Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

The implementation of four conceptual frameworks for
simulation modeling in high-level languages

Osman Balci

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

This is a tutorial paper on how to implement a simulation model
in a high-level programming language (e.g., C, Pascal, FORTRAN)
by using the following conceptual frameworks (also called world
views, simulation strategies, and formalisms): (1) event scheduling,
(2) activity scanning, (3) three-phase approach, and (4) process inter-
action. Implementation details under each conceptual framework are
covered in a high level without being concerned about execution effi-
ciency. The purpose is to reveal the characteristics of the four con-
ceptual frameworks so that the programmer can select and implement
one to achieve certain model quality characteristics such as maintaina-
bility, reusability, and execution efficiency. A problem is defined for
use as an example for illustrating the concepts throughout the paper.

1. INTRODUCTION

A simulation model is usually implemented by using a simula-
tion programming language such as GPSS, SIMAN, SIMSCRIPT,
SIMULA, and SLAM. In some cases, however, the simulationist
must use a high-level programming language (HLPL) such as C,
Pascal, and FORTRAN for the implementation (coding, program-
ming) of the simulation model due to the: (1) unavailability of a simu-
lation programming language, (2) inapplicability of a simulation pro-
gramming language for the problem domain, (3) lack of knowledge
of the appropriate simulation programming languages, and (4) need
for integrating the simulation model with another software system.

Programming a simulation model in a HLPL is a difficult task.
The logic being represented in a simulation program is concurrent in
nature, For example, in simulating a traffic intersection we must rep-
resent many simultaneous activities such as arrivals of vehicles from
several lanes, pedestrian movements from several directions, light
changes, and movements of the vehicles through the intersection. On
the other hand, computer is a sequential device (unless it has parallel
processing capability) and it executes its instructions sequentially.
Hence, processing the logic in a sequential manner but yet preserving
the concurrency of the activities in the system being simulated is what
makes simulation programming in a HLPL difficult.

A Conceptual Framework (CF), also called world view, simula-
tion strategy, or formalism, is a structure of concepts and views un-
der which the simulationist is guided for the development of a simu-
lation model. It is vitally important that a programmer follows a CF
in implementing a simulation model in a HLPL. The use of a CF fa-
cilitates the implementation and significantly reduces its complexity.

The objective of this tutorial paper is to show how to implement
a simulation model in a HLPL by using the following CFs: (1) event
scheduling, (2) activity scanning, (3) three-phase approach, and (4)
process interaction. Our intent is to cover the implementation details
under each CF in a high level without being concerned about execu-
tion efficiency. The purpose is to reveal the characteristics of the four
CFs so that the programmer can select and implement one to achieve
certain model quality characteristics such as maintainability, reusabili-
ty, and execution efficiency. After providing some background infor-
mation, a section is devoted for each CF before concluding remarks
are given.

2. BACKGROUND

In Section 2.1, we define a problem for use as an example for il-

287

lustrating the concepts throughout the paper. Section 2.2 provides the
definitions of important terms. Section 2.3 introduces the time flow
mechanisms.

2.1 Definition of an Example Problem

A Multiple Virtual Storage (MVS) batch computer system oper-
ates with two Central Processing Units (CPUs). Users submit their
batch programs to the MVS by using the submit command on an in~
teractive Virtual Memory (VM) computer system running under the
CMS operating system. As shown in Figure 1, the users of MVS via
VM/CMS are classified into four categories: (1) users dialed in by us-
ing a modem with 300 baud rate, (2) users dialed in by using a mo-
dem with 1200 baud rate, (3) users dialed in by using a modem with
2400 baud rate, and (4) users connected to the Local Area Network
(LAN) with 9600 baud rate. Each user develops the batch program
on the VM/CMS computer system and submits it to the MVS for pro-
cessing. Based on the collected data, assume that the interarrival
times of batch programs to the MVS with respect to each user type
are determined to have an exponential probability distribution with
corresponding means as shown in Table 1.

