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ABSTRACT

Conventional wisdom has it there are two basic approaches to
parallel simulation: conservative (Chandy-Misra) and optimistic
(time warp). All known protocols are thought to fall into one of
these two classes. This dichotomy is false. There exists a spectrum
of options that includes these approaches. We describe a design
space that admits these as alternatives, we show how most of the
well known parallel simulation approaches can be derived using
our design alternatives, and we explore the implications of the
existence of the design space we describe. In particular, we note
there are many as yet unexplored approaches to parallel simulation.

INTRODUCTION

Parallel simulation, generally called distributed simulation in
the literature, is concerned with the parallel execution of discrete
event simulations. Beginning with the research of Chandy and
Misra [ChMi79] and Peacock et al. [PeWo79], a number of
approaches have been described for coordinating cooperating
processes so that the outcome of a parallel simulation is the same as
would occur in a more conventional sequential simulation. Algo-
rithms are conservative if they satisfy the property that no process
receives information from any other process that predates the
current simulation time of the receiving process. They are optimis-
tic if processes can act on incomplete information, thus admitting
the case where messages may arrive "in the past.” Optimistic
methods have typically required that some sort of rollback mechan-
ism exist to allow for repair of incorrectly sequenced events. A
survey of parallel simulation appeared in [Misr86].

Examples of additional approaches generally considered con-
servative include the blocking table algorithm [PeMa80], deadlock
detection [ChMi81], SRADS [Reyn82], appointments [NiRe84],
feed-forward [Kuma86], conditional knowledge [ChMi87] and
bounded lag [Luba87]. The optimistic approach has its foundation
in the time warp method [JeSo82]. Others have explored variations
on the optimistic approach including [Jeff85] and [Soko88]. As we
shall see below, SRADS and moving time window [Soko88] have
features that bridge these characterizations. A partial chronology
of approaches to parallel simulation is shown in Figure 1.

Parallel simulation was originally named distributed simula-
tion in the early Chandy and Misra paper [ChMi79]. More recently
distributed simulation has come to be associated with geographi-
cally distributed simulations, for example the National Testbed
[Word88]. Without attempting to establish formal definitions here,
we distinguish distributed simulations from parallel simulations on
the basis of inter-process communication times and goals for
employing multiple processors. Distributed simulations tend to
incur communication delays on the order of seconds, and they tend
to be employed for the purpose of bringing physically separated
resources together for simulation purposes. Distributed simulations
may not be concerned with processor utilization or minimum fin-
ishing time, although real-time requirements may bring these into
play. Parallel simulation, on the other hand, has been studied pri-
marily for the purpose of maximizing processor utilization and/or
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minimizing simulation finishing time. Inter-processor communica-
tion times have generally been presumed to be relatively small (e.g.
on the order of milliseconds). Parallel simulation research has not
been concerned with real-time issues, human-in-the-loop or
hardware-in-the-loop.

Whether a simulation is discrete event or timestepped is
another important consideration. Parallel simulation research has
been concerned with discrete event simulations. Parallel
timestepped simulation assumes that simulation time advances in
(generally) fixed increments, where the chosen increment is suffi-
ciently small that no two significant events that should occur at dis-
tinct simulation times are simulated in the same time interval.
Parallel discrete event simulation is suitable for simulations which
incorporate event sequences that occur on widely disparate time
and/or space scales.

There are times when timestepped simulations are appropriate.
This includes cases where the generally low overhead of the
timestepped approach may make it a better method than an
equivalent discrete event simulation. Discrete event simulations
are clearly more appropriate in cases where a timestepped approach
would have many intervals where no significant events occurred.
The introduction of multiple processors may affect relative perfor-
mance, as may inter-processor communication times and the practi-
cality of attempting to synchronize processors.

We address both parallel discrete event simulations and paral-
lel timestepped simulations here. Our primary goal is to establish
the fact that, contrary to prevailing beliefs, there is a spectrum of
possible methods. We do not address the important issues relating
to choosing among methods, including the appropriateness of one
method over the other when the simulation becomes more distri-
buted in nature. Also, we do not address the impact of attempting
to employ parallel simulation in a distributed simulation environ-
ment, although that is currently a pressing issue.

