Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

A perspective on object-oriented simulation

Stephen D. Roberts
Regenstrief Institute

and

Joe Heim
School of Industrial Engineering
Purdue University
West Lafayette, IN 47907, USA

ABSTRACT

The object-oriented view is that a system is composed of
interacting objects. These objects are defined so that they hide
those data and procedures which implement their behavior,
however they can be manipulated by invoking publicly
accessible methods defined for their class. These methods are
invoked through messages which objects send to one another.
New objects can be constructed from others through
inheritance and subclasses. Functions and operators can be
extended by overloading. Many of these features are available
because of dynamic binding provided by object-oriented
languages. There are a wide variety of object-oriented
languages and some have facilities specifically for simulation.
There is little doubt that future simulation languages will
incorporate more ideas from an object-oriented perspective,
especially as a means of extending the language to a wider
variety of applications.

1. INTRODUCTION

If you are engaged in the application of discrete event
simulation, you probably simulate the behavior of various
objects. In a few instances, the objects may be mathematical or
statistical entities, but in most cases, the objects are physical
and observable. Perhaps the objects are transporters in a
material handling system, tellers serving people in a bank,
patients being treated in a hospital, trucks being routed in a
distribution system, planes in a flight pattern, disk drives
functioning in a computer, switching systems handling traffic in
a communications network, etc. Such objects are usually the
central focus of the simulation studies and are easy to identify.
The simulation problem is generally one of finding a convenient
means of modeling the objects and eventually simulating their
behavior. By simulation, we will tend to mean discrete event
simulation, although many of our observations are independent
of the type of simulation. Furthermore we will be most
concerned with modeling objects rather than simulating them.

How you apI[lJroach a problem with simulation is intimately
dependent on the modeling tools you have available and your
knowledge of their use. Your modeling perspective will be
influenced significantly by the tools inherent in the simulation
language you use. If you use a general programming language
(e.g., FORTRAN) rather than a simulation langnage, your
perspective will be further fixed by the tools you are able to
craft from that language you chose (we assume that the
simulation will be performed on a computer). Therefore, the
questions about the "best" simulation language or simulation
platform must be answered in the context of available resources
and whether the particular simulation tool meets your needs.
How have the simulation tools evolved to meet the variety of
simulation needs? How are the tools made available?

277

1.1. A History Lesson

If we reflect on the three decades of computer-based
simulation, we can observe an evolution of simulation
languages that generally parallels the development of general
purpose programming languages (e.g., FORTRAN, COBOL,
Ada). During the 1950s, simulation was exclusively done using
general purpose programming languages and sometimes
assembly language. Since the computer was used strictly as a
device for numerical analysis, the simulation studies were
usually numerically oriented. Procedures for gemerating
random variates and collecting statistics were not readily
available, so much of the attention in simulation was focused on
creating mechanisms for executing simulations. GASP and
SIMSCRIPT were among the early simulation languages
developed during the 1960’s. GASP was an attempt to augment
FORTRAN by providing some data structures and functions
that were commonly used in executing simulations.
SIMSCRIPT went farther by defining a general purpose
programming language that contained simulation constructs
and procedures. Later in the 1960’s, SIMULA was developed
as an "extension" to ALGOL to provide simulation facilities to
that general purpose language. It should be stated that
SIMULA, although never achievin% great popularity, also
provided some mnovel constructs for viewing simulations
differently (these will be discussed later).

Throughout these efforts to generalize programming
langnages to include simulation, the emphasis was on the
simulation mechanics, i.e. making it easier to produce a working
simulation without having to develop your own means of
managing a simulation clock, creating random variates, collect
statistics, and monitoring simulation progress.