A batch program submitted first goes to the Job Entry Subsys-
tem (JES) of MVS. The JES Scheduler (JESS) assigns the program
to processor 1 (CPU1) with a probability of 0.6 or to processor 2
(CPU2) with a probability of 0.4. At the completion of program exe-
cution on a CPU, the program's output is sent to the user's virtual
reader on the VM/CMS with a probability of 0.2 or to the printer
(PRT) with a probability of 0.8. Assume that all queues in the MVS
computer system are handled by the first-come-first-served discipline
and each facility (i.e., JESS, CPU1, CPU2, or PRT) processes pro-
grams one at a time. The probability distribution of the processing
times of each program is given in Table 2 for each facility.

Using a high-level programming language of your choice, write
a computer program to simulate the behavior of the MVS computer
system. Assuming that the simulation model reaches the steady-state
conditions after 3,000 programs, simulate the system for 15,000 pro-
grams in steady state and construct confidence intervals for the fol-
lowing performance measures of interest:

(1]
[21
31
4]
]
(6]

Utilization of the JESS (pmss).
Utilization of CPU 1 (pCPUl)'
Utilization of CPU 2 (pcpuz)'

Utilization of the Printer (pPR .

Average time spent by a batch program in the MVS comput-
er system (W).

Average number of batch programs in the MVS computer
system (L).

2.2 Definitions of Terms

A system can be described in terms of objects (entities), attrib-
utes, events, activities, and processes. An object (or entity) denotes
an element of interest in the system. A batch program, the JES sche-
duler, CPUs, and the printer are the objects in the example problem
in Section 2.1. An artribute denotes a property of an object or the
system, or conveys information about an aspect of an object or the

MVS COMPUTER SYSTEM

—-000 [CPU1
0.6
0.2
000
0.8
0.4
0
—=000 |CPU2
Figure 1. The example problem
‘ Table 1
Type of User | Interarrival Times Mean
Modem 300 User : Exponential 3200 Seconds
Modem 1200 User : Exponential 640 Seconds
Modem 2400 User Exponential 1600 Seconds
LAN 9600 User] Exponential 266.67 Seconds
Table 2
Facility " Processing Times Mean
JES Scheduler Exponential 112 Seconds
Processor 1 (CPU1) Exponential 226.67 Seconds
Processor 2 (CPU2) Exponential 300 Seconds
Printer (PRT) Exponential 160 Seconds

system. In the example problem, system entry time is an attribute of
the batch program object; status (showing idle or busy) is an attrib-
ute of the JESS, CPU1, CPU2, and PRT objects; and the number of
batch programs in the system and the system time are attributes of the
system.

An event is anything that causes a change in the state of an object
and/or in the state of the system. The state of an object is defined by
the values of all attributes of that object at a particular instant of time.
The state of the system is defined by the values of all attributes of the
system and the values of all attributes of all objects of the system at a
particular instant of time. The events of interest of the example prob-
lem are shown in Figure 2. Table 3 describes each event and speci-
fies the name of an attribute the value of which is ¢changed by the oc-
currence of that event.

An activity is what transforms the state of an object over a period
of time. An activity is initiated by the occurrence of an event and is
ended by the occurrence of another event. The activities of interest of
ahe example problem are depicted in Figure 2 and described in Table

288

A process is a sequence of activities or events ordered on time.
The processes of interest of the example problem, denoted by P, P,

P, and P, in Figure 2, are the services provided at the job entry,
CPU1, CPU2, and PRT subsystems, respectively.

2.3 Time Flow Mechanisms

Time is a crucial attribute of any system which contains time-
varying relationships. The system time is called the real time. In a
simulation, it is called the simulated time and is represented by the
simulation clock. The simulated time must not be confused with the
real time. The simulated time: (1) is mostly initialized with a value of
zero corresponding to any real time value, (2) always advances and is'
never decremented similar to the real time, and (3) can be stopped un-
like the real time.

A Time Flow Mechanism (TFM) is a strategy by which the sim-
ulated time (simulation clock) is incremented from one value to an-

i33 E,
| & | &
oot
3
E, E, p
I = | b E, Es4 Ey
; ‘ I Ay L Ag I
E
E, E¢
As Ag

Time

Figure 2. Events, activities, and processes of the example problem.

