Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Implementation parallelized queueing network simulations using
FORTRAN and data abstraction

Keith W. Miller
David M. Nicol
Department of Computer Science
The College of Willlam and Mary
Williamsburg, Virginia 23185

ABSTRACT

Researchers experimenting with simulation on novel computers
with parallel architectures must contend with numerous disadvantages:
limited availability of programming tools, unique synchronization
problems when implementing the simulation, and unexpected interac-
tions between elements of the simulation and characteristics of the
underlying computer. Since FORTRAN is likely to be available on
the computer and familiar to the researcher, it may be the most logical
candidate for coding the simulation. However, FORTRAN does not
enforce data abstraction, a useful tool in specifying, designing, and
implementing a simulation effort. FAD is a FORTRAN preprocessor
which allows the encapsulation of user-defined abstract data types.
Data abstraction and FAD is illustrated in the simulation of a queueing
network. The separation of concerns between a simulation expert
("the user") and an expert in exploiting a parallel architecture ("the
implementor") has benefits for both.

1. INTRODUCTION

Despite many alternatives, FORTRAN remains a much-uscd
language in simulation. Its advantages include wide availability, well
developed compilers, and large subroutine libraries for many applica-
tions. The specialized nature of constructing simulations that execute
on certain parallel architectures may well be restricted to a widely
available general purpose language like FORTRAN, because only such
languages are supported on many of these machines,

FORTRAN is an old language, and lacks many facilitics that
would be useful in large simulation programming projects. Because
of FORTRAN’s drawbacks, some researchers have counscled using
other general purpose programming languages (e.g., L'Ecuyer and
Giroux (1987) suggest Modula-2), preprocessors (GPSS, SIMSCRIPT,
SLAM, and so on), and large collections of FORTRAN librarics.
Each of these suggestions has advantages and disadvantages (for a
lively presentation of the issues, see Brately, Fox and Schrage (1983)),
but for many parallel machines, such arguments are moot - FOR-
TRAN may be the only or one of a few high level languages avail-
able. In addition, FORTRAN has some advantages in programming
the minute details essential to implementing complex algorithms on
paratlel architectures. Unfortunately, it is precisely these details that
make the resulting code difficult to write, read, and debug, especially
when the details of parallel implementation are interleaved with details
of the simulation application.

1.1. FORTRAN and Abstract Data Types for Simulation

We propose to combine the utility and familiarity of FORTRAN
programming with the information hiding features of more modem
programming languages to facilitate high level programming of simu-
lations that are to be executed on parallel architectures. Our approach
is to implement high level data objects, called abstract data types, and
then make these implementations available in a controlled FORTRAN
programming environment that enforces information hiding. The goal
is to spare simulation modelers from the intricacies of parallel archi-
tectures by constructing a software interface that hides these details of
implementation. When this interface is propeily specified and imple-
mented, a simulation modeler can concentrate on simulation problems

333

instead of parallel algorithms. On the other side of the information-
hiding barrier, the expert in parallel programming can use the interface
as a precise guide to the services required by simulation users.

There are a plethora of simulation languages available, many of
which are FORTRAN-based. For a recent survey, see Kreutzer
(1986). Before discussing yet another strategy for simulation program-
ming, it seems reasonable to defend its creation. Qur emphasis on
using FORTRAN and abstract data types is intended to give simula-
tion programmers detailed control without artificial restrictions. When
using pre-packaged simulation languages or collections of subroutines,
the programmer may be forced to use inappropriate tools because the
task at hand was not anticipated by the authors of the language or sub-
routines. This problem is especially acute when experimenting with
novel computer architectures, where familiar "tricks of the trade” in
simulation programming no longer apply. In this paper, we describe a
technique for building new tools, as the need arises, without confusing
the tools with the goals of the simulation itself. Many general pur-
pose languages could be used with this programming strategy, but in
this paper we focus on FORTRAN because of its wide availability and
the many experienced FORTRAN programmers involved in simula-
tion.

An encapsulated abstract data type (ADT) is a collection of data
declarations and routines (subroutines and functions in FORTRAN)
that manipulate instances of the abstract data type. The user of an
ADT can declare instances of the encapsulated type and can access
these instances using the ADT routines. However, the user cannot
access the instances directly - the implementation details, including the
data structure and algorithms used, are hidden from the user. The
ADT concept is closely related to work by Parnas (1979) on informa-
tion hiding. An Ada package, a SIMULA class, and a CLU cluster
are all language facilities that have been used for data type encapsula-
tion (Ghezzi and Jazayeri 1987).