However in the 1960’s a different approach to simulation
was introduced-by GPSS. GPSS was an anomaly because it was
the first language to emphasize a specific modeling structure
and attempted to hide the mechanics of the simulation. Its
structure was built upon a predefined class of active entities
called "transactions" which flowed through a flowchart of
selected operations, much like the logical %ow of a computer
program follows a programming flowchart. In fact, GPSS was
designed so the user could assemble a flowchart of operations
and create a simulation without doing any general purpose
programming. It was similar to the way that an electrical
engineer uses circuit diagrams.

1.2 The Great Language Debates

Throughout the 1970s and even into the 1980s, there has
been constant debate in the simulation community regarding
the merits of the various approaches. The question was
whether a general simulation facility such as SIMSCRIPT was
preferable to a modeling facility like GPSS. Certainly

SIMSCRIPT was preferable on the grounds that “"anything"
could be simulated (programmed?), but GPSS was deemed
easier to use and apply. In the late 1970s and early 1980s, we
have witnessed a further evolution of simulation languages that
blurs their distinction. SIMSCRIPT has acquired more "process
oriented” features with the inclusion of resource and process
concepts (Russell, 1983) and GPSS has been extended (in
GPSS/H, Crain, et al. 1987)) to include many general II))urpose
programming facilities. Also, languages like SLAM (Pritsker,
1986) extended GASP by providing GPSS-like network facilities
and including continuous simulation, SIMAN (Pegden, 1982)
achieved additional success by also including special facilities
for manufacturing simulation such as conveyors and
transporters. Newer, as well as the older, simulation languages
continue to try to satisfy the dual goals of generality (found in
the programming languages) and convenience providing by a
set of predefined objects and concegyts for direct modeling. The
challenge for simulation language designers is to decide exactly
what general programming facilities” and which predefined
objects are needed.

2. OBJECT-ORIENTED SIMULATION

When we describe a situation to be modeled, we define the
“things” that are to be modeled. We also declare what each of
these "things" can do (valid operations) and what their "state" or
condition is before, during, and after each of these operations.
So, for a machine shop, we define the machines of interest, the
types of parts that are to be produced, and the operations
needed to complete their manufacture. The states of the
machines are described before a part process, during the
gigcess operation, and after completion of a machining

ction. However, when we begin to create our simulation
model we find that the situation which we describe in terms of
“things" and operations now must be translated into a different
terminology that defines the simulation environment. If we use
a network-oriented simulation language, we must somehow
transform our problem into simulation entities like transactions,
queues, resources, attributes, sources, sinks, etc. It would be
more convenient if we could describe our simmlation model
with the same terminology that we used to describe the actual
problem environment. This desire is, in fact, the motivation for
special purpose simulations, such as "factory” simulators.
Presumably, a factory simulator would contain familiar items
like machines and parts and direct methods for production like
routings, machining operations, etc.

If we change our terminology just a bit and say "objects"
where we have previously said "things," we very easily slide into
a recent programming and design attitude change called
"object-oriented." Object-oriented programming and object-
oriented design is a relatively new approach to software design
and development. An object orientation attempts to bridge the
gap between the model and what is modeled. The "cognitive
leap" that must be made between the physical environment and
the computer instantiation is minimized and more faithfully
reflects the way the system is being viewed.

Specialized programming languages certainly have their
merits and although the language debate continues, it is the
other parts of the simulation language, its objects, that make it
most attractive to simulation users. Just what objects should a
simulation language have? If popularity of the language is any
indication, then languages should have certain “"stock objects”
like transactions, resources, attributes, queues, activities,
sources, sinks, statistical distributions, and statistics collectors.
If the language is to have applications for manufacturing then
perhaps it should have transporters, conveyors, cranes, carriers,
and layouts. For other application arenas, other objects may be
useful. Describing possible objects could be endless. For
instance consider an object for an industrial robot. What
properties.and behaviors should the object possess -- degrees of
movement, mobility, vision, speed and acceleration, grasping
orientation, etc.? Can there ever be a completely general robot

object defined as simply as a conveyor or transporter? No
doubt special cases can be identified and special-purpose
modeling facilities constructed. But can they solve the general
problem of modeling robots? Human behavior is even more
complex and doesn’t fit the network model of transactions in a
network. As machines and services increase in their abﬂitﬁ' to
behave in a complex fashion, simulation languages which
restrict modeling freedom will become increasingly obsolete.