Table 3
Event Description Attribute Changed
E, Arrival to the Job Entry Subsystem | Number of batch programs in the system
E, Start of scheduling Status of JESS
E,; Arrival to CPU1 subsystem Status of JESS
E, Start of execution on CPU1 Status of CPU1
Es Arrival to CPU2 subsystem Status of JESS
E Start of execution on CPU2 Status of CPU2
E, Arrival to printer subsystem Status of CPU1 or Status of CPU2
Eqg Start of printing Status of the printer
E,y Departure from the system Number of batch programs in the system
Table 4
Activity Description Starting Event | Ending Event

A Waiting for JESS E, E,

A, Scheduling E, E;orEs

A, ‘Waiting for CPU1 E, E,

Ay Execution on CPU1 E, E,orE,

As Waiting for CPU2 E; E¢

Ag Execution on CPU2 E E;orEg

Aq Waiting for the printer E, Eg

Aq Printing E, E,

289

other. There are two basic strategies for time advancement in a simu-
lation: fixed-time increment and variable-time increment.

In fixed-time increment TFM, the time is advanced by a fixed
length of At. The simulation clock is changed from t to (t+At). All
state changes occurring during the time interval of t to (t+At) are pro-
cessed. The selection of At is vitally important for the accuracy and
execution speed of the simulation, A too large At value will invalidate
the simulation and a too small At value will slow down its execution.
Therefore, the value of At must be carefully chosen depending upon
the problem domain. In simulating the U.S. economy, a day may be
an appropriate value for At. On the other hand, in the simulation of a
computer system a At value of a millisecond may be suitable.

In variable-time increment TFM (also called next-event TFM),
the time is advanced from one state change (event) to another (event).
At a particular time t, all state changes (events) are processed. Since
the unconditional state changes (e.g., arrival of an object, service
completion, departure of an object) can be scheduled in advance, the
time of the most imminent state change after time t can be determined
and assigned as the next value of the simulation clock.

In variable-time increment TEM, no execution time is wasted for
time.advancement and for searching state changes to process during
those time intervals of no state change unlike the fixed-time increment
TEM. On the other hand, sequencing of unconditional state changes
is required for the variable-time increment TFM but not for the other.
The decision of which one to select must be made in view of the
problem domain. I, in a system, a state change occurs every At time
units, the fixed-time increment TFM might produce faster execution.
For example, in the simulation of a computer operating system, if a
network process is executed every millisecond to find out if a mail
message arrived and the simulation time unit is chosen to be in milli-
seconds, then the fixed-time increment TEM should be selected. For
most systems, however, a state change occurs at random times and
the variable-time increment TFM proves to-be more execution effi-
cient. On the other hand, execution efficiency may not be the number
one goal of a simulation study and the fixed-time increment TFM
may still be chosen just for the sake of easy implementation of the
simulation model.

3. EVENT SCHEDULING

Under this CF, an event is the major focus of modeling a sys-
tem. The modeler follows the steps described below:

n
@
&)

@
®

Identify the objects and their atiributes.

Identify the attributes of the system.

Define what causes a change in the value of an attribute
as an event.

‘Write a subroutine to execute each event.

Follow the logic of the flow chart in Figure 3 and use
the event list as structured in Figure 4 to develop the
simulation program.

The objects, attributes, and events are identified based on the
purpose of the study. In the example problem, many objects of the
MVS computer system (e.g., disks, I/O channels, tape drives) are
excluded from the study for the purpose of further abstracting the re-
ality and building a more abstract and simpler model. If, however,
our objective were to build a more detailed model, then we would
have included many other objects in our model. A model is built for a
specific purpose and its representativeness is judged with respect to
that purpose.

The initializations in Figure 3 include the assignment of initial
values to all the attributes and the initialization of the event list at
(simulated) time zero. Assuming that the simulation starts represent-
ing an empty system, the event list is initialized by the first possible
events. In the example problem, the first batch program submission
from each type of user is scheduled as an E, event and merged into
the event list with respect to its occurrence time. The occurrence (arri-
val) time is the interarrival time sampled from the probability distribu-
tion since the simulation ¢clock is zero. Four records are created, one
for each user type, as a result of the initialization of the event list.
Two more attributes need to be recorded for E;: user type and arrival

time. User type is needed to identify which probability distribution to

290

sample from to determine the arrival time of the next batch program
to be submitted from that user. Arrival time is needed to calculate the
waiting time of the batch program in the system when event E, oc-

curs.