In the following sections we describe the two traditional
approaches to parallel discrete event simulation and we discuss
briefly the behavioral properties of each. Then we show that a dif-
ferent view of the design space allows for an infinite variety of
options, including adaptive methods. We show how many of the
well known parallel simulation approaches can be derived using
our design alternatives, and we explore the implications of the
existence of the design space we describe.

DEFINITIONS

We assume there is a mapping from the physical processes
(PP’s) being simulated to the logical processes (LP’s) that
represent them in a simulation. For example, in a factory simula-
tion, physical processes could be workstations and logical
processes could be direct representations of the workstations, In
this case, events would be related to job completion and job arrival
at independent workstations (LP’s).

Discrete event simulations are implemented using a central
events list and a logical clock. The central events list is generally
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Figure 1. A Partial Chronology of Parallel Simulation

an ordered list from which the next event to be simulated can be
selected from the head. Ordering of events in the list is determined
by the- logical time at which they will occur. Logical time in a
discrete event simulation is determined by event times. Each time
an event is selected from the central events list the logical clock is
set to the time at which that event is to occur in the simulation,
Thus, for any given value of the logical clock, the central events list
is a list of known future events at that logical time. The simulation
of events has the effect of advancing logical time and changing the
contents of the central events list.

Parallel simulation assumes the placement of LP’s on multiple
processors, thus requiring that LP’s have some means of communi-
cating. Placement of LP’s on different processors also requires that
separate events lists and separate logical clocks be created for each
LP (or each cluster of LP’s) on a processor. Parallel discrete event
simulation research has focused primarily on the issue of coordinat-
ing the asynchronous advancement of logical clocks so that the
potential outcomes of a simulation are identical to those possible
for a sequential counterpart.

LP’s can pass messages to each other representing either event
or non-event information. Messages contain timestamps Tepresent-
ing the logical time at which the message was sent. That is, if one
LP sends a message to a second then the timestamp in the message
is the logical time of the sending LP. Event messages carry infor-
mation that can be related to events in the physical system being
simulated. Non-event messages are all other messages. We note
that messages can be simulated in environments where message
passing is not required. That is, message passing is a part of an

assumed logical model that may not be required in an actual imple-
mentation.

We denote the i LP as LP; and its logical clock as LC;. On
occasion we refer to LP;’s simulation time. We mean the value of
its logical clock, LC;.

CONSERVATIVE PARALLEL DISCRETE EVENT SIMU-
LATIONS

Conservative approaches are generally regarded as methods
that ensure the following conservative rule:

CR:V ij guarantee that LP; never receives a message
from LP; such that the message timestamp
(representing LC; at the time the message was sent)
is less than LC;.

In other words, an LP should never receive a message in its logical
past.

There are a number of ways to guarantee this. The first is to
require that an LP have event messages from each of the LP’s that
could ever send it an event message. The receiving LP needs only
to choose the pending message with the smallest timestamp to
proceed correctly. Unfortunately, it is easy to demonstrate that this
simple approach could deadlock even though the underlying physi-
cal system would not have deadlocked, i.e. deadlock is an artifact
of the simulation protocol.

Various approaches have come about as a result of attempting
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to avoid the deadlock problem. The most straight-forward exten-
sion was that proposed by Chandy and Misra [ChMi81] that
employed distributed deadlock detection to identify the LP that had
enough knowledge (unbeknownst to it) to proceed while not violat-
ing CR.

The null message [ChMi79] and link time [PeW079] protocols
employed non-event messages to prevent deadlock. It is known
that non-event messages generated in this manner can proliferate
and essentially choke the simulation. (However, this is not always
the case.) Studies by Reed [ReMa87, ReMa88] indicate that the
null message approach is not suitable for the simulation of quening
networks, although generalization of this result is tenuous. There
has been some question about flexibility assumptions in these stu-
dies as well [Chan88].