FORTRAN does not allow a programmer to encapsulatc new
data types. Algorithms can be hidden by distributing object code
without source code, but in order to use a subroutine or function a
programmer must know in precise detail how each piece of data is
represented. This distribution of representational information defeats
one of the major goals of ADTs - the localization of implementation
information. This localization is particularly useful when implementa-
tion details are likely to change. In some simulation applications,
such change is an essential part of a project. In this paper we will
concentrate on onc such application, parallclized simulations of queue-
ing networks.

L2. An OQutline of the Paper

In the following scction we introduce a FORTRAN preprocessor,
called FAD (FORTRAN Abstract Data). FAD cnables a programmer
to create new data types by storing data declaration information and
routines in a database. Once an ADT is defined in FAD, FORTRAN
programmiers can declare instances of this type in a manner similar to
traditional FORTRAN dcclarations. They can also manipulate these
instances via calls to the FAD routincs. However, the preprocessor
prohibits any direct manipulation of instances of FAD ADTs. Using
the FAD preprocessor, a FAD implemenior cncapsulates these new
data types for FORTRAN programmers. (For more defails about
FAD, sce Miller, Morell, and Stevens (1989)). The scction describes



how a FAD user might describe, at a high level of abstraction, the
behavior of a queucing network using several ADTs and ADT opera-
tions.

In the third section we discuss the implementation of thé ADTs
that specify a queueing network. The implementation process could
be repeated for any environment that includes a FORTRAN compiler.
Serial machines, shared-memory or distributed-memory multiproces-
sors could all support the same high level ADTs. When the ADTs are
properly implemented, the FAD user’s software could run on all these
machines without changing the code that manipulates the ADTs. ' Any
differences in the underlying machines and the algorithms that take
advantage of these differences would be encapsulated in the FAD
implementations.

The final section of this paper discusses the implications of FAD
for other simulation applications, and suggests future research direc-
tions. Three appendices give examples of ADT routines.

2. DESCRIBING A QUEUEING NETWORK

We propose to separate the task of programming a parallelized
simulation of a network of queues into two distinct phases:

(1) Specifying the behavior of the network without regard to the
data structures used to represent the network or the architecture
on which the network will be simulated.

Coding the implementation details necessary to realize the
behaviors defined in step 1,

The specification of the network behavior will be assigned to a
"FAD user" who exploits ADTs made available by the "FAD imple-
mentor.” The FAD implementor must determine how to deliver the
required ADT behavior using the FORTRAN virtual machine and the
underlying hardware available in a particular environment. Further-
more, the implementor has total control over such decisions as data
structures, scheduling algorithms, and the like. However, the FAD
implementor need not be concemed about any details of the particular
network being simulated.

The rest of this section describes a set of ADTs that can be used
to specify a network of queues. For the sake of brevity, we will res-
trict our attention to a limited subset of possible queueing networks.
Although this subset has its limitations, its specification and imple-
mentation provides a realistic demonstration of the utility of the pro-
posed techniques.

The ADTs and associated routines are described here in English.
However, an advantige in using ADTs is that more formal
specifications can be produced. For more information concerning the
formal specification of ADTs, sece Pamas (1977) and Guttag and
Homing (1978).

@

2.1, A Model for Queueing Network Simulations

We propose the following model for the high level definition of
a queueing network simulation:

(1) A network is made up of sources, queues, and directional links.

(2) Each source is connected to at most one queue. A queue may
be linked to other queues or with a link that loops back to the
queue itself. (A queue that has no links to other queues is a spe-
cial case called a "sink.")

Sources generate jobs according to a distribution. These jobs
move through the network along the directional links. The crea-
tion time of a job is noted.

When a job arrives at a queue, its arrival time is noted, it is
assigned a service time according to a distribution, its destination
after servicing is determined according to another distribution,
and then the job is enqueued.

The next job to be serviced is determined by the queueing dis-
cipline. After servicing, the job is sent to its next destination (f
one exists) and the job is removed from the queue. The exit

©)

@

©)]

334

time is recorded. The exit time from this queue is equal to the
arrival time in the destination queue.