Rather than attempting to provide all possible objects,
perhaps the simulation language should have its own facility for
defining objects and not depend solely on predefined objects
that are furnished with the language. Inmstead of simulation
language vendors adding "features" to a simulation langnage in
response to new and changing user demands, why not allow the
user to extend and customize the language by creating new
objects and building them on a consistent platform of concepts?
This is the goal of object-based simulation and object-oriented
simulation languages. Currently, the most prevalent use of
object-oriented simulation is based on using an abstract data
type as a basis for defining new objects.

2.1 Abstract Data Types

Many proposals for object-oriented designs have their
origins in the concept of the abstract data type implemented
with ST (a simulation language! -~ see Birtswistle, et al.
1979). While SIMULA never achieved a large degree of
popular success as a simulation language, many of its concepts
contimue to have considerable influence on programming
langnage design (e.g Ada). For instance, the use of processes
and resources are now prevalent in most popular simulation
languages. The notion of packages and modules are current
constructs in newer programming languages and the abstract
data type is the centerpiece of object-oriented programming.
An abstract data type is a data type that not only describes ifs
own characteristics, but also defines its own operations. Unlike
the familiar "integer" data type and integer operations, which
are typically predefined and globally available, an abstract data
type can be defined by the user to have a special set of
characteristics. Further the Oé)erations needed to manipulate
the data type can be defined. For example, in a graphics
package, a graphical object may be defined to have position,
sha(ljpe, and extent and possess operations that permit it to move
and combine. Once declared, the graphical object then
becomes a data type within the language. In a data base
application, a record becomes a general data type and its
operations may provide for storage and retrieval.

2.2 Classes

Typically, a class definition is used to define the particular
abstract data type. The class definition will specify the
implemented data structure and the operations that can be
performed. For example, in a queuing simulation, we might
define a class for the customer quene as:

class customer_queue
<

private:
int current_queue_size;
int total_customer_encounters;
float last_customer_arrival;
float total_waiting_time;
float max_waiting_time;
Customer * head, * tail;
Customer * next ¢ * Customer);
public:
void insert(time t, rank k);
void remove(time t);
int size O
{ return current_queue size; 3
float average_time_in_queue ()
{ return total_waiting_time /
total_customer_encounters; 2

The visibility of the details of the implementation is
governed by public and private declarations. The private

278

portion c%enerally defines the structures of the underlying data
type and certain functions that are accessible only by objects
within the class. The public portion is accessible by objects
outside the class. Obviously, in most common programming
languages, data types and their operations are universally
visible and the only means of hiding or modularizing is through
function or subroutine calls. In the above declaration, the
customer_queue contains some private information about its
status, its statistics, and a way to find the next Customer. The
public access to the queue permits insertions, removals, size
query, and summary statistics.

The operations/functions that are defined on a class are
sometimes referred to as methods or processes. These are
similar to functions in other languages. The methods may also
be either public or private. Public methods provide the
"outside" interface to the class. Objects of different classes deal
with each other through the interface methods.

2.3 Formal Objects

An object is an instance of a specific class. It contains all the
information that a class specifies and actions that may be
gerformed on it by invoking its class methods. The mechanism

or invoking methods on an object is by sending it a message.
For example to remove a customer from the queue, we might
write

g.remove (t);

which would use the method "remove” (with parameter t) on
the object q. The name that describes the type of manipulation
is also called the message selector. The selector only describes
what is desired, not how it should happen.

A message plays the role of a subroutine or function call
and will contain parameters that delineate the message. The
sending object doesn’t need to know how the message will be
executed, leaving the details of the implementation to be
interpreted by the receiving object.