Using either the variable-time or fixed-time increment TFM, the
next'event to be executed is determined and is executed. After the ex-
ecution of some events simulation termination condition must be test-
ed. In the example problem, the termination condition is defined in
terms of the number of departures from the system. Therefore, Eg is

the only event after the execution of which the simulation termination
condition must be tested. If the-condition is satisfied the simulation
output is produced and the simulation ends.

To facilitate the selection and processing of events, the event list
in Figure 4 can be used. Each event is described by a record contain-
ing the event's attributes. Occurrence time and identification are the
two required attributes. The records (events) are sorted with respect
to the occurrence time in ascending order. Therefore, in using the
variable-time increment TEM, the event on the top of the list is al-
ways the next event to execute. The simulation clock is updated to the
occurrence time of the next event. After the event execution, record 1
is deleted and all the other records are moved up by one. Execution
of an event may produce another one which is merged into the event
list with respect to its occurrence time. The new event on the top of
the list becomes the next event to execute. This cycle continues until
the termination condition holds true.

4. ACTIVITY SCANNING

Activity scanning (also known as the two-phase approach) was
first used in the programming language CSL [Buxton and Laski
1962]. It is a state-based approach to simulation modeling, Activity is
the basic building block of this CF. Activity scanning is similar to the
tule-based programming, commonly used in Artificial Intelligence, in
which a rule is specified upon the satisfaction of which a predeter-
mined set of operations are performed. Under the activity scanning
CF, the modeler describes an activity in two parts:

Condition: A condition or a compound condition (formed
by AND, OR, and NOT logical operators)
which must be satisfied in order for the activity
to take place.

Actions: The operations of the activity performed upon

the satisfaction of the activity's condition.

In the example problem, the-condition of activity A, is specified

as: "Is time equal to AT?" where AT is the arrival time of a batch pro-
gram. The actions of A, would be to: (1) add the batch program to

the JESS queue, (2) increment the number of batch programs in the
system by one, (3) generate the arrival time of the next batch pro-
gram, (4) create another A, activity with the new arrival time. The

condition of activity A, is specified as: "Is the JESS idle AND does
the JESS queue exists?" The actions of A, would be to: (1) change

JESS status to "busy”, (2) remove the batch program from the
queue, (3) sample a processing time (PT) from the probability distri-
bution, (4) add PT to current time to determine end of processing
time (EOPT), (5) select CPU 1 or 2 probabilistically, and (6) create
activity A, or A; depending upon the CPU selected. The condition of

A, is specified as: "Is time equal to EOPT?" The actions of A; would

be to: (1) change JESS status to "idle" and (2) add the batch program
to the CPU1 queue.

Figure 5 shows the overall logic of activity scanning. The initial-
izations include the assignment of initial values to all the attributes
and the creation of four A, activities corresponding to the arrivals of

first programs submitted from the four types of users. The fixed-time
increment TEM is the one used in the purest implementation of activ-
ity scanning. In phase 1, the time is advanced by the fixed At amount
from t to (t+At) and phase 2 is conducted with a simulation clock time
of t = (t+Af).

In phase 2, the conditions of activities are tested in the order of

| momavzamons |

¥

Time Flow Mechanism
SELECT NEXT EVENT
e | | I
El Em Em+1 En
EVENT EVENT EVENT EVENT
ROUTINE X ROUTINE ROUTINE s ROUTINE
1 m m+1 n
R —
TERMINATE
NO SIMULATION
?
YES
Figure 3. Event Scheduling
Attribute 1 Attribute 2 Attribute 3 Attribute k
Event Event coe
Occurrence Time Identification
Record coe
1
Record vee
2
Record e
3
Record * * * ve *
T
Figured. AnEvent List

activity priorities (not in the order of activity numbers). If an activi-
ty's condition is satisfied, the actions of that activity are performed.
Testing all the conditions and performing the actions corresponding
to the satisfied conditions constitute a single scan. A single scan may
not be sufficient. Some actions performed may cause the satisfaction
of earlier unsatisfied conditions. This requires the restart of the scan.
All conditions must be repeatediy tested until no condition is satisfied
at the current simulation clock time.

