Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

One system, several perspectives, many models

James O. Henriksen
Wolverine Software Corporation
7630 Little River Turnpike, Suite 208
Annandale, VA 22003-2653

ABSTRACT

This paper is a teaching piece. It is the latest in a series of
papers by the author on the general subjects of modeling and
problem solving. (See (Henriksen 1981), (Henriksen 1986), and
(Henriksen 1987).) For the third year in a row, Dr. Alan Pritsker is
also presenting a paper in a very similar vein. (See (Pritsker 1986),
(Pritsker 1987) and (Pritsker 1988).) Section 1 presents a classic
modeling problem first considered around the turn of the century
(Lanchester 1916), long before the advent of digital computers. The
system considered is a simplified battle between two opposing
infantry forces. In subsequent sections, the battle is viewed from
both a discrete-event and a continuous perspective. For each
pexspective, a variety of models is presented, and the comparative
strengths and weaknesses of the various models are compared. For
the student of modeling, the variety of models hammers home the
point that for most modeling problems, one should consider several
alternative perspectives before building a model.

1. STATEMENT OF THE PROBLEM

The objective of this exercise is to build a model to predict the
number of red soldiers expected to survive a battle between red and
blue armies of given initial sizes. The following simplifying
assumptions are made:

A. Combat is waged entirely by riflemen, firing at long
range. As a consequence of this assumption, a rifleman can
aim with equal ease at any (uniformly) randomly chosen
adversary.

B. No two soldiers ever select the same target. (In a real
battle, some casualties would be hit by more than one bullet,
particularly when their army was overwhelmed.)

C. The battle is fought until one side is completely
annihilated. (There are no prisoners taken.)

D. Every shot fired is lethal. In a real battle, non-zero
probabilities would exist for completely missing a selected
target and for inflicting non-lethal wounds.

E. Every shot, and the resulting fatality, is instantaneous. As
a consequence of this assumption, a soldier cannot shoot "on
the way down."

F. Thered and blue armies are equally efficient, i.e., neither
side has an advantage in marksmanship.

2. DISCRETE-EVENT SIMULATION MODELS
2.1 The "Active Soldier" World-View

A system such as a military battle can be viewed from a variety
of perspectives. One very natural perspective which can be
implemented straightforwardly in almost any discrete-event
simulation language is to view system behavior through the eyes of
the individual soldier. The behavior pattern of a soldier is as
follows:

A. Select an enemy soldier to aim at.
B. Aim and fire.
C. Remove the enemy soldier from the model.

D. Repeat this behavior pattern as long as "I" (the individual
soldier) am still alive and any enemy soldiers remain.

In the above behavior pattern, simulated time must elapse
during steps A and B. Since the soldier executing the behavior
pattern is himself a potential target, on any given iteration of the
behavior pattern, he may not make it to step C. To properly handle
the demise of a soldier, two approaches are possible:

A. Some form of preemptive scheduling can be used to
"unschedule” a soldier's scheduled completion of activity A or
activity B, replacing this activity with an impromptu exit from
the model.

B. Insome discrete event languages, preemptive scheduling
may present implementation difficulties. As an alternative, a
“fatality switch" variable could be included for each soldier.
Step C of the behavior pattern could then be expanded to
include setting the fatality switch forthe enemy soldier, and a
step could be inserted between steps B and C to have the
soldier test whether his own fatality switch has been set by an
enemy soldier. If he found his own switch set, he would exit
the model. This exit would be "late," in the sense that
simulated time would have elapsed between the setting of the
switch and the soldier's reaction to that unfortunate event, Late
recognition of the switch setting wouldn't make any difference
to the operation of the model, since the soldier would exit prior
to inflicting another enemy casualty. For an expanded
treatment of this sort of alternative to preemptive scheduling,
see (Henriksen 1987).

2.2 The View from Above
Consider the perspective of an imaginary observer looking

down on the battle from above. From this perspective, the battle
appears as follows:
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A. Observe which side fires next.
B. Reduce the size of the opposing army by one soldier.

C. Continue this behavior pattern until one side has been
annihilated.

At any given time, "who fires next" is a uniformly distributed
random variable, determined by the ratio of the remaining sizes of the
opposing armies. For example, if 100 red soldiers and 50 blue
soldiers remain, the probability that a red soldier is the next to fire is
2/3. In general, if there are r red soldiers and b blue soldiers, the
probability of a red soldier firing next is r/(r+b) and the probability of
a blue soldier firing next is b/(r+b). With each shot fired, this
probability changes. Thus if many battles are simulated, even a
badly outnumbered army will occasionally win, if it has a "streak of
good luck."