An alternate method, first proposed in [PeMa80] and later
expanded in [Reyn82] uses a "demand" approach, where blocked
LP’s use non-event messages to acquire information from other
LP’s, so that they may advance their simulation time (L.C) without
violating CR.

A mix of these approaches led to the use of simulation-
dependent information in order to enhance methods for advancing
LP’s simulation times. Nicol and Reynolds first employed this
strategy in their appointment protocol [NiRe84]. More recently,
Bain [Bain88] has proposed variants on this approach. Chandy and
Misra have defined a framework based on conditional and uncondi-
tional knowledge for reasoning about how simulations can advance
simulation time effectively [ChMi871.

Some conservative methods rely on communication topology
to ensure CR and deadlock freedom. The feed-forward approach
described in [Kuma86] assumes that networks can have forks and
joins but no cycles. This assumption is sufficient to demonstrate
deadlock freedom for a conservative protocol.

In terms of the variables defined below, conservative methods
have traditionally been non-aggressive (SRADS [Reyn82] and a
variation of moving time window [Soko88] being noted excep-
tions), accurate, and without risk. They have employed knowledge
embedding, knowledge acquisition and knowledge dissemination.
They have generally been asynchronous and none has employed
adaptability in a dynamic sense.

OPTIMISTIC PARALLEL DISCRETE EVENT SIMULA-
TIONS

Optimistic approaches relax CR somewhat, guaranteeing
instead the following optimistic requirement:

OR:V j guarantee that LP;’s state can be restored to a
simulation time not exceeding time #; whenever a
message with timestamp #; arrives in LP;’s logical
past (i.e. #; is less than LC;).

From another point of view, optimistic methods will act on condi-
tional knowledge. If an event message is awaiting processing by
LP;, then LP; will process it, even though a message with a smaller
timestamp may arrive at a later time.

Optimistic methods, most notably, time warp [JeSo82] and its
variants, assume that rollback can be employed in order to guaran-
tee that ultimately the outcome of the parallel simulation matches
the outcome of an equivalent sequential counterpart (with
allowances for non-determinism in the parallel simulation). This
assumption requires that state space be saved periodically (i.e.
checkpointing) so that rollbacks can be performed. Optimistic
methods have traditionally allowed LP’s to pass the outcome of
their optimistic assumptions on to succeeding LP’s. As a result a
rollback at one LP can cause a rollback at other LP’s to occur as

well.

In terms of the variables defined below, optimistic methods
have traditionally been aggressive, accurate and with risk. They
have not employed knowledge embedding or knowledge acquisi-
tion. They have employed knowledge dissemination in the form of
anti-messages. They have been asynchronous and non-adaptable.

EXPANDED HORIZONS

We describe a set of design variables that define a vastly
expanded design space. A major goal has been to make the set of
variables both comprehensive and orthogonal. If we have failed to
be comprehensive, it only makes our central thesis stronger.

At a system level, one design variable is the option to partition
the LP’s in a simulation so that clusters of them employ different
strategies. This is the only system-level design variable we have
identified, the rest being applicable at the LP level. We define the
partitioning design variable as follows:

DV.0: Partitioning - Determine clusters of LP’s
based on distinct sets of design variable
bindings.

For a partition P= {p1, P2, -.., P }» Where each p; represents a
non-empty set of LP’s, m = 1 means all LP’s employ the same set
of options. Typically, this is what has been proposed in parallel
simulation protocols. We may choose m > 1 in order to match stra-
tegies to behavioral properties of LP’s. For example, it may be
wise to apply an aggressive strategy (see below) to a portion of a
simulation and a non-aggressive strategy to the rest. This has been
minor experimentation with partitioning, as we discuss later, but no
method has has had partitioning as a major design goal from the
outset.

The remaining design variables can be viewed as LP-level
design decisions. The first of these is adaptability, which, as its
name implies, suggests that an LP may change design value bind-
ings dynamically. This, in turn, can affect the partitioning. We
define adaptability as follows:

DV.1: Adaptability - Changing design variable
bindings based on knowledge of selected
aspects of the simulation state.