There are several elaborations. that would be useful for particular
simulations. For example, this mode] assumes no communication time
for moving a job from a source or queue to a queue. No blocking
queues are allowed. We will also ignore the possibility of priority
jobs, load dependent service times, and precmption in this discussion.
However, our simple model will illustrate our techniques of FAD
implementations, and elaborations can be added without invalidating
the techniques.

If we disregard implementation issues, we can outline a straight-
forward process for specifying a particular queueing network simula-
tion:
(1) Specify the number of sources and the distribution each will use
to generate jobs.

Specify the number of queues, the links between each source and
a queue, and the links between the queues.

For each queue, specify a distribution for determining service
times and a distribution for determining destinations.

@
)

(4) For each queue, specify the queueing discipline.

The word "specify" above refers to definitions of objects and
behaviors. Notice that these four steps say nothing about how the
simulation will be implemented: data structures, number of processors,
and communications protocols are ignored. These details are all
essential to the implementation of the simulation, but are not essential
to the definition of the the simulation itself. Therefore, we assign to
the FAD user the specification of these four steps, and we assign the
implementation of high level queueing data structures and operations
to the FAD implementor.

2.2. Specifying the Network Using ADTs

‘We define four ADTs that define the architecture of the network:
RANDOM DISTRIBUTIONS (RNDDIST), SOURCES, QUEUES,
and NETWORK. Figure 1 describes each of the ADTs.

The ADTs in Figure 1 can be used to specify the first three
aspects of a network listed above. However, the queueing protocol
will require another ADT for jobs in the system, and several opera-
tions for examining and manipulating the jobs in a queue, The ADT
for jobs and the operations are part of the software interface supplied
by the FAD implementor. Figure 2 includes the JOB ADT and exam-
ples of the operations that involve jobs in a queue. Appendix A
includes several other operations.

The operations in Figure 2 emphasize the high level nature of
the FAD users access to the network. Because the FAD user does not
know how a job is to be represented, explicit routines are provided for
accessing the information in a job (e.g.,, SETARR, GETARR). The
ordering of a queue is not known to the user, so routines are provided
that identify jobs with various properties (e.g., FIRST, LONG). Many
of these access routines turmn out to be trivial to implement when a
representation is chosen, so in order to improve the efficiency of the
eventual code, FAD allows an implementor to specify in-line FOR-
TRAN code substitutions for FAD routine calls, (For further explana-
tion of FAD in-line substitution, see Miller, Morell, and Stevens
(1989).)

Implementation details of how simulation time is managed can
involve complex issues of synchronization, lookahead, rollbacks, and
the like (see Nicol (1988)). The FAD user docs not contend with these
details. Instead, the FAD user requests that a certain event occurs at a
certain time (e.g., STARTS). Each FAD implementation will deter-
mine how that request is realized. Notice that this separation of con-
cerns has conceptual appeal and practical advantages: the FAD user
can concentrate on the clear, concise specification of the desired proto-
col, uncluitercd by myriad implementation and coding details. On the
other hand, the FAD implementor can concentrate on generally useful
code that embodies sophisticated techniques that would be more
difficult to describe when ticd to a particular application.



ADT: RANDOM DISTRIBUTION (RNDDIST)

DECLARATION: RNDDIST R

INITIALIZATION: SUBROUTINE RNDINI(R,DST,RND,SEED)
This subroutine initializes the random distribution R. RND is a
random number generator function and DST is a distribution func-
tion. SEED is used to initialize the random number function. The
FAD user can either write DST and RND or can use functions
available in the FAD database. In either case, an initialized RND
variable is used by the implementation as a stream of random
values.

ADT: SOURCES
DECLARATION: SOURCES SRCS(n)
where n is the number of sources to be defincd.
INITIALIZATIONS:
SUBROUTINE SRSINI(SRCS, WHEN)
An array of sources, SRCS, is initialized with a distribution func-
tion, WHEN. WHEN controls how often cach source generates
jobs in the network.
SUBROUTINE SRINI(SRC, WHEN)
Identical to SRSINI, except that only one source, SRC, is initial-
ized.

ADT:QUEUES

DECLARATION: QUEUES QS(N)
N is the number of queues in the network.

