
addition of a piece of information which
forces the deletion of a previous belief is a
non-monotonic reasoning process. Considexr the
following example:

A company starts a project from ground-zero
with a bucket of money. In the beginning, the
money 1s spent on research and development
during which time no profits are realized.
From an accountants view the project is still
in the black, but decreasing (Figure 3).

At time @ the project could be evaluated as
"GOOD" based on the financial criteria of
positive cash balance. As the project
proceeds, the beliefs which form the basis for
financial criteria change (non-monotonically).
At time period 3, the project may still be
evaluated "GOOD" because the fact that further
capital outlay is not necessary and a return
on investment is expected shortly. Although
at period 3 the direct evaluation of the
financial criteria yields a negative cash
balance, this evaluation must also be

considered within context of the overall
system.

This example illustrates the use of
qualitative non-monotonic decision ability.
As long as the financial evaluation is
"GOOD", the project continues. However, as
the project continues the beliefs which
support the financial evaluation change,
affecting previous beliefs and assumptions.

The SIMAN (tm] language will be used as the
basis for the quantitative simulation
environment. An existing simulation
environment will be used because it is:

1. currently available

2. optimized

a) algorithmically from the experience of
the programming company and its
consulting experience

b) compiled for high machine efficlency in
a specific hardware configuration

3. proven to work if used properly
(hence validation efforts can focus on
the modifications resulting from a
hybrid operation with the embedded
symbolic language)

Lisp and Prolog will provide the symbolic
processing capabilities for this
investigation. Most previous work has been
coded in Lisp or Prolog, therefore collected
expertise in the form of dialect specific
knowledge representation can be found in the
literature. The user must understand the
five types of basic knowledge necessary to
completely model a real-world system. A
frame based approach similar to the object
oriented paradigm will be used to simplify
user understanding.

The five types of basic knowledge necessary
to completely model a real-world system are
identified in Figure 4. The "objects"
referred in this definition may be:

1. physical entities with attributes

2. rules with instantiated variables

3. structure of active intellect with at
least one unbound variable

The specific outcome targeted is a frame-
based qualitative non-monotonic decision
ability added to an existing general purpose
discrete event simulation langquage. This
ability will be provided as a "decide" node
added to the simulationist's tool box. 1In
the previous example, the decide node would
have been used to monitor the system from a
financial viewpoint. If the system was
evaluated as "GOOD" no alterations would
occur. However, at some time if the
qualitative financial evaluation was "not-
GOOD" a flag would be raised, and furtherx
processing could occur.

The generic "decide" node will:

A. make assumptions based on the
-- current global state of the system
—-- overall system performance
-- trend of global system
-- trend of components or modules of system

B. revise the "belief-set" based on
assumptions (and their applicability) and
reasoned beliefs

C. allow decisions to affect the five basic
types of knowledge listed in Figure 4

Representation Representation
entity use
1. systemcevvvevenseees... ithe state}

2. object, ciiiveriiirtencennees i8elf ruletl
3. object, <==> system {stimulus and
behavior}
4. object, <==> objecty; {interaction}
5. simulation objectives
and/or experimental
goals .c.iveiiirsearsasansssireason for
existence}

Figure 4: Simulation entities and the type of
knowledge construct they represent

Point A is consistent with the spirit of a
closed-loop simulation environment. Point B
is a derivative of Doyle's work (Doyle:79) on
applied non-monotonic logic encompassed in a
"Pruth Maintenance System". Filman (1988) has
investigated this approach within the context
of IntelliCorp's KEE [tm] language. Although
this attempt is not generic, the approach has
proven to be beneficial. Point C is an
extension of the object oriented approach to
control via messages. Execution is not
dependent on messaging (the execution is still
driven by the traditional simulation engine),
but parameter adjustment can occur as a result
of pseudo-message passing. The "decide" node
is a system/entity monitor capable of altering
the control of an execution based on
assumptions, beliefs, and knowledge
application.

CONCLUSION

The problem of efficiently combining a non-
deterministic decision capability to a current
discrete event simulation lanquage can be
solved by using the "decide" node. This node
is based on the need to represent changing
qualitative evaluators. The "knowledge®
behind the evaluators has been identified, in
relative terms, in Figure 1. We have
stipulated three separate structures and
combination methodologies (classifications)
based on source code interaction. Using these
identifications of knowledge and
classifications a solution environment
currently being pursued at Arizona State
University's Systems Simulation Lab has been
described., Future research will provide

361

insight into the applicability of the
"decide" node and performance of the proposed
implementation.

ACKNOWLEDGEMENTS
Kolseth, Camala, McDonnell Douglas Helicopter
Company

.

Krecker, Elizabeth, Skyword Marketing.

REFERENCES

Appleton, Daniel S. (1984), "Business Rules:
The Missing Link," Datamation, October
15th, pp 145-154.

Balci, Osman and Nance, Richard A. (1987),
"Simulation Model Development Environments:
A Research Prototype", Journal of
Operations Research Society, V38:N8, pp
753-763.

Banks, Jerry and Carson, John S. (1984),
"Discrete-Event System Simulation,"
Prentice~Hall, Englewood Cliffs, New
Jersey.

Brownston, L., Farrell, R., Kant, E., and
Martin, N. (1985), "Programming Expexrt
Systems in OPS5: An Introduction to Rule-
Based Programming," Addison-Wesley,
Reading, Massachusetts.

Clocksin, W.F., and Mellish, C.S. (1984),
"Programming in Prolog," Second Edition,
Springer-verlag, Berlin, Heidelbergq.

