s

Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

The Object Library for Parallel Simulation (OLPS)

Marc Abrams
Distributed Systems Group
Department of Computer Science
Stanford University
Stanford, CA 94305

Abstract

The Object Library for Parallel Simulation (OLPS) is
a set of C44 objects from which a parallel, discrete
event simulation or simulation language can be built and
run on multiprocessor workstations. OLPS provides a
common interface to the simulation programmer for sev-
eral parallel simulation algorithms, including implemen-
tations of the Chandy-Misra and Time-Warp algorithms.
OLPS also provides instrumentation to compare the per-
formance of each parallel algorithm on the same simula-
tion problem. The system currently runs on the V dis-
tributed system on the DEC Firefly.

Keywords: parallel simulation, object-
oriented programming, Chandy-Misra simula-
tion algorithm, Time-Warp simulation algo-
rithm

1 MOTIVATION

This paper describes the initial implementation of and
performance measurements from a system for parallel
simulation called the Object Library for Parallel Simu-
lation (OLPS). The system is targeted to multiprocessor
workstations, and is suitable for general purpose, discrete
event simulation.

A number of techniques have been proposed in the
literature for carrying out simulation in parallel, for ex-
ample [3, 7, 24, 4, 5, 8, 10, 11, 14, 18, 23]. OLPS, rather
than implementing a new simulation technique, provides
a framework within which a variety of proposed tech-
niques are and can be implemented.

The objectives of OLPS are to:

1. provide the simulation programmer with implemen-
tations of several parallel simulation algorithms, as
well as a common interface to these algorithms,

2. provide instrumentation to measure the run-time
behavior of the selected simulation algorithm,

210

3. factor out common operations among the techniques
(e.g., interprocess communication, message routing,
flow control, random number generation) and pro-
vide a single implementation for these, and

4. facilitate experimentation through:

(a) modifying existing algorithms, and

(b) adding new algorithms to the library.

OLPS is not, however, intended to be a simulation
language. Rather, we expect that OLPS will provide
the run-time support needed to port existing simulation
languages to multiprocessors.

OLPS currently implements two algorithms: Chandy-
Misra [5] with deadlock avoidance and Time-Warp [11].
The Object Library is implemented in C++- using the
Argonne National Library macro package [16] to permit
its porting to various operating systems. Our implemen-
tation runs on the V operating system [6] on a five pro-
cessor DEC Firefly [22].

One motivation for OLPS is that performance mea-
surements reported so far indicate that parallel simula-
tion can be highly efficient for some problems but slower
than single-processor simulation in other cases. For ex-
ample, Reed, Maloney, and McCredie report that the
Chandy-Misra algorithm achieves near linear speedup for
tandem queues, while for central server queueing net-
works the algorithm usually runs faster on a single pro-
cessor than on multiple processors. Speedup as used
here is the ratio of completion time of a parallel sim-
ulation program on an N processor trial to a 1 processor
trial. Until more is understood about parallel simulation
performance, a practical parallel simulation system will
need to offer multiple techniques with a common inter-
face. The simulation programmer can then experiment
with which algorithms work best in particular problem
domains,

Another motivation for OLPS is to compare through
measurement alternate algorithms. Comparing different
algorithms on the same benchmark always leaves open
the question of whether the differences observed are due

to the way in which each algorithm is implemented or are
due to the inherent differences in the algorithms them-
selves. OLPS facilitates such comparisons, because one
benchmark simulation program can be run with alternate
parallel algorithms via the common interface, and be-
cause the alternate algorithms share the same implemen-
tation of common services. This eliminates one source of
implementation differences.

The structure of OLPS is presented next. §3 describes
measurements of its performance. §4 discusses related
work.

2 OBJECT LIBRARY FOR PARALLEL
SIMULATION

Objects (or classes in C-+-+ [21]) consist of data and
a set of operations that modify the data. For example,
OLPS contains an object implementing a communication
channel (the CHANNEL object), in which the data is con-
tiguous memory shared by processes and the operations
allow concurrent processes to read and write the data.