INITIALIZATIONS:

SUBROUTINE QSINI(QS, SRVDST, OUTDST)
The array of queues, QS, is initialized with two distribution func-
tions, SRVDST and OUTDST. SRVDST ("service distribution™)
controls the service time. Because a queue may have several
different queues to which it can send a completed job, OUTDST
("output distribution") determines the destination of an outgoing
job.

SUBROUTINE QINI(Q, SRVDST, OUTDST)
Identical action to QSINI, cxcept that only onc queue, Q, is initial-
ized.

ADT: NETWORK

DECLARATION: QNET NMAXSRC, MAXQS, MAXIOB)
MAXSRC gives the maximum number of sources that can be
included in the network N. MAXQS gives the maximum number
of queues that can be included in the network N. MAXJOB gives
the maximum number of jobs that can be present in the network N
at any given time.

INITIALIZATION:

SUBROUTINE NETINI(N, SRCS, QS)
The network N is initialized with the sources in the array SRCS
and the queues in QS. Initially, there are no links in the network,
only nodes.

OPERATIONS:

SUBROUTINE S2QLNK(N, S, Q)
An output Iink from a source S to a queue Q is placed into the
network N.

SUBROUTINE Q2QLNK(N, Q1, Q2)
An output link from queue Q1 to quene Q2 is placed into the net-
work N.

SUBROUTINE GOSIM(N, TLAST)
This subroutine initiates the simulation defined by the nctwork N.
TLAST gives the time limit after which the simulation halts. We
assume that the simulation begins at time 0.0, and that TLAST is
a real.

Figure 1. Four ADTs for Specifying a Network of Queues.

335

ADT: JOB
DECLARATION: JOB ]
INITIALIZATION:
a job is always initialized by the FAD implementation.
OPERATIONS:
SUBROUTINE SETARR(J)
Set the arrival time of the job J into its current queue.
REAL FUNCTION GETARR(J)
Returns the arrival time of the job J into its current queue.
SUBROUTINE FIRST(J, Q)
Idcntifies the job that has been in the queue Q the longest, and
copies it into the ADT job variable J (first come, first served).
SUBROUTINE LONG(, Q)
Identifies the job in Q that has the longest service time, and copies
it into J.
SUBROUTINE STARTS(J, Q, T)
Requests the simulation to start servicing a job J in queue Q at
time T.
SUBROUTINE ENDS(J, Q, T)
Requests the simulation to stop servicing a job J in queue Q at
time T.

Figure 2. An ADT for the jobs in a queue.

When specifying the queueing discipline, the FAD user describes
three event handlers and a subroutine for sclecting the next job to be
serviced from a queue. Figure 3 lists the four high level routines.

SUBROUTINE JOBARR(, Q)
Describes the event where a job J arrives at a queue Q.
SUBROUTINE ENTSRV(J.Q)
Describes the event where a job J enters service in a queue Q.
SUBROUTINE JOBXIT(, Q)
Describes the event where 2 job J leaves a queue Q after being
serviced.
SUBROUTINE GETNXT(Q, J)
Given a queue Q, GETNXT identifies which job in Q should be
serviced next. A copy of that job is placed into J.

Figure 3. Routines for specifying a queuveing discipline.

The FAD database includes defaults for these four routines. The
default routines define the first-come-first-served queueing discipline.
When defining other queueing disciplines, some of the defaults may
remain unchanged. For example, the queueing disciplines of longest-
service-time first, shortest-service-time-first, and longest-in- network-
first can all be implemented by changing the GETNXT subroutine but
using the defaults for JOBARR, ENTSRYV, and JOBXIT. Appendix B
shows code for the four default subroutines. This code is written at
the same level of abstraction required of a FAD user. This code
includes calls to exception handling routines that are described in the
next subsection.

2.3. Exception Handlers

There are several error conditions that may occur when a simula-
tion is executing. For each anticipated error condition, the FAD
implementor includes a default subroutine that the implementation
calls when the error occurs, If a FAD user wants a different response
to a particular crror, s/he writes a subroutine with the same name as
the default error handler. The user subroutine takes precedence over
the FAD routine with the same name. Figure 4 includes examples of
error handlers; more are shown in Appendix C.



SUBROUTINE NETOVR(N, S, I)
Called when source S produces job J in net N, but N is already at
its capacity.
SUBROUTINE BADQ(Q)
Called when a FAD user refers to an uninitialized queue, Q.
SUBROUTINE GETMT(Q)
Called when GETNXT is called with an empty queue, Q.