Activities should be prioritized for the order of condition testin g
by the modeler depending upon the problem domain. For instance, in
the example problem, assume that the JESS is idle and its queue is
empty at time t. Suppose that there is an arrival to the JES also at time
t. Now, A,'s condition will be unsatisfied if it is tested before Ay's

and will be satisfied if it is tested after Ay's. Thus a rescan is caused

by the first case but not by the second. Hence, the order of testing the
conditions is important.

Notice that Figure 5 shows only the N different activities (N=8
in the example problem) for the sake of simplicity excluding the oc-
currences of the same activity under different conditions. For exam-
ple, there are four activities of type A, with four different conditions:

"Is time equal to AT, ", where AT; represents the arrival time of a

batch program submitted by the user of type j. .

Activity scanning CF produces a simulation program composed
of independent modules waiting to be executed. Due to the need to
scan the conditions repeatedly and in most cases because of the fixed-
time increment TEM, the simulation runs slowly, However, the sim-
ulation program is modular, maintainable, easy to modify, easy to
implement, and easy to understand. Considering the fact that about
70% of software development cost is attributed to maintenance,
achievement of maintainability should not be undervalued. In those
simulation studies where the maintainability and ease of implementa-
tion are much more important than the execution efficiency, activity
scanning CF would be a very good choice.

29

| mumavizaTions |

i

Time Flow Mechanism

TIME SCAN

Phase 1

ACTIVITY SCAN

Phase2 |

ACTIVTF 7

ACTITVE

ACTHTFN

CONDITION

CONDITION

CONDITION

ACTIONS

ACTIONS

ACTIONS

AN\
OTHER CONDITION
SATISFIED
?

e

NO A/HNATE

SIMULATION
?

YES

NO

Figure 5. Activity Scanning

5. THREE-PHASE APPROACH

In order to try to remedy the execution inefficiency of activity
scanning, Tocher [1963] suggested the three-phase approach a year
after activity scanning was first used in the Control and Simulation
Language [Buxton and Laski 1962]. During those years, computer
time was very expensive and the execution efficiency was extremely
important.

The three-phase approach combines activity scanning and event
scheduling CFs. It provides a mixture of the state-based and time-
based approaches to simulation modeling. Events and activities are
the two basic building blocks of modeling; however, events are la-
beled as activities of duration zero.

Activities are classified into two categories [Pidd 1984]:

B Activities: are the bound-to-occur or book-keeping activi-
ties that represerit the unconditional state
changes (unconditional events) which can be
scheduled in advance (e.g., E;, E3, Es, E;,

and Ey in the example problem).

are the conditional-or co-operative activities
that represent the state changes which are con-
ditional upon the co-operation of different ob-
jects or the satisfaction of specific (compound)
conditions (e.g., Ay, Ay, Ag, and Agin the

example problem).

C Activities:

There are two major differences between activity scanning (Fig-
ure 5) and the three-phase approach (Figure 6):

(1) The TFM can implement the variable-time increment
strategy. Knowing the occurrence times of B activities
(unconditional events) in advance, the most imminent
event can be determined and its occurrence time can be
assigned as the new value of the simulation clock in
Phase A.

(2) AllB activities (unconditional events) with occurrence

times equal to the simulation clock value are executed in

Phase B.

292

l INITIALIZATIONS |

1

Time Flow Mechanism
*1 TIME SCAN APhase -

| EXECUTE B ACTIVITIES DUE NOW B Phase |
| SCAN ALL € ACTIVITIES C Phase |1

AT AT I

CONDITION CONDITION CONDITION
ACTIONS ACTIONS ACTIONS
|]
AN\
OTHER CONDITION > YES
SATISFIED
NO

Figure 6. Three-Phase Approach

The third phase, Phase C, of the three-phase approach works in
the same way as in the activity scanning except that the activities be-
ing scanned are C activities only.

Both of the major changes improve the execution efficiency;
however, this improvement is achieved at the expense of some con-
ceptualization difficulties. Some complexity of event scheduling is in-
herited. The complexity of conceptualization is increased by mixing
two radically different approaches, namely, stated-based and time-
based approaches.