An LP, in the course of a simulation, may have information
that would cause it to change to a different set of bindings for

" design variables, including ceasing to be adaptable. This design

variable, as well as some others, immediately offers us an infinite
set of options since adaptations can be based on functionally con-
tinuous data.

Adaptability has not appeared in the parallel simulation litera-
ture before now. This is somewhat odd because it is akin to
dynamic load balancing, a topic that has been studied extensively in
parallel systems. For example, a simulation employing an optimis-
tic strategy (actually, an aggressive, accurate strategy with risk; see
below) may, on the basis of information about the number of roll-
backs caused by inputs from a given LP, reduce or terminate its
aggressiveness with respect to inputs from that LP. As with
dynamic load balancing, this could be done in order to attempt to
minimize processor finishing time.

We define aggressiveness as follows:

DV.2: Aggressiveness - Processing messages
based on conditional knowledge; that is,
relaxing the requirement that messages be
processed in a strict monotonic order with
respect to message times.
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Aggressiveness allows messages to be processed when it is
still possible that a message with a timestamp that predates the
timestamp of the processed message may arrive later. Aggressive-
ness is the most visible aspect of Jefferson and Sowizral’s optimis-
tic approach: time warp [JeS082]. Time warp and optimism have
come to be equated with maximal aggressiveness: if a message
arrives and an LP has no other events to process, process the mes-
sage.

We mention, without elaboration, that there appear to be at
least two interesting forms of aggressiveness: initiating and
transfer. We expand on this after defining the design variable, risk.

In contrast with aggressiveness, which allows out-of-sequence
processing of events, we define next (a compatible concept) accu-
racy, which addresses the ultimate sequencing of events in a simu-
lation:

DV.3: Accuracy - Requiring that events within
LP’s ultimately be processed in a correct
(monotonic) sequence.

This definition would require, in most cases, that the set of ail
final states for a given parallel simulation be equivalent to the set of
all final states for its sequential counterpart. If no two events in a
simulation can have the same simulation time then this should be
the case.

There is no requirement that parallel simulation protocols
always meet the accuracy definition. To date, only SRADS
[Reyn82] and moving time window [Soko88] have allowed for
inaccuracy to occur, although even in these cases the potential for
inaccuracy is regarded as something to be avoided through other
actions. However, there are some indications that a strategy
employing controlled inaccuracies may produce useful results rela-
tively efficiently [Theo84].

It is important to distinguish accuracy from aggressiveness.
Accuracy requires that ultimately all events are processed, or have
the effect of having been processed, at the simulation time at which
they "should" be processed. Aggressiveness does not really address
this issue.

To further aid in making the distinction between accuracy and
aggressiveness, it is worth noting that purely optimistic approaches
are both aggressive and accurate. Despite their aggressiveness,
they still guarantee accuracy by ensuring that LP’s will back up, as
necessary, to guarantee that events are processed when they
"should" be (i.e. LP’s simulation times match the times of the
events they process). There is no requirement that this be the case.

The design variable that rounds out the variables contributing
to optimistic approaches is risk which we define as follows:

DV.4: Risk - Passing messages which have been
processed based on aggressive or inaccurate
processing assumptions in an LP.

It is entirely possible that an LP could utilize what would oth-
erwise be idle time through aggressive or inaccurate processing
without passing potentially (or known) inaccurate or out-of-
sequence messages to other LP’s. Risk is that design variable that
allows inaccurate or out-of-sequence messages to be passed on. A
design decision that employs aggressiveness but no risk guarantees
that all rollbacks are strictly local. Thus, there would be no need
for techniques such as anti-messages [Jeff85] to cope with situa-
tions where rollbacks are not guaranteed to be contained locally.
As is always the case, the impact of the choice made is problem
dependent.