This world-view enables an important simplification of the
simulation model: time becomes irrelevant. By using a uniform
distribution to model "who fires next," we determine the sequence in
which casualties occur. This sequence is time-independent. This
allows us to replace our simnulation model with a Monte Carlo model,
i.e., a model which performs random sampling, but includes no time
delays.

3. A DISCRETE PROBABILITY MODEL

Although the Monte Carlo model of section 2.2 is a distinct
improvement over the simulation model of section 2.1, further
simplifications can be made. Our objective is to compute the
expected number of red soldiers to survive the battle. Let Er(r,b)
denote the expected number of red soldiers to survive a battle
between r red soldiers and b blue soldiers. For any r and b, Ex(r,b)
can be computed as the sum of Er(r,b-1) and Er(r-1,b), with each
expectation weighted by its probability of occurrence. Er(r,b-1) is
the expected number of red soldiers to survive, given that the next
fatality is a blue soldier. The probability that a blue soldier is the
next fatality is r/(r+b). Likewise, Er(r-1,b) is the expected number
of red soldiers to survive, given that the next fatality is a red soldier.
The probability that a red soldier is the next fatality is b/(r+b). Thus
Er(r,b) can be expressed as follows:

Er(r,b) = Er(r,b-1) * (t/(x+b)) +
Er(r-1,b) * (b/(r+b))

Note that the above definition of Er(r,b) is recursive; i.e., if we
write a function to evaluate Er(r,b), in the process of calculating the
value of Er(r,b), we must invoke Er(r-1,b) and Er(r,b-1). Writing
such a function is easy in languages which directly support
recursion, e.g., the "C" language. In languages such as Fortran,
recursive functions cannot be written directly. Ease of
implementation notwithstanding, recursive functions always require
one or more terminating conditions. For Er(r,b), the terminating
conditions are as follows:

Er@,0) =r
Er(0,b)=0

An example of a recursive function for evaluating Er(r,b),
written in C, is shown in Figure 1. Much faster, non-recursive
evaluation of Er(r,b) is possible by first evaluating and saving the
values of Er(1,0),....Er(1,b), and then evaluating and saving the
values of Er(2,0),...,.Er(2,b), etc. Note that Er(2,j) is a function of
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Ex(1,j) and Er(2,j-1), both of which can be computed and saved in a
vector of length b prior to evaluation of Er(2,j).

4. A CONTINUOUS SIMULATION MODEL

Thus far, our combat models have assumed that attrition occurs
in discrete steps (individual fatalities). With some loss of accuracy,
attrition can be viewed as a continuous process. Accuracy is lost by
ignoring random variation. Loss of accuracy is discussed in section
6, below.

The rates at which r and b change over time are as follows:

dr
—=-Kb
dt
db
—=-KXr
de

The differential equations shown above can be interpreted in
words as follows:

The instantaneous attrition rate for the red (blue) army is the
number of casualties inflicted per unit time by the blue (red)
army, which is proportional to the current size of the blue (red)
army. For example, K might equal 10 fatalities / minute /
soldier. Thus, if b = 1,000, dr/dt = -10,000 soldiers / minute.

Modeling the above differential equations is a trivial exercise in
virtually any continuous simulation language. Because the equations
are simple and "well-behaved,” a hand-coded implementation of
Euler's method could also be written very quickly. (Euler's method
is the simplest of all integration methods. For a given value of x,
f(x+h) is approximated by f(x) + h f '(x), where h is a "small"
increment, which is the step size of the algorithm.)

5. THE LANCHESTER N-SQUARE LAW

In (Lanchester 1916), Frederick William Lanchester, a British
mathematician, presented a mathematical analysis of combat which
has become famous in military modeling circles. Lanchester
considered red and blue armies of unequal efficiency. Using M as
the efficiency of the blue army and N as the efficiency of the red
army, he expressed the following differential equations:

db
— =~ Nr* constant
dt
dr
—=- M b * constant
dt

For conditions of equality of forces, he reasoned that the
attrition rate of the red army, divided by the size of the red army,
must equal the attrition rate of the blue army, divided by the size of
the blue army. For example, a red army of 10,000 soldiers losing
1,000 soldiers per hour is equal to a blue army of 20,000 losing
2,000 soldiers per hour. In other words,



bdt rdt
or
~Nr * constant -M b * constant
_-__----_-__;__-- = ___,_-_-_---.r.._-_-
or
Nr*r=Mb*b