A CHANNEL and other objects that rely on no other
objects are called base objects. All other objects are
derived objects that inherit the data and operations of
other base or derived objects. For example, OLPS con-
tains a SINGLELINKEDLIST base object. A discrete ran-
dom variable with arbitrary distribution is implemented
by the ARBITRARYRANDOMVARIABLE object, which is
derived from a SINGLELINKEDILAST by storing the dis-
tribution function in the list and adding the operation
Sample which calls a random number generator before
accessing the distribution list.

2.1 The OLPS Object Hierarchy

One may represent the hierarchy of base and derived
objects in the form of a tree. Figure 1 illustrates the
overall organization of OLPS: A set of base objects imple-
ments mechanisms common to all simulation techniques.
From these objects implementing the Chandy-Mis ra al-
gorithm are derived by adding mechanisms to generate
and respond to null messages. From the base objects a
set of objects implementing the Time-Warp algorithm is
derived.

Base Qbjects

Time-Warp Objects Chandy-Misra Objects

Figure 1: Overal Object Library Structure

211

To understand the actual objects used in OLPS, it is
first necessary to understand the simulation model used
by the Chandy-Misra and Time-Warp. The system to
be simulated is viewed as a finite set of physical pro-
cesses (e.g., the terminals, disks, memory, and CPU of
a computer system). Each physical process is associated
with a set of events (e.g., an I/O request arrives at a
disk). Physical processes interact by sending and receiv-
ing messages. A simulation program then consists of a
set of logical processes (the operating system processes)
corresponding to the physical processes, which can “pre-
dict the exact sequence of message transmissions in the
physical system [17].”

The OLPS Object Library defines an object called
NoODE, which corresponds to a physical process. (As de-
scribed later, a NODE object is assigned during simulation
to a logical process, which is then scheduled to run on a
processor.) A node exports the following operations:

CreateNode(Id, Type, Sequencer,
Responder*, Routerx)

DestroyNode ()

void SetRoute(Id, Node*)

void PreLoad(Node*, int NoJobs, ..

Msg* Input()

Msg* RespondTo(Msg*)

void Output(Msg#)

)

All objects in the library are implementeda as contain-
ers, storing pointers to objects, rather than the objects
themselves. Thus formats for important data structures,
such as the text of messages, are defined by the user.
The list of exported operations contains asterisks to de-
note pointers to objects, in the style of C+4-.

A complete simulation program instantiates one node
for each physical process (via CreateNode) and sets its
output route (via SetRoute). Nodes may also be created
or destroyed dynamically during execution by calls to
CreateNode and DestroyNode. CreateNode also sets two
node attributes: a type and a name. Both are unsigned
integers chosen by the user. PreLoad sets the initial con-
dition of a NODE.

A NODE object can receive messages (via Input), sim-
ulate them to produce an output message stream (via
RespondTo), and route the output messages to their des-
tination nodes (via Output).

Figure 2 shows the basic organization of the Object
Library. The NODE object is derived from the followin
four objects: '

Changgl Sequ:nter\Resy‘m/Router DiTtory Slil;l;l
M Nod Simulator Conc
essage e Log

Figure 2: More Detailed Object Hierarchy

SEQUENCER: Implements the Input operation of a NODE
object. Collates the multiple input streams to a
node in time-stamp order. Decides in what order
arriving messages are presented to the RESPONDER.
The library currently contains two types of respon-
ders: FIFO (first in, first out), and LIFO (last in,
first out).

RESPONDER: Implements the RespondTo operation of a
NODE object. The user always derives an object
from the RESPONDER to performs the actual simu-
lation of the corresponding physical process.

ROUTER: Implements the Output operation of a NODE
object. Different router objects are provided to
route based on different rules. Currently the library
contains a probabilistic router (PROBROUTER), a
router used when there is only one output route
(DECFREEROUTER), and a router that deletes mes-
sages (SINK).

CHANNEL: Implements the Input and Output operations
of SEQUENCER and ROUTER objects, respectively.
Provides a communication medium and its proto-
col. There are currently two implementations avail-
able. The CQCHANNEL provides a monitor to ac-
cess object CIRCULARQ), which is a circular queue of
fixed, user specified size. The LINKLISTCHANNEL is
a monitor accessing a linked list.

Figure 3 illustrates the relationship of the four objects
from which a NODE is derived. Messages arriving from
multiple sources first enter a CHANNEL object, which con-
tains a spin lock to serialize access to it. Messages then
pass to the SEQUENCER, RESPONDER, and ROUTER ob-
Jjects before leaving the NODE.