We define risk messages as messages that are the product of
actions taken based on incomplete (conditional; see [ChMi87])
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knowledge, or as a result of processing that leads to the transmis-
sion of out of order messages. Recall that messages can be events
or information about the simulation state. Inaccurate or aggressive
processing coupled with risk can create or pass along risk mes-
sages.

We must distinguish situations in which LP’s receive risk
messages from those in which an LP is at risk. If an LP receives
risk messages it is at risk. However, we extend this definition to
the following case: an empty input queue contains implicitly the
message "do nothing from now to time infinity." We define an LP
as being at risk if there exists a risk message at the head of at least
one of its input queues or if there is no message in at least one of its
input quenes. We note that withholding knowledge increases the
probability of putting an LP at risk. Also, non-aggressive, accurate
methods can and are likely to put LP’s at risk because it is very
likely that LP’s will not have pending messages from all LP’s that
may send them messages each time the (receiving) LP is ready to
process a new message.

Optimistic approaches, as traditionally defined in the simula-
tion literature, are aggressive, accurate methods that employ risk.
The degree to which LP’s can be at risk can vary. For example,
time warp with cancellation [Jeff85], [LCUW88] is more likely to
put LP’s at risk than conventional time warp. We discuss this in
more detail in the next section.

We note, as an aside, that there appear to be two interesting
attributes of aggressiveness and risk. In both cases it is interesting
to distinguish between initiating and transferring forms. Initiating
aggressiveness occurs when an at risk LP processes a non-risk mes-
sage. Transfer aggressiveness occurs when an LP processes a risk
message (implying the LP is at risk). Similarly, an LP initiates risk
if it passes a message created from initiating aggressiveness, and it
transfers risk if it passes a message created from transferring
aggressiveness. A parallel simulation that limits pairwise aggres-
siveness and risk between LP’s along these dimensions could be
quite practical. The limiting could be done based on the presence
of forks, joins and cycles in the LP connection topology so that, for
example, every cycle contains at least one LP that does not initiate
aggressiveness with any other LP in the cycle. We are exploring
the utility of this idea.

A slight extension of the meaning of initiating risk creates
another interesting possibility for a simulation protocol. Consider
including the case where an LP holds back knowledge for whatever
purpose, ¢.g. in order to reduce rollbacks incurred by an overly
aggressive successor. Our definition of risk admits this because a
lack of knowledge creates an at risk situation.

The following design variables pertain to the sharing of
knowledge about the state of a simulation. Both event and non-
event messages can be used to carry this knowledge. Knowledge
can be made available through means such as modifying a simula-
tion to provide it, or extraction of pertinent knowledge from a
simulation designer or user. As an alternative, it can be gathered
by a simulation protocol without direct input from the simulation or
the simulation author or user. The next design variable addresses
this:

DV.5: Knowledge embedding Knowledge
about LPs’ behavioral attributes is embed-
ded in the simulation.

Chandy and Misra [ChMi87] have recently advocated embed-
ding knowledge about a simulation into the simulation itself in
order to make it perform more efficiently. For example, a case that
poses performance problems for non-aggressive protocols is one
where two LP’s each have only conditional knowledge about the
state of the other, but collectively, the conditional knowledge is



sufficient to generate useful unconditional knowledge. This uncon-
ditional knowledge, in turn, could lead to vastly improved perfor-
mance through the reduction of non-event message exchanges.

Use of embedded knowledge prevents a simulation protocol
from being fully general. The benefits and limitations of using
embedded knowledge have not been fully explored. An alternative
is for a simulation protocol to attempt to determine critical
behavioral properties through dynamic analysis. This could be
done, for example, by performing execution-time analysis leading
to an estimation of chosen properties. While such an approach may
allow for a general (black box) approach, costs may outweigh bene-
fits. Itis clear that further investigation is required in this area.

Knowledge can be embedded in the simulation and/or in the
simulation protocol. Knowledge embedding in the simulation
would most likely be done either manually or with automated sup-
port systems. This approach is likely to lead to inflexibility
because changes to the simulation could lead to changes in the code
representing embedded knowledge. Embedding knowledge in a
protocol would most likely be done through parameterization
and/or automated means. This approach could be more flexible but
may not exploit embedded knowledge as efficiently. Where to
embed knowledge and how to embed it are open issues.