A system may possess more than one object of a specific
class as well as objects of several classes. Because the very
existence of the class is defined by the language, object-oriented
languages are extensible becanse the user may define new
objects with special behaviors. The new objects are defined
from the existing classes, objects, and methods available.

2.4 Overloading

One way to extend a behavior is by overloading, which
permits a method to operate on other objects. For example we
may choose to overload the "+ +" operator for queues so that

++q(*Customer);

would now add the Customer to the queue.

Function overloading is also permitted. For instance a
function which assigns material handlers to pick up a finished
part could also be used to assign an AGV. The great advantage
of operator and function overloading is that the global number
of names needed to describe opérations and functions is greatly
reduced (you no longer need different names for the same
behavior simply because the objects being affected are
different). Also as a new object, say a conveyor, is added you
can use the same set of material handling functions and simply
extend their use to conveyors. Of course, the material handling
functions now must identify the objects they are manipulating
and choose the appropriate internal functions.

2.5 Inheritance

Most object-oriented systems also permit hierarchies of
types through subclasses. A subclass obtains its essential
features from its parent class via inheritance but can also

acquire its own characteristics. Classes and subclasses usually
have a convenient message passing system. For example, a
convenient inheritance applies when parts are exploded into a
production plan and then subsequently assembled. If the
various parts are subclasses of the single order, their family of
parts can be readily identified and assembled into a common
component using a set of assembly instructions specific to the
order type. Furthermore, the hierarchies of subclasses permit
the formation of sub-assemblies, where components (like the
engine within a truck) can be formed prior to a final assembly.
Some object-oriented systems permit multiple inheritance in
which an object can inherit properties and methods from
several different classes. The wvalue of inheritance in
programming is that a new class needs only be specified by how
it differs from an existing class, rather that being completely
redefined.

2.6 Dynamic Binding

Many of the benefits of object-oriented programming result
from its dynamic binding. When you call a function in a
language like C, the compiler and the linker cooperate to
generate a call to a physical address. While this is very
efficient, you must take care to associate the function with the
appropriate data structures. Strongly typed languages attempt
to catch mismatched data types at compile time. Others do a
poorer job of catching these errors and sometimes the problems
are not detected until the output starts looking strange.

In object-oriented programming langnages, the programmer
is relieved of the burden of calling the right method with the
specific data structure. Instead the programmer uses a generic
name for the function and the receiving object looks up the
proper method. This run-time binding is sometimes called "late
binding” and has a number of advantages. In the programming
world, late binding means that references are symbolic and
methods can be compiled without re-compiling all of its callers.
The same symbolic names are used, regardless of the type of
object. Finally, a single message can invoke several methods.
This is known as polymorphic behavior and it allows code to be
written that is independent of the receiver.

For simulation, late binding means that the specific machine
needed for the part can be determined when the part finishes
its prior operation. It doesn’t have to be established at the start
of the simulation. The time to complete the part can also
depend on the current set of resources and the state of the
system. A conveyor is handed packages. How those packages
occupy space on the conveyor is determined at the time they are
placed there, not on some predetermined set of fixed-size bins.

3.0 MODELING PERSPECTIVES

Modeling with objects takes a different perspective. It’s not
a question of what the objects in my simuﬂuion language
represent in the real system. It is what are the objects in the
real system. If you see your system as composed of general
entities, you make them classes. If you need to refer to specific
entities, then they should be objects. If these objects appear to
collect together, then they can be a sub-class of a more general
base class. Methods should be defined for the most general
classes. They can be refined for more specific operations if
needed. Division into classes, recognition of methods, and the
organization of hierarchies form the basic approach to object-
oriented modeling.