Figure 4. Examples of error handling toutines.

3. IMPLEMENTING QUEUEING NETWORK ADTS

The FAD user describes behavior in terms of high level ADTs.
The FAD implementor determines the data structures and codes the
algorithms that realize that behavior. This section includes examples
of implementation decisions that would be significantly different on
different types of machines. It is exactly this type of decision that is
hidden from the FAD user by ADT encapsulation.

A fundamental decision is how sources, queues, and links would
be represented in specific data structures. On a single processor
machine one reasonable representation would be an adjacency matrix
for sources and queues and a single dimensional array for all the jobs
currently in the system. However, this data structure would be inap-
propriate for a computer architecture that emphasizes message passing
between autonomous multiple processors. In that case, each processor
could manage one or more sources and queues, each of which could
have an entirely local data structure. Links are defined by path destina-
tions stored locally by a queue.

Similar differences arise when considering the implementation of
the simulation manager, and its view of simulation time. Time
management in a ‘serial environment is a well understood problem.
Parallel architectures with queues distributed among processors will
require dramatically different approaches, particularly when an imple-
mentation strives for exploiting the inherent parallelism in simulation
applications (see Nicol (1988)). A processor participating in a parallel
simulation must sometimes block its progress, even if it has pending
cvents. The decisions goveming blocking and unblocking rely on a
synchronization protocol, which typically is complex. The model
builder can be isolated from these synchronization decisions using
ADTs. For example, the ADT routine LONG identifies the job
currently enqueued with the largest service requirements. In a scrial
environment LONG can be executed immediately, In a parallel
environment the processor may not yct have all the information
needed to correctly identify that job---its arrival may not yet have been
reported to the processor by another. Consequently, the parallel
implementation may have to block and eventually unblock the proces-
sor. The ADT implementor is responsible for the correct implementa-
tion of the LONG function, the ADT user is unaware of the added
complications.

Serial and parallel implementations may vary in other ways. In
Nicol (1988) we point out the advantages of pre-sampling job service
times and branching destinations before the jobs actually arrive. In a
serial implementation, the ADT routine GETARR would create the
requested service time; a parallel implementation would have already
created that time---GETARR simply reports it, and then creates other
job characteristics for later arrivals. Again, the ADT implementor
applys the techniques needed for parallelization, the ADT user need
not be aware of these details.

Serial and parallel implementations may also vary in when job
arrival events are posted. A serial implementation will not create an
arrival event for a job at one queue before that job completes service
at the routing queue, Yet, as shown ini Nicol(1988), a parallel simula-
tion can benefit from pre-scheduling job arrivals. A parallel implemen-
tation may consequently create a job arrival event within the ENDS
ADT routine, before the job actually leaves service. A serial imple-

336

mentation of ENDS would not create the job arrival event for the des-
tination queue.

Using the FAD system does not reduce the difficulty of imple-
menting ADT routines, but it does isolate the implementation effort
from the modeling decisions of the FAD user. This gives the FAD
implementor the freedom of experimenting with different data struc-
tures and algorithms without requiring new coding effort from the
FAD users. Even when the FAD user and the FAD implementor are
the same programmer, the FAD preprocessor enforces this separation
of concems automatically, providing a measure of control and discip-
line to the implementation process. Thi§ discipline should result in
making much of the implementation code reusable in different projects
and by different researchers.

The FAD implementor can take advantage of the many subrou-
tine packages already available for simulation. When a routine needed
for the FAD user can be implementéd using an existing routine from
another library, the library can be renamed and placed in the FAD
library or a new FAD routine can call the library routine. Thus, FAD
can provide a well defined, limited interface to existing FORTRAN
code without sacrificing the data type encapsulation benefits alluded to
previously.

4. CONCLUSIONS

Simulations are in themselves complex entities, and specifying a
simulation in any language requires deep understanding of the
behavior being modeled as well as detailed knowledge of the language
used for specification. When the description of a simulation in a pro-
gramming language must inciude the intimate details of a paraliel pro-
cessing computer, the task is daunting. The resulting descriptions (be
they in English, a design language, or a programming language) are
difficult to write, difficult to read, and difficult to maintain.