6. PROCESS INTERACTION

Under this CF, a modeler describes the life cycle of an object
which moves through and interacts with the processes of the system
under study. Object and process descriptions constitute the underpin-
nings of this approach.

An object is classified into two: dynamic and static. A dynamic
object is the one which comes into the model, logically moves
through some processes, and leaves the model (e.g., the batch pro-

293

gram in the example problem). A static object is the one which does
not logically move (e.g., JESS, CPUs, and PRT in the example
problem). Objects are described in terms of attributes. Identification, -
move time, current location, next location to move to, and priority
level are the five attributes commonly recorded for each dynamic ob-
ject.

" Figure 7 shows the implementation logic in a similar manner
used in GPSS. There are four phases of the logic: initializations,
clock update, scan, and output. After initializations, the simulation is
conducted by going back and forth between the clock update and
scan phases. Output phase is executed at the termination of the simu-
lation,

In the initializations, all atiributes are initialized and the first dy-
namic objects are created and placed on the Future Objects List (FOL)
in ascending order of their move times. In the example problem, four
dynamic objects are created to represent the first batch programs sub-
mitted by the four types of users. The user type also needs to be re-
corded as an attribute for each dynamic object.

In the clock update phase, the time is advanced to the move-time
of the front-end object of the FOL. Note that this move-time is the

smallest since the dynamic objects are placed on the FOL always in

INITIALIZATIONS

!

CLOCK UPDATE PHASE

CURRENT TIME = MOVE-TIME OF THE FIRST OBJECT ON
THE FUTURE OBJECTS LIST (FOL)

TRANSFER ALL OBJECTS WITH MOVE-TIMES EQUAL TO
THE CURRENT TIME FROM THE FOL TO THE CURRENT
OBIJECTS LIST (COL)

SCAN PHASE

MOVE THE NEXT OBJECT ON THE COL THROUGH AS
MANY PROCESSES AS POSSIBLE

NO

ANY

MORE OBJECTS

TOMOVE
?

Figure 7. Process Interaction

ascending order of their move times. All dynamic objects with move-
times equal to the current simulation clock value are transferred from
the FOL to the Current Objects List (COL). The objects are placed on
the COL always in the order of their priority levels and their move-
times are changed to As Soon As Possible (ASAP). First-come first-
served within a priority level is a commonly used queue discipline.
Thus, an incoming object is placed on the COL as the last member of
the queue within its priority level.

In the scan phase, the objects on the COL are moved, one by
one, through as many processes as possible in the order of their
placement (priority levels). When the dynamic object is set into mo-
tion, one of the following can happen to stop its movement: (1) the
object faces an unsatisfied condition, (2) the object is deliberately de-
layed for a while (e.g., going into service), (3) the object dies or
leaves the model, and (4) the object is deliberately stopped for some
reason. The movement of an object can result in state changes and
can make it possible to move an earlier object which couldn't be

294

moved. For example, suppose that there is a batch program (dynamic
object 1) in the queue of CPU1 which is finishing the execution of
another batch program (dynamic object 2) at time t. Assume that ob-
ject 1 is positioned on the COL before object 2. The attempt to move
object 1 into CPU1 will fail since the CPU1 is busy. Object 2 can be
moved making CPU1 idle. Situations similar to this one will require
restarting the scan of objects. Therefore, the COL must be repeatedly
scanned until no more objects can be moved.

Note that whenever a dynamic object enters into the model, its
movement is temporarily stopped to schedule the arrival of the next
dynamic object from the corresponding source. In the example prob-
lem, whenever a batch program arrives at the job entry subsystem, a
new object is immediately created with an arrival (move) time equal
to the current simulation time plus the interarrival time randomly sam-
pléd from the probability distribution corresponding to the value of
the user type attribute of the current object. The new object is then
placed on the FOL and the movement of the entering object is re-
sumed.

7. CONCLUDING REMARKS

Development of a simulation program in a HLPL is certainly a
difficult task especially for large scale and complex systems. One of
the four CFs described in this paper can be employed to reduce the
complexity of the implementation. A CF should be chosen by consid-
ering the problem domain and the selected model quality characteris-
tics (e.g., maintainability, execution efficiency, modifiability, reusa-
bility, ease of development). .