3.1 Immediate Benefits of the Object-Oriented Approach

A major benefit of object-oriented systems is the desi‘g]u
philosophy they bring to a problem. Rather than relying on the
processes (procedures) that are found in a system, they focus on
the objects. Objects provide both data abstraction and
information hiding that help to modularize a problem in its
earliest stages of analysis (Tesler, 1986). It stimulates the user

279

to identify the principal components of a system and to specity
their behaviors and interaction. By encapsulating the
characteristics and methods within the objects, the objects can
be viewed as fundamental components of the system, yielding a
natural decomposition of a system. The importance of this
approach in simulation modeling is that it gives an
implementation framework to the common systems analysis and
design approach often advocated in simulation studies.

A second major benefit is that simulations become
extensible. Existing models can form the basis for new ones
and existing concepts can be enhanced to handle new systems.
Because objects and their management have a uniform and
consistent definition, new objects can be added to existing
models. By using function and operator overloading, old
symbols take on additional meaning. Inheritance permits new
objects to be defined from existing ones by just describing the
differences. Old models now become reusable because their
methods and objects continue to be useful.

Finally, in side-by-side comparisons of object-oriented
programming with procedural languages, there has been a
substantial reduction in the size of the resulting code (Cox,
1987). The reduced code size means that a single person can
manage more complexity. In the simulation of large and
complex systems, this benefit can mean that larger and more
realistic models are possible without an increase in manpower.

3.2 Potential Long Term Benefits

There are three areas where object-oriented simulations
have substantial long term benefits. First, objects in most
simulations tend to be physical and real. Generally they can be
represented pictorially. Therefore, object-oriented simulation
models often have a natural pictorial (iconic) representation
and are easily animated. The user can often directly translate
his simulation model into an animated simulation without
additional conceptual changes. For example, Thomasma and
Ulgen(1987) describe the ease of animating the simulation of a
manufacturing system in Smalltalk.

Second, because the objects contain their own functionality,
intelligence can be built directly into this functionality using the
machinery of artificial intelligence and expert systems. For
example an AGV can contain within the definition of its class a
decision process for choosing among various machines to serve.
Purther, this "intelligence" may be updated though simulated
experience as well as relying on various condition-action rules
(Rothenberg, 1986). Eventually objects would be designed that
could "explain” simulation behavior as long term information is
gathered (Rothenberg, 1988).

Third, objects provide a natural basis for concurrency. The
idea would be that each object could be assigned to its own
processor and work away until it needed some form of
coordination. Alth01a1ih it isn’t clear exactly what form the
coordination should take, there is a natural division among the
sliégl_}lbe;tion components when viewed as objects (Bezivin 1987a,

3.3 Some Disadvantages

Several disadvantages have been observed. The run-time
cost of dynamic binding is believed to be very high and a topic
of considerable interest. Object-oriented environments like
Smalltalk require machines with lots of RAM. The world-view
of an object-oriented system increases the semantic gap
between the language and the actual hardware, which can be a
problem for porting simulation models. Also some object-
oriented languages require that extensive class libraries be
understood before becoming proficient, This increases the
learning time and forces users to become more dependent on
documentation and high-level debugging tools.

4.0 IMPLEMENTING OBJECT-ORIENTED SIMULATIONS

Many object-oriented systems are attractive for performing
simulations. None have clearly been proven to be generally
superior as greater research into understanding object-
oriented programming continues. Many programming
languages now invalve objects and what constitutes an object-
oriented system is open to debate. Pasco (1986) states that to
fully support object-oriented programming a langnage must
exhibit “four characteristics: information hiding, data
abstraction, dynamic binding, and inheritance, Wegner (1987)
argues that an object-oriented language must have objects,
classes, and inheritance and that langnages with objects are
more properly called object-based. Pascal, Algol, or Fortran
are meither. Ada, Modula-2, and perhaps C may be called
object-based since they support objects as language features.
Object-oriented languages would include Simula, Smalltalk
(Goldberg and Robson, 1983), and C++ (Stroustrup, 1987;
Wiener and Pinson, 1988). It is interesting to note that Simula
was designed as a simulation language, Smalltalk contains an
extensive set of classes and methods to support simulation, and
C+ + was designed to be a;}plied to simulation. An example of
using Modula-2 as a basis for simulation is found in D’Ecuyer
and Giroux (1987) while Samuels and Spiegel (1987) use Ada
for their base language. Use of Smalltalk as a simulation
language and environment is found in Goldberg and Robson
(1983) as well as in the tutorials by Knapp (1986, 1987).