Embedded knowledge or dynamic analysis may allow an LP
to determine its own future behavior or the future behavior of other
LP’s. Acquisition and dissemination of knowledge are important.
The next two design variables address knowledge acquisition and
dissemination.

DV.6: Knowledge dissemination - LP’s initiate
the transmission of knowledge to other LP’s.

Knowledge dissemination occurs when an LP sends messages
to other LP’s that may create the opportunity for them to make pro-
gress. Knowledge dissemination appears in a number of protocols,
including Chandy and Misra’s null messages [ChMi79], Peacock,
et al’s link time algorithm [PeWo079], Nicol and Reynolds’
appointments [NiRe84], and others. It can also appear in optimistic
methods, e.g. in the form of anti-messages.

We distinguish between two important approaches to
knowledge dissemination. The null message approach has a
prescribed method for generating non-event messages: each time
an LP sends a message along one output path, it sends non-event
(null) messages with the same timestamp along all other paths.
This approach requires no embedded knowledge. The appointment
approach, in contrast, requires LP’s to generate future possible
communication times based on an internal analysis of the LP’s
current state. An LP must be programmed to analyze all possible
future internal events in order for this strategy to work.

One problem with approaches that rely strictly on dissemina-
tion is that they can lead to the computation and transmission of
knowledge that is not used. The use of knowledge acquisition can
alleviate this problem.

DV.7: Knowledge acquisition - LP’s initiate
requests for knowledge from other LP’s.

Strategies employing knowledge acquisition are sometimes
known as "demand" methods. Here, LP’s send out requests for
simulation information so that more knowledgeable decisions can
be made about pending input messages. We note that knowledge
acquisition and knowledge dissemination are orthogonal in that
either can be used to any degree independent of the use of the
other.

The next design variable captures the spectrum of options that
admits both timestepped and discrete event parallel simulation.

DV.8: Synchrony - Degree of temporal binding
among LP’s.

How much is the temporal progress of individual LP’s con-
trolled by the simulation? At one extreme LP’s may advance
simulation time one unit at a time, in a SIMD-like manner, with no
LP’s going forward until all have completed the previous step. At
the other extreme LP’s could advance simulation time indepen-
dently, with the most likely first constraint being a concern for
accuracy. Fox [FoJo88] has suggested three basic categorizations:
synchronous, loosely synchronous and asynchronous. Loosely syn-
chronous characterizes LP’s that work independently for a short
duration, synchronize, work independently, etc.

The synchrony design wvariable allows us to capture
timestepped simulation (loosely synchronous) as well as all of the
major proposed methods (asynchronous). It is important to regard
timestepped parallel simulations as members of the set of possible
parallel simulation strategies; this new design variable is sufficient
to do that.

KNOWN POINTS IN THE DESIGN SPACE

We characterize briefly the major approaches to parallel simu-
lation based on the design variables we have just defined.

We have summarized the classification of major approaches to
parallel simulation in the table in figure 2. We find the best view of
this table is a macroscopic one. For example, no approach has pro-
posed adaptability. Partitioning has barely been explored. It was
first proposed in [NiRE84], and an implementation combining null
messages and timestepped simulation was reported in [HaDo88].
In both cases partitioning was accomplished through the combina-
tion of two existing approaches. The table reflects the fact that no
protocol has been designed from the outset with partitioning as a
primary goal. Relaxation of the accuracy requirement appears in
SRADS and Moving Time Window. The following notes apply to
the subscripts in the table.

Note-1; The Chandy/Misra deadlock detection algorithm
cycles through two phases: 1) process until deadlock and 2)
detect and repair deadlock.

Note-2: SRADS is accurate, non-aggressive and without risk
only if the embedded knowledge is sufficient that acquisition
occurs at correct times.