Different versions of these objects exist in the library to
implement different parallel simulation algorithms (e-g.,
Chandy-Misra, Time-Warp), different routing rules, dif-
ferent sequencing rules, and so on. Thus by proper se-
lection of these during NODE object instantiation via
CreateNode, a user may quickly construct a variety of
simulations.

The remaining objects in Figure 2 are:

212

DIRECTORY: DIRECTORY is only used during simulation
initiation and termination. Contains a pointer to all
NODE objects in the system. Exports operations to
map node names to pointers and to find all nodes of
a given type. One key operation exported (Assign)
assigns nodes to operating system processes.

SIMULATOR: Uses DIRECTORY to assign nodes to oper-
ating system processes, and to assign processes to
processors. Exports operation Simulate, which is
called by the user to initiate execution of all NODE
objects.

Operation Simulate creates as many processes as
there are nodes. Each process then executes:

Node* Me = Assign();
// assign a node to this process
for (int N=0; N<EventLimit; N++)
Me->0utput (
Me->RespondTo (Me->Input()));

(The termination of node execution after it has ex-
ecuted EventLimit number of events is a simplifica-
tion of the actual termination mechanism.)

SERIALLOG and CONCLOG: These log events by storing
them in a circular queue of user specified size in
memory during simulation execution. SERIALLOG is
used by a single process. CoNcLoG adds a monitor
to control access to a SERIALLOG by multiple pro-
cesses. After execution, the log is written to disk.

MEssAGE: Contains a type (e.g., User, Suspend, Anni-
hilaté), a source and destination node name, a time
stamp, and a pointer to user text of user speci-
fied format. Derived from type MESSAGE is type
LLMESSAGE, which additionally contains link fields
for use with the LINKLiISTCHANNEL.

2.2 Complete Simulation Program
Figure 4 illustrates the process by which a user as-

sembles a complete simulation program using the Object
Library.

}Wequencﬁl’l Respond?r‘_»[RouterK

/J/' Node

¥y

Figure 3: Relationship of Objects Comprising a Node

Yacc Grammar ._{Yacc
of Model Input -
Responder- Object
derived Objects ————»| Cot Library
lédaessage text — gl Compiler
ta
pe a Complete
Main Program—____y| XET (—-Simulation
Program
Optional:
Modified, additional
Library Objects

Figure 4: Steps in Creation of a Complete Simulator

To begin with, simulation systems inevitably require
an input file that describes the configuration and param-
eters of the system to be simulated. This file has an
arbitrary syntax, and normally requires a non-reusable
piece of code to read the file.

To simplify this process, in our system the user first
writes a Yacc [13] grammar to describe the syntax of
the model input file. The actions associated with the
grammar rules instantiate the necessary NODE objects
(via CreateNode) and other user defined objects. The use
of Yacc simplifies maintenance of this portion of code.

The Yacc grammar is then processed by the Yacc pro-
gram, which generates a C++ compatible parser in the
form of a function named yyparse().

The user must also provide:

RESPONDER-derived objects: each provides a
RespondTo operation to simulate each distinct type
of physical process in the system

Message text data type

Main program: calls yyparse() followed by operation
Simulate

Optional objects: required by RESPONDER-derived
objects, objects reimplementing any library objects
(e.g., to employ a new parallel simulation algo-
rithm), or additional library objects (e.g., a SOURCE
class derived from the SEQUENCER object to intro-
duce new messages into the simulation.)

All of these C++ programs are then compiled and
linked with necessary objects from the library to produce
a complete simulation program.

213

Example: The Reed, Maloney, McCredie Bench-
mark: Reed, Maloney, and McCredie [19] simulated
a variety of queueing networks (tandem; general, feed-
forward; cyclic; central server; and cluster networks) us-
ing the Chandy-Misra algorithm. We implemented a
queueing network simulator using OLPS to measure the
same benchmark; it requires only 784 lines of code (in-
cluding comments and blank lines).