Unfortunately, it is not possible to achieve some model quality
characteristics together since they conflict with each other. For exam-
ple, a model which is maintainable runs slower because of the over-
head caused by the maintainability characteristic. On the other hand, a
model can be developed as tightly integrated ranning very fast but be-
ing very difficult to maintain. Hence, a trade-off need to be made
among conflicting quality characteristics in view of the study objec-
tives.

Execution efficiency had generally been the number one goal in
simulation model development during 1960s and 1970s. Today, hu-
man time is usually much more expensive than computer time and in
some simulation studies, other model quality characteristics such as
maintainability, modifiability, and reusability are given higher priori-
ty over the execution efficiency.

The reader is recommended to develop four simulation models
of the example problem in Section 2.1 in a HLPL by using the four
CFs described herein. To aid in the validation of the simulation mod-
els, the true values of the six performance measures are given below:

[11 Utilization of the JESS (pmss) =0.70
[2] Utilization of CPU 1 (pcpm) =0.85
[3] Utilization of CPU 2 (pCPUZ) =0.75

4] Utilization of the Printer (pPRT) =0.80

[5] Average time spent by a batch program in the MVS comput-
er system (W) = 2400 seconds

[6] Average number of batch programs in the MVS computer
system (L) =15

ACKNOWLEDGMENTS

This research was sponsored in part by the U.S. Navy under
contract N60921-83-G-A165-B03 through the Systems Research
Center at VPI&SU. Stimulating discussions with David W. Balmer,
E. Joseph Derrick, Richard E. Nance, and Robert M. O'Keefe are
gratefully acknowledged.

BIBLIOGRAPHY
Buxton, I.N. and Laski, J.G. (1962). Control and simulation lan-

guage. The Computer Journal 5, 194-199,

Clementson, A.T. (1966). Extended control and simulation lan-
guage. The Computer Journal 9, 3 (Nov.), 215-220.

Crookes, J.G., Balmer, D.W., Chew, 5.T., and Paul, R.J. (1986).
A three-phase simulation system written in Pascal. Journal of
Operational Research Society 37, 6 (June), 603-618.

Davies, R, and O'Keefe, R.M. (1987). Simulation Modelling with
Pascal. Prentice-Hall, U.K.

Fishman, G.S. (1973). Concepts and Methods in Discrete Event
Digital Simulation. John Wiley & Sons, New York.

Franta, W.R. (1977). The Process View of Simulation. North Hol-
land, Amsterdam, Holland.

295

Hooper, I.W. (1986). Strategy-related characteristics of discrete-
event languages and models. Simulation 46, 4 (Apr.), 153-
159.

Nance, R.E. (1971). On time flow mechanisms for discrete system
simulation. Management Science 18, 1 (Sept.), 59-73.

Nance, R.E. (1981). The time and state relationships in simulation
modeling. Communications of the ACM 24, 4 (Apr.), 173-
179.

Pidd, M. (1984). Computer Simulation in Management Science.
John Wiley & Sons, Chichester.

Tocher, K.D. (1963). The Art of Simulation. English Universities
Press, London.

AUTHOR'S BIOGRAPHY

OSMAN BALGI is an Associate Professor and the PC Program
Director in the Department of Computer Science at Virginia Polytech-
nic Institute and State University. He received B.S. and M.S. de-
grees from Bogazici University (Istanbul, Turkey) in 1975 and
1977, and M.S. and Ph.D. degrees from Syracuse University
(N.Y.) in 1978 and 1981. He is currently the simulation and model-
ing category editor of ACM Computing Reviews and the principal in-
vestigator for the U.S. Navy-funded research project in simulation
model development environments. He has served as the vice-
chairman of ACM SIGSIM (7/85 - 6/87), the program chairman and
proceedings editor of the SCS conference on Methodology and Vali-
dation, and an associate editor of Simuletter (10/83 - 3/86). His cur-
rent research interests center on simulation support systems, credibil-
ity assessment of simulation results, performance evaluation, and
software engineering.

Professor Osman Balci

Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

(703) 961-4841