Cochran, J.K., and Mackulak, G.T. (1987),
"Low Cost Artificial Intelligence Can Aid
Design and Simulation," CIM Review, V3:N3,
pp 33-36.

Cochran, J.K., Mackulak, G.T., Castillo, D.,
and bu, E. (1987 Jan), "Configuring
Available Software Into an AI/ES
Environment for Automated Manufacturing
Simulation Design on the PC," SCsS
Conference on Simulation of Computer
Integrated Manufacturing Systems and
Robotics, San Diego, California, pp 1-7.

Dahl, 0.J., and Nygaard, K. (1966 Sep),
"SIMULA - an ALGOL-based Simulation
Language," Communications of the ACM,
VI:N9, pp 671-678.

Doyle, Jon (1979), "A Truth Maintenance
System", Artificlal Intelligence, V12:N3,
pp 231-272.

Filman, Robert E. (1988 Apr), "Reasoning with
Worlds and Truth Maintenance in a
Knowledge-~Based Programming Environment",
Communications of the ACM, V31:N4, pp 382-
461.

Futo, Ivan, and Gergely, Tamas (1986 Jul),
"Logic Programming in Simulation,”
Transactions of the Society for Computer
Simulation, V3:N3, pp 195-216.

Géldberg, A., and Robson, D. (1983),
"Smalltalk-80: The Language and its
Implementation," Addison-Wesley, Reading
Mass.

Hong, Suck-Chul, Cochran, J., and Mackulak,
G. (1988), "specification of an Architecture
for Intelligent Simulation Environments",
Arizona State University Systems Simulation
Lab (available in the 1989 Multi-Conference
Proceedings).

Intellicorp (1985), SIMKIT (tm) User's
Manual, Intellicorp, Inc., Melno Park,
California.

McArthuxr, David, and Klahr, Philip (1982),
#The ROSS Language Manual," Report N-1854-AF,
Rand Corp., Santa Monica, California.

O'Keefe, Robert (1986 Jan), "Simulation and
Expert Systems ~ A taxonomy and some
examples," Simulation, 46:1, pp 1d-16.

Pegden, C. Dennis (1985 Jul), "Introduction
to Siman with Version 3.0 Enhancements,"
Systems Modeling Corporation, State College,
Pennsylvania.

Pritskex, A. Alan B. (1986), "Introduction to
Simulation and SLAM II," Third Edition,
Halsted Press, New York.

Reddy, Y.V., and Fox, Mark S. (1982 sep),
YKBS: An Artificlal Intelligence Approach to
Flexible Simulation," Technical Report,
.Carneglie-Mellon University, Robotics
Institute, CMU-RI-TR-82-1 SDL #495.

Rich, Elaine (1383), "Artificial
Intelligence," McGraw-Hill, New York.

Rosenblit, Jerzy W., and Zeigler, Bernard P.
{(1985), "Concepts for Knowledge-based System
Design Environments," Proceedings of the 1985
Winter Simulation Conference, pp 223-231.

ﬁuiz—Mier, Sergio, and Talavage, Joseph (1987
Apr), "A hybrid paradigm for modeling of
complex systems," Simulation, 48:4, pp 135-
141.

Umphress, bavid Ashley (1987), "Model
Execution in a Goal-Oriented Discrete Event
‘Simulation Environment," Phd Dissertation,

i Texas A&M University.

winston, Patrick Henry and Horn, Berthold

' (1984), "Lisp", Second Edition, Addison-
‘WESley, Reading Massachusetts.

|

ieigler, Bernard P. (1987 Nov),

: "Hierarchical, modular discrete-event
'modelling in an object-oriented environment,"
Simulation, 49:5, pp 219-234.

362.

AUTHOR BIBLIOGRAPHIES
Jordan Snydex

Industrial & Management Systems Engineering
College of Engineering

Arizona State University

Tempe, Arlzona 85287

(602)965-3185

Jordan Snyder 1s a graduate student in the
School of Industrial Engineering and
Management Sciences at Arizona State
University (ASU) and a Manufacturing Systems
Engineer at Motorola Inc. He received his
Bachelors degree in Mechanical Engineering
from ASU. Jordan is currently a member of the
System Simulation Laboratory. His overall
research interest is the application of
artificial intelligence algorithms to
traditional simulation languages in an
attempt to decrease the knowledge/experience
necessary to construct and execute a model.
Jordan's primary thrust is the application of
reasoning/belief algorithms to aid in
qualitative decision processing.

Gerald T. Mackulak, Phd.

Industrial & Management Systems Engineering
College of Engineering

Arizona State University

Tempe, Arizona 85287

(662)965~6904

Dr. Mackulak is currently an Associate
Professor of Engineering in the Department of
industrial and Management Systems Engineering
at Arizona State University (AsSU). He is
also Director of the Systems Simulation
Laboratory (SSL), a newly created laboratory
within the CIM Systems Research Center. The
8SL has as its' charter the development of
new simulation tools and methodologies, with
specific concentration in the areas of expert
systems and statistical post-processing. Dr.
Mackulak received all his degrees from Purdue
University in the area of Industrial
Engineering. Before joining ASU eight years
ago he held positions with U.S. Steel,
Burroughs, and the simulation consulting firm
of Pritsker and Associates. Dr. Mackulak has
published extensively in the area of CIM
Integration methods and has taught both
public and private seminars on CIM system
integration, simulation and economic
Justification of CIM implementations. His
current research is centered around
developing expert systems that enable even
novice users to effectively use simulation.

363