There are several Lisp-based object-oriented langnages that
distinguish themselves by their lack of strong typing, their
abstraction, and dynamic binding, These would include Flavors
(which supports a more primifive function than an object),
CommonTLoops, and New Flavors. A Lisp based object-
oriented simulation system is described by Stairmand and
Kreutzer (1988). DEVS-Scheme is an implementation of
DEVS for hierarchical, modular systems within an object-
oriented framework (Kim and Zeigler, 1987). DEVS is a
simulation formalism developed by Zeigler(1984).

It should be noted that there are several hybrid object-
oriented systems that combine the object-oriented approach
with traditional procedural features. For example, Objective-C
(Cox, 1987) adds objects, similar to Smalltalk, to the definition
of So consistent with Smalltalk is Objective-C that a
translator has been recently introduced to convert Smalltalk
into Objective-C (Cox and Schmucker, 1987). Thus Smalltalk
could be used for prototyping and design and later coverted to
C through Objective-C for efficient execution. Actor (Duff,
1986) provides a Smalltalk type environment with Pascal-like
procedural programming and artificial intelligence features.

5.0 CONCLUSIONS

The object-orientation poses a new approach to simulation
modeling and to simulation implementations. For those
familiar with GPSS like languages and the process features of
SIMSCRIPT, they will see some familiar themes, although
couched in a different language. However there is much more.
Many of the ideas are based on concepts that were introduced
in SIMULA for the express purpose of doing simulations.

Object-oriented systems provide a practical approach for
those who design simulation software. Object-oriented
languages provide a natural framework for development. The
information hiding and abstraction facilities make it easy to
develop and maintain complex software components. The
extensible platform is an attractive way to add new concepts
and features to an existing language. It would appear to be just
a matter of time before existing simulation languages attempt
to exploit various aspects of object-oriented systems to give
simulation modelers access to this powerful perspective.

280

REFERENCES

Bezivin, J. (1987a). Some Experiments in Object-Oriented
%Enlmlatlon, OOPSLA ’87 Conference Proceedings, Orlando,

Bezivin, J. (1987b). Timelock: A Concurrent Simulation
Technique and its Description in Smalltalk-80, Proceedings
of the 1987 Winter Simulation Conference, Atlanta, GA.

Birtwistle, G. M, Dall, O. J.,, Myhrhaug, B., and Nygaard, K.
(1979). Simula BEGIN, 2nd ed., Lund:Studentlittératur.

Cox, B. J. (1987). Object-Oriented Programming: An Evolutionary
Approach, Addison-Wesley, Reading, MA.

Cox, B. J. and Schmucker, K. J. (1987). Producer: A Tool for
Translating Smalltalk-80 to Objective-C, OOPSLA ’87
Conference Proceedings, Orlando, FL.

Crain, R. C, Brunner, D. T, and Henrikson, J. O. (1987).
Advanced Features of GPSS/H, Proceedings of the 1987
Winter Simulation Conference, Atlanta, GA.

Duff, C, B. (1986). Designing an Efficient Language, BYTE,
11(8), pp 211-224. gune guag

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The
iﬁzguage and its Implementation, Addison-Wesley, Reading,

Kim, T. G. and Zeigler, B. P. (1987). The DEVS Formalism:
Hierarchical, Modular Systems Specification in an Object
Oriented Framework, Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA.

Knapp, V. (1986). The Smalitalk Simulation Environment,
Proceedings of the 1986 Winter Simulation Conference,
Washington, DC.