Note-3: Reader appointments uses acquisition, Writer appoint-
ments uses dissemination.

Note-4: Moving time window has three repair options when
inaccuracy occurs: rollback (i.e. time warp), historical records
and do nothing (i.e. SRADS).

We add that the design variables are not binary. For example,
adaptability has an infinite number of options on which to base
decisions affecting adaptations. Similarly, knowledge dissemina-
tion has a large number of possible implementations.

Optimistic methods such as time warp [JeS082] are aggres-
sive, accurate and with risk. They avoid the use of embedded
knowledge; in fact lack of embedded knowledge is regarded as a
strength. Knowledge acquisition is not ernployed. Knowledge dis-
semination is employed in the form of anti-messages. The degree
of risk varies. The variation that delays sending anti-messages
[Teff85] places successors at greater risk because they are more
likely to process messages that must be rolled back.

Null messages [ChMi79] are non-aggressive, accurate and
without risk. They do not use knowledge embedding or knowledge
acquisition. Knowledge dissemination is employed in the form of
null messages.

Blocking table [PeMa80] is non-aggressive, accurate and
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Figure 2. Categorizing Known Techniques.

without risk. Knowledge embedding and knowledge dissemination
are not employed. Knowledge acquisition is employed in that LP’s
request simulation times from predecessors in order to increase
knowledge about the future.

The deadlock detection approach of [ChMi81] is non-
aggressive, accurate and without risk. Knowledge embedding is
not required. Knowledge dissemination and/or acquisition are
employed when necessary to perform distributed deadlock detec-
tion and resolution.

SRADS [Reyn82] is aggressive, potentially inaccurate and
potentially with risk. Knowledge embedding is employed.
Knowledge dissemination is not, but knowledge acquisition is.
SRADS assumes that acquisition can be performed at periodic
intervals such that accuracy is guaranteed, or that inaccuracies can
be controlled by adjusting acquisition intervals. Identification of
acquisition intervals is what makes SRADS rely on embedded
knowledge.

Appointments [NiRe84] are non-aggressive, accurate and
without risk. Knowledge embedding is employed extensively.
Two approaches have been proposed, one employing knowledge
acquisition and the other employing knowledge dissemination. The
more recent protocol of Bain [Bain88] is similar. In [Nico88] Nicol
discusses an implementation for a combined approach, employing
both knowledge acquisition and knowledge dissemination.

Moving time window [Soko88] has characteristics that depend
on repairs made when out of sequence messages arrive. In essence
the method processes messages aggressively within bounds. If no
rollback occurs then the method becomes potentially inaccurate and
at risk. In this sense it is akin to the SRADS protocol [REYNS82].
If rollback is employed then it is accurate, in which case it is akin
to time warp [JeSo82].

Conditional knowledge [ChMi87] is a loosely formed
approach that advocates the use of embedded knowledge to
advance the determination of unconditional knowledge. As
presented, it is an accurate approach. Aggressiveness and risk are
options, as are knowledge acquisition and dissemination.
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NEW POINTS IN THE DESIGN SPACE

We have established that the design space for parallel simula-
tion is essentially infinite. Many of the design variables have,
effectively, an infinite set of options. That means we have only
begun to explore the potential alternatives for performing parallel
simulation. We explore two new alternatives for the purpose of
demonstrating that the taxonomy developed here does more than
simply capture existing methods.

Method: Consider a method, as shown in Figure 3, that is
aggressive, accurate and without risk. Settings of other design vari-
ables are important but not of primary concern to us here. This
technique would process inputs as they became available but would
not pass event messages unless input information was sufficient to
guarantee that output messages posed no risk. Rollbacks would
occur only locally, making this approach much less costly, in terms
of space at least, than traditional optimistic approaches.

Variations on this method can be constructed by considering
other design variable bindings. For example, the employment of
knowledge acquisition or knowledge dissemination could lead to a
significantly improved aggressive strategy, i.e. aggressiveness
could be tempered by knowledge acquired (or received) from other
LP’s that could potentially send messages. Knowledge acquisition
or knowledge dissemination would also be required in order to
prevent deadlock in the simulation. The method for disseminating
or acquiring knowledge could be quite flexible and could even be
adaptable.