There are substantial advantages in using FORTRAN to simulate
queueing networks on parallel architectures; most machines have a
FORTRAN compiler, FORTRAN subroutine libraries for simulation
can reduce an implementation effort considerably, and many simula-
tion researchers know FORTRAN. The FAD preprocessor allows
FORTRAN programmers to exploit these advantages but also to use
data abstraction techniques in the design and implementation of simu-
lations. The separation of concems embodied in FAD can be useful
both to simulation experts and experts in parallel architecture; the
information-hiding wall enforced by encapsulated ADTs protects the
FAD user from machine-specific details and protects the FAD imple-
mentor from details specific to any particular simulation.

Our limited experience with using ADT descriptions and FAD
implementations for queueing network simulations has been encourag-
ing, Future research will include expanding the operations available in

the FAD databasc and experimenting with FAD on new architectures.



APPENDIX A: QUEUEING ROUTINES

SUBROUTINE SETARR(J)
Set the arrival time of the job J into its current queue.
REAL FUNCTION GETARR(J)
Retumns the arrival time of the job J into its current queue,
SUBROUTINE SETSRV({J,Q)
Set the service time of the job J using the service distribution of
the queue Q.
REAL FUNCTION GETSRV(J)
Retums the service time of a job J.
REAL FUNCTION GSTIME(Q)
Retumn the next random service time from a queue Q.
REAL FUNCTION GDEST(Q)
Retumns the next random destination for a job leaving a queue Q.
INTEGER FUNCTION JOBCNT(Q)
Retumns the number of jobs currently in a queue, Q.
SUBROUTINE ENQUE(J, Q)
Place the job J into the queue Q.
SUBROUTINE DEQUE(, Q)
Remove the job J from the queuc Q.
SUBROUTINE FIRST(J, Q)
Identifies the job that has been in the queue Q the longest, and
copies it into the ADT job variable J (first come, first served).
SUBROUTINE LAST(J, Q)
Identifies the job that has been in Q the shortest, and copies it into
I
SUBROUTINE OLDEST(J, Q)
Identifies the job in Q that has the earliest creation date, and
copies it into J.
SUBROUTINE LONG(J, Q)
Identifies the job in Q that has the longest service time, and copics
it into J.
SUBROUTINE SHORT(J, Q)
Identifies the job in Q that has the shortest scrvice time, and
copies it into J.
SUBROUTINE STARTS(, Q, T)
Requests the simulation to start servicing a job J in queue Q at
time T.
SUBROUTINE ENDS(J, Q, T)
Requests the simulation to stop servicing a job J in queue Q at
time T.
REAL FUNCTION NOW(
Returns the simulated time when the function is executed.
REAL FUNCTION TLIMIT(
Retumns .the simulation time when the simulation will end. The
FAD user sets this time when s/he calls GOSIM.
LOGICAL FUNCTION ISJOB(J)
Retumns true if J is a valid job; returns false otherwise.
LOGICAL FUNCTION ISQUE(Q)
Retumns true if Q is a valid job; returns false otherwise.

337

APPENDIX B: DEFAULT SIMULATION CODE

900
1000
9000

9001

9000

9001

9000
9001

1000

9001

9002

SUBROUTINE JOBARR(J, Q)
Simulation action on the arrival of J at Q.
JOB J

QUEUE Q

IF (NOT.ISJOB(@)) GOTO 5000

IF (NOT.ISQUE(Q)) GOTO 9001
CALL SETARR(J, NOW())

CALL SETSRV(J, GSTIME(Q))
CALL SETDST({, GDEST (Q))

IF (JOBCNT(Q) .EQ. 0) GOTO 900
CALL ENQ(Q, Q)

GOTO 1000

STARTS(J, Q, NOW()

RETURN

CALL BADJOB(J)

RETURN

CALL BADQUE(Q)

RETURN

END

SUBROUTINE ENTSRV(J, Q)

Simulation action when J goes into service at Q.
JOB J

QUEUE

IF (NOT.ISJOB(@)) GOTO 9000

IF (NOT.ISQUE(Q)) GOTO 9001

CALL ENDS(, Q, NOW() + GETSRV(Q))
RETURN

CALL BADJOB()

RETURN

CALL BADQUE(Q)

RETURN

END

SUBROUTINE JOBXIT(J, Q)
Simulation action when J leaves Q.
JOB J

QUEUE Q

IF (NOT.ISJOB()) GOTO 9000
IF (NOT.ISQUE(Q)) GOTO %001
CALL SEND(J)