Knapp, V. E. (1987). The Smalltalk Simulation Environment,
Part I, Proceedings of the 1987 Winter Simulation
Conference, Atlanta, GA.

L’Ecuyer, P. and Giroux, N. (1987). A Process-Oriented
Simulation Package Based on Modula-2, Proceedings of the
1987 Winter Simulation Conference, Atlanta, GA.

Pascoe, G. A. (1986). Elements of Object-Oriented
Programming, BYTE, 11(8), pp 139-144.

Pegden, C. D. (1982). Introdution to SIMAN, Systems Modeling
Corporation.

Pritsker, A. A. B. (1986). Introduction to Simulation and SLAM,
3rd Ed., Systems Publishing Corp.

Rothenberg, J. (1986). Object-Oriented Simulation: Where Do
We Go from Here?, Proceedings of the 1986 Winter
Simulation Conference, Washington, DC.

Rothenberg, J. (1988). Knowledge-Based Simulation at
RAND, SIMULETTER, 19(2), pp 54-59.

Russell, E. C. (1983). Building Simulation Models with
Simscript I1.5, C.A.C.I. Los Angeles, CA.

Samuels, M. L. and Spiegel, J. R. (1987). The Flexible ADA
Simulation Tool (FAST) and Its Extensions, Proceedings of
the 1987 Winter Simulation Conference, Atlanta, GA.

281

Stairmand, M. C. and Kreutzer, W. (1988). POSE: a Process-
Oriented Simulation Environment embedded in SCHEME,
Simulation, 50(4), pp 143-153.

Stroustrup, B. (1987). The C++ Programming Language,
Addison-Wesley, Reading, MA.

Teslerg L. (1986). Programming Experiences, BYTE, 11(8), pp
195-206.

Thomasma, T. and Ulgen, O. M. (1987). Modeling of a
Manufacturing Cell using a Graphical Simulation System
Based on Smalltalk-80, Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA.

Wegner, P. (1987). Dimensions of Object-Based Language
Design, OOPSLA ’87 Conference Proceedings, Orlando, FL.

Wiener, R. S. and Pinson, L. J. (1988). An Introduction to
Object-Oriented Programming and C+ -+, Addison-Wesley,
Reading, MA.

Zeigler, B. P. (1984). Multifacetted Modelling and Discrete Event
Simulation, Academic Press, London and Orlando, FL.

AUTHORS’ BIOGRAPHIES

STEPHEN D. ROBERTS is Professor of Industrial
Engineering at Purdue University and Professor of Medicine at
the Indiana University School of Medicine. His academic and
teaching responsibilities are in simulation modeling. His
methodological research is in simulation language design and
includes INSIGHT, a general purpose, discrete event language,
and SLN, for the Simulation of Logical Networks. He 1s also
principal in SysTech, Inc. which distributes the simulation
languages and consults on their application.

He received his BSIE, MSIE, and PhD in Industrial
Engineering from Purdue University and has held research and
faculty positions at the University of Florida. He is active in
several professional societies and in addition to making

resentations and chairing sessions at conferences, he was
groceedings Editor for WSC ’83, Associate Program Chair for
WSC °85, and Program Chair for WSC ’86. Presently he is
Chair of SIGSIM and the TIMS representative to the WSC
Board of Directors.

JOSEPH A. HEIM is a PhD. student in Industrial
Engineering at Purdue University. He received his B.S. in
Mechanical Engineering and Master of Engineering in
Computer Science degrees from the University of Louisville in
1974 and 1975, and the M.S.LE. degree from Purdue University
in 1987. His research and consulting interests include
simulation for design of manufacturing control systems and
development of computer supported cooperative work
environments.

Stephen D. Roberts
Regenstrief Institute

1001 West 10th Street
Indianapolis, IN 46202, U.S.A.
(317) 630-7447

Joe Heim

School of Industrial Engineering
Purdue Universi

West Lafayette, IN 47907, U.S.A.
(317) 494-1866