Method: Consider a method, as shown in Figure 4, that is
adaptive with respect to knowledge acquisition and knowledge dis-
semination. The appointments method [NiRe84] assumes that LP’s
exchange knowledge, generated in part from embedded knowledge,
for the purpose of allowing LP’s to advance their simulation time
non-aggressively. The question of how much knowledge dissemi-
nation to employ as opposed to (or in conjunction with) how much
knowledge acquisition to employ is difficult to capture statically.
An adaptive method could be employed where these questions
could be answered dynamically through e.g. simple dynamic sta-
tistical analysis of the effectiveness of each of the approaches:
acquisition and dissemination.



partit- adapta-aggress- accu-

Knldg Knldg Knldg Synch-

ioning bility iveness racy risk Embed Dissem Acquis rony
Local rollback Y Y N A
Figure 3. Local Rollback Protocol
partit- adapta- aggress- accu- risk Knldg Kunldg Knldg Synch-
ioning Dbility iveness racy Embed Dissem Acquis romy
Adap Knldg Sharing Y Y Y Y Y A

Figure 4. Adaptive Knowledge Sharing Protocol

Variations on this method can be derived by considering bind-
ings for other design variables. Mixing aggressiveness (possibly
adaptive) in with the others could produce an approach that is quite
different from a non-aggressive approach. As with any method, a
partitioning of methods could be beneficial.

It is not our intention to suggest that the alternatives outlined
here are the newest and best approaches to parallel simulation. We
have little idea how well they would perform. Our goal is to
demonstrate the utility of the framework our taxonomy provides.
Another goal is to make quite clear the fact that a large number of
very reasonable approaches to parallel simulation are as yet unex-
plored.

SPECTRUM: A TESTBED

Up to now parallel simulation algorithms have been studied in
isolation. That is, individual algorithms have been analyzed in one
or a small number of locations. We know of no cases where two or
more algorithms have been applied to the same application in the
same environment. Coupled with the observation that a multitude
of potential algorithms exist, we have embarked on constructing a
testbed that will allow for the testing of a variety of parallel simula-
tion algorithms in a common environment.

The SPECTRUM (Simulation Protocol Evaluation on a Con-
current Testbed with ReUsable Modules) testbed is functioning in a
prototype state and is expected to be in a fully operational state by
late Fall of 1988. It is operating on an INTEL iPSC/2 32-node
hypercube and will soon be ported to a BBN 32-node GP-100 in the
University of Virginia’s Institute for Parallel Computation. The
testbed is designed to support efficient evaluation of a variety of
applications and protocols. Early experience indicates that experi-
ments can be constructed in a small number of days. The testbed
will be described in a forthcoming paper.

CONCLUSIONS

Early in the development of operating systems theory there
was a lot of research directed at the determination of "the best"
CPU scheduling algorithm. As intuition would have it, a fairly
simple algorithm, round robin, emerged as a good general purpose
algorithm. In the same sense many of the alternatives created by
the design variables presented could probably be rejected fairly
quickly. However, the analogy should not be carried too far.
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Round robin is a good general purpose algorithm for general pur-
pose computing. Parallel simulation on the other hand tends to be
less general purpose in nature and it has higher performance
demands. Many of the parallel simulation options that might other-
wise be discarded because of their limited generality must be con-
sidered. The higher the performance demands the more special
cases we must consider.

The design variables defined here provide us with a starting
point for exploring a large number of options that have, to date,
been overlooked. They provide us with a more general taxonomy
than "optimistic" and "conservative.” However, their most impor-
tant contribution is to provide us with a clear indication that the
determination of high performance parallel simulation algorithms is
not only not completed, the explorations have only begun. A key
issue at this point is whether analytic methods can help us contain
what looms as an expansive and time-consuming empirical investi-
gation.
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