In Lanchester's words, “the fighting strength of a force may be
broadly defined as proportional to the square of its numerical
strength, multiplied by the fighting value of its individual units."
Lanchester further reasoned as follows, for forces of equal
efficiency:

dr b

b r
Therefore,

rdr=bdb

If one assumes arbitrarily small values for dr and db and
considers the reductions in fighting strength Which result when
armies of sizes r and b are reduced to sizes (r-dr) and (b-db),
respectively, red fighting strength is reduced from r*r to (r-dr)*(r-
dr), and blue fighting strength is reduced from b*b to (b-db)*(b-db).
Expanding the expressions for reduced strengths yields the
following:

(r-dr) * (r-dr)
(b-db)*(b-db)

= r¥*r-2rdr+dr¥dre
= b*b-2bdb+db*db

Since dr and db are arbitrarily small, the dr*dr and db*db terms
above can be ignored. Since we know that r dr = b db, we can see
that the strengths of the red and blue armies are reduced by the same
amounts, 2 r dr = 2 b db. Therefore, for given sizes r and b, r*r -
b*b is constant, or r*r - c¥¢ = b*b,

If we assume that the red army is larger than the blue army, the
blue army will always be annihilated under the Lanchester
formulation. Therefore, for starting sizes of R and B, when b goes
to zero, the final strength of the red army will be given by
SQRT(R*R - B*B).

6. COMPARISON OF RESULTS

Programs were written to implement four of the models
discussed above. The discrete event simulation models were written
in GPSS/H, and the remaining three programs were written in C.
‘The GPSS/H models were run for 50 replications, to get
"reasonable” results. The results from running these programs are
shown in Table 1.

The following observations are offered on the results shown in
Figure 1:

A. For armies of equal size, the continuous models predict
zero survivors for both sides. This is because the continuous
view of this problem ignores random variations. In the real
system, "lucky streaks" occur, dramatically affecting the
outcome of a battle. Thus, in the real system, the expected
number of survivors, taken over many battles, is greater than
zero for equally matched sides. For armies of significantly
different sizes, all models produce roughly equivalent results.

B. The discrete probability model calculates exact results, but
for large army sizes, the CPU time taken may become
prohibitively large, since it is proportional to the product of the
initial sizes. In addition, when large sizes are used, the
computation of expectations may result in floating point
underflows, since the probabilities can become exceedingly
small.

C. The active soldier simulation model consumes the most
CPU time, by a long shot. In addition, it requires large
amounts of computer memory (to represent each and every
soldier).

D. Results achieved by explicitly integrating differential
equations converge to the Lanchester result as the step size of
the integration method is made smaller. A more sophisticated
integration method would have. consumed far less CPU time
than the simple Euler's method employed.

7. CONCLUSIONS
7.1 A Multiplicity of Models

The military system we have considered in this paper has been
viewed from both discrete and continuous perspectives. Using the
discrete perspective, a straightforward model, a more abstract model,
and a probability model which produces a calculated, exact answer
have been presented. Using the continuous perspective, the explicit
integration of equations and a closed-form solution have been
presented. In closing, we will compare the models on the basis of
fidelity, elegance, execution speed, and ease of modification.

7.2 Fidelity

The continuous models presented in this paper embody a
known departure from reality: fatalities occur in discrete units (of 1)
at discrete instants in time. Fatalities are not an inherently continuous
process. Nevertheless, adopting this viewpoint fails only when
modeling armies of nearly equal size. When armies of considerably
differing sizes are compared, all the models produce results which
are sufficiently faithful to the operation of the "real" system.

7.3 Elegance

The "Active Soldier" discrete event model is totally inelegant; it
is a "brute force" model. By contrast, the Lanchester formulation is
the quintessence of elegance. While the explicit evaluation of
discrete probability expectations is also an elegant approach, this
method is costly and possibly computationally infeasible (due to
floating point underflow problems) for large sizes of opposing
armies. The "View from Above" discrete event model is an
interesting midpoint on the scale of elegance. It is more abstract and
more computationally efficient than the "Active Soldier” model, but
is not nearly as appealing as either the Lanchester or discrete
probability models.
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double expect (nred, nblue) /* Recursive function */
int nred,
nblue;
{
if (nred == 0)
return(0.0);

if (nblue == Q)
return nred;

return expect (nred, nblue-1) * nred + expect (nred-1, nblue) * nblue) /
(nred + nblue);
} /* End of expect (nred, nblue) */

Figure 1 - Recursive Calculation of Expected Number of Survivors

Table 1 - Comparison of Results

100 Red vs. 100 Blue 1000 Red vs. 750 Blue

Red CPU Time Red CPU Time
Survivors (Seconds) Survivors (Seconds)
Discrete Event Simulation 15.5 36.17 659.5 286.85
"Active Soldier View"
Discrete Event Simulation 16.0 12.08 664.9 29.54
"View from Above"
Discrete Probability Model 16.5 2.01 660.5 135.56
(Fast, Non-recursive)
Explicit Integration of 0.0 1.44 661.4 1.44
Differential Equations
Lanchester N-Square Law 0.0 insig 661.4 insig
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7.4 Execution Speed

It is interesting to note that the least sophisticated model has the
longest running time, and the most elegant model consumes an
insignificant amount of CPU time. This is as life should be, where
virtuosity, if not virtue, is properly rewarded.