CALL DEQUE(, Q)

IF (JOBCNT(Q) .EQ. 0) GOTO 1000
CALL GETNXT{J, Q)

CALL STARTS(J, Q, NOW()
CALL BADIOB(J)

RETURN

CALL BADQUE(Q)

RETURN

RETURN

END

SUBROUTINE GETNXT(J, Q)
Determining the next job to service in Q.
JOB I

QUEUE Q

REAL SOFAR

IF (NOT.ISQUE(Q)) GOTO 9001

IF JOBCNT(Q) .EQ. 0) GOTO 9002
CALL FIRST(J, Q)

RETURN

CALL BADQUE(Q)

RETURN

CALL GETMT(Q)

RETURN

END



APPENDIX C: ERROR HANDLERS

SUBROUTINE QOVER(Q, )
Called when queue Q is sent job J, but Q is already at its capa-
city.
SUBROUTINE NETOVR(N, S, I)
Called when source S produces job J in net N, but N is already at
its capacity.
SUBROUTINE BADQ(Q)
Called when a FAD user refers to an uninitialized queue, Q.
SUBROUTINE BADJOB(J)
Called when a FAD user refers to a non-existent job, J.
SUBROUTINE BADSRC(S)
Called when a FAD user refers to a non-existent source, S.
SUBROUTINE SYSOUT(N)
Called when a network initialization for N excceds system
memory limits.
SUBROUTINE GETMT(Q)
Called when GETNXT is called with an empty queue, Q.

REFERENCES

Brately, P., Fox, B.L., and Schrage, L.E. (1983). A Guide to Simula-
tion. Springer-Verlag, New York.

Ghezzi, C. and Jazayeri, M. (1987). Programming Language Con-
cepts, Second Edition. John Wiley and Sons, New York.

Guttag, J. and Homing, J. (1978) The algebraic specification of
abstract data types. Acta Informatica 10, 27-52.

Kreutzer, W. (1986). System Simulation - Programming Styles and
Languages. Addison Wesley.

L’Ecuyer, P. and Giroux, N. (1987). A process-oriented simulation
package based on Modula-2. In: Proceedings of the 1987 Winter
Simulation Conference (L.Thesen, H.Grant, and W.David Kelton, eds.)
165-173.

Miller, K.W,, Morell, LJ., and Stevens, F. (1989). Enhancing the
reuse of FORTRAN software by enforcing data abstraction. lE.E.E.
Software, 10 appear in January.

Nicol, D.M. (1988). High performance parallelized discrete-event
simulation of stochastic queueing networks. In: Proceedings of the
1988 Winter Simulation Conference, San Diego, CA, December 1988.

Pamnas, D.L. (1977). The use of precise specifications in the develop-
ment of software. In: Proceeding of the IFIP Congress 1977. North
Holland Publishing Company, 861-867.

Pamas, D.L. (1979). Designing software for ease of extension and
contraction. I.E.E.E. Transactions on Software Engineering SE-5,
128-138.

338

AUTHORS’ BIOGRAPHIES

KEITH W. MILLER is an assistant professor in the computer
science department of the College of William and Mary. He received
his Ph.D. from the University of Iowa in 1983, his M.S. in mathemat-
ics from the College of William and Mary in 1976, and his B.S. in
education from Concordia Teachers College in 1973. His research
interests include abstract data types, formal specifications, and com-
puter vision. He is a member of ACM and IEEE.

Keith Miller

The Department of Computer Scicnce
The College of William and Mary
Williamsburg, Virginia 23185

(804) 253-4748

DAVID M. NICOL received the B.A. in mathematics from
Caileton College, Northficld, MN. in 1979, and the M.S. and Ph.D.
degrees in computer science from the University of Virginia in 1984
and 1985. He was a programmer/analyst with Control Data Corp.
from 1979 to 1982, and a staff scientist at the Institute for Computer
Applications in Science and Engineering from 1985 to 1987. He is
presently an assistant professor in the department of computer science
at the College of William and Mary. He has published numerous arti-
cles in the arca of parallel processing, and is a member of ACM,
IEEE Computer Society, and ORSA/TIMS.

David M. Nicol

The Department of Computer Science
The College of William and Mary
‘Williamsburg, Virginia 23185

(804) 253-4748