7.5 Ease of Modification

Suppose that one wanted to build a more realistic model of a
military battle. If this were the case, some of the simplifying
assumptions made in section 1 would have to be eliminated. For
example, the assumption that no two soldiers ever select the same
target is very unrealistic, particularly when their side overwhelms the
enemy. The more abstract a model is, the more difficult it is to
extend the model to add additional fidelity to a complex system. For
example, extending Lanchester's mathematics would be very difficult
for most modeling practitioners. By contrast, the simplest model,
the "Active Soldier" model, is the easiest to modify. This.model is a
rather uninspired direct program ‘analog of the system being modeled;
i.e., the logic of the simulation program parallels the logic of the
system in an obvious manner. There is, in principle, no limit on the
extent to which a program can be modified. In reality, practicality
dictates upper bounds on program size and complexity, particularly if
the programs are poorly structured to begin with.

The conclusions reached in this paper are very similar to those
reached in (Pritsker 1986). Readers (and particularly students and
teachers of modeling) who are interested in further examples should
read or reread Pritsker's paper as well.

REFERENCES

Pritsker, A. Alan B. (1986) Model Evolution: A Rotary Index Table
Case History. In: Proceedings of the 1986 Winter Simulation
Conference (J. Wilson, S. Roberts, J. Henriksen, eds.). Society
for Computer Simulation, San Diego, California, 703-707.

Pritsker, A. Alan B. (1987) Model Evolution II: An FMS Design
Problem. In: Proceedings of the 1987 Winter Simulation
Conference (A. Thesen, H. Grant, and W. D. Kelton, eds.).
Society for Computer Simulation, San Diego, California,567-
574.

Pritsker, A. Alan B. (1988) Modeling Viewpoints for Assessing
Reliability. In: Proceedings of the 1988 Winter Simulation
Conference (M. Abrams, P. Haigh, and J Comfort, eds.).
Society for Computer Simulation, San Diego, California,

Henriksen, James O. (1981) GPSS - Finding the Right World-View.
In: Proceedings of the 1981 Winter Simulation Conference (T. L
Oren, C. M. Delfosse, and C. M. Shub, eds.). Society for
Computer Simulation, San Diego, California, 505-515.

Henriksen, James O. (1986) You Can't Beat the Clock: Studies in
Problem Solving. In: Proceedings of the 1986 Winter
Simulation Conference (3. Wilson, S. Roberts, J. Henriksen,
eds.). Society for Computer Simulation, San Diego, California,
713-726.

356

Henriksen, James O. (1987) Alternatives for Modeling of
Preemptive Scheduling. In: Proceedings of the 1987 Winter
Simulation Conference (A. Thesen, H. Grant, and W. D.
‘Kelton, eds.). Society for Computer Simulation, San Diego,
California.

Laﬁchester, Frederick William (1916) Mathematics in Warfare
Reprinted in: The World of Mathematics (James R. Newman,
.ed.). Simon & Schuster, New York, New York.

AUTHOR'S BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation, which he founded in 1976 to develop and
market GPSS/H, a state-of-the-art version of the GPSS language.
Since its introduction in 1977, GPSS/H has gained wide acceptance
in both industry and academia. From 1980-1985, Mr. Henriksen
served as an Adjunct Professor in the Computer Science Department
of the Virginia Polytechnic Institute and State University, where he
taught courses in simulation and compiler construction at the
university's Northern Virginia Graduate Center. Mr. Henriksen is a
mefmber of ACM, SIGSIM, SCS, the IEEE Computer Society,
ORSA, and SME. A frequent contributor to the literature on
simulation, Mr. Henriksen served as the Business Chairman of the
1981 Winter Simulation Conference and as the General Chairman of
the 1986 Winter Simulation Conference. He presently serves as the
ACM representative on the Board of Directors of the Winter
Simulation Conference.

James O. Henriksen
‘Wolverine Software Corporation
7630 Little River Turnpike, Suite 208
Annandale, VA 22003-2653

(703) 750-3910