The benchmark requires five types of physical pro-
cesses: sources, forks, servers, merge nodes, and sinks.
It is only necessary to write two RESPONDER objects for
this problem: SOURCECLASS and SERVERCLASS. The
necessary physical processes are instantiated with the fol-
lowing calls:

Source: CreateNode(Id, Type, Null,
SourceClass, DecFreeRouter)

Fork: CreateNode(Id, Type, CMFifoQ,
Null, ProbRouter)

Server: CreateNode(Id, Type, CMFifoQ,
ServerClass, DecFreeRouter)

Merge: CreateNode(Id, Type, MultiCMFifo,
Null, DecFreeRouter)

Sink: CreateNode(Id, Type, FifoQ, Null,
Null)

Null represents the absence of a particular object when
none is needed. For example, no messages arrive at a
source, and therefore no SEQUENCER is required.

Support of Simulation Languages. The discussion
above has focused on how to directly create a com-
plete simulation program using the Object Library. This
method requires that the user use C++ to program his
RESPONDER derived objects.

We recognize that languages for describing simulations
— particularly distributed system simulations — is an
active research area. In these situations C+4+ is not a
desirable simulation language, and an alternative is pos-
sible. A simulation language may be implemented by in-
cluding calls to operations of the desired library objects,
provided that the two languages share the same linker.
The Object Library would fill for the simulation language
the role that a run-time library plays for a programming
language.

Double Single Sequ

Cicular encer Resppnder i Royter
T T e
List List L1st
Se¥ial © W\ Abitrary
FlfOQ Random
y Variable
] 4
CQ LinkList TW M M ™ Prob DecFree Sink
Channel Channel FifoQ FifoQ Multi Responder Responder Router Router
Fi
A AN lfoQ/ \ / \ /
YV
Legend:
— Derived class
..... S g'm_ulated _a’e_ri ved class
Figure 5: Detailed OLPS Object Hierarchy via instansianon

2.3 Object Library Components

Figures 1 and 2 present two views of the Object Li-
brary. The precise hierarchy is shown in Figure 5.
The figure shows that the LINKLISTCHANNEL and CQ-
CHANNEL are not actually base objects; because it main-
tains a queue, they are derived from a DOUBLELINKED-
L1ST object or a CIRCULARQ object, respectively. The
queue is initialized by the PreLoad operation of §2.1. A
ROUTER may base its route on a discrete random variable
(object ARBITRARYRANDOM VARIABLE), which in turn is
derived from a SINGLELINKEDLIST object.

Objects specific to Chandy-Misra: The CMRE-
SPONDER adds to the user’s RESPONDER the automatic
generation of nuill messages in the deadlock-avoidance
version of the Chandy-Misra algorithm. The MuLTICM-
FIroQ is used when there are multiple nodes sending
messages to a node to merge the input streams and to
calculate the channel time (as defined by Chandy and
Misra [5]).

Objects specific for Time-Warp: For the Time-War
algorithm, the object library contains a derived object for
each SEQUENCER and RESPONDER that can do recovery.
Each object derived from the RESPONDER object adds a
data structure to checkpoint its state, and adds an op-
eration callable from the SEQUENCER to roll the state
back. Each SEQUENCER and derived object adds a data

structure to store old input and output messages, respec-
tively. The SEQUENCER maintains the local virtual time
for the node and is responsible for initiating the rollback
process.

2.4 Instrumentation

OLPS provides two types of instrumentation to collect
information on the run-time behavior of a simulation: ob-
ject measurements and traces. Object measurements are
minimally intrusive, while traces may be highly intrusive.

Object measurements. Examples include buffer oc-
cupancy, number of rollbacks, waiting times for locks and
monitors, and time spent blocked on buffer over and un-
derflow. Each object allocates a private memory area for
collecting information on its behavior and collects data
as necessary when its member functions are called. Thus
statistic collection of objects in different processes do not
interfere with each other.

After the simulation completes and the child processes

.ferminates, the single parent process accesses each pri-

214

vate data area to output individual object measurements
and generate a summary report.

Traces. Traces may be selected which are done inde-
pendently for each process or collectively for all pro-
cesses. The second form is highly intrusive because a
single lock must be acquired by all processes to log an
event. This form is more useful for debugging.

OLPS can produce several types of traces of the run-
time simulation behavior, using the LOG object:

1. a trace of when spin locks are acquired and released,

2. a trace of messages that pass through each channel,
and

3. user specified events.

OLPS has one further facility. During simulation ex-
ecution, one can observe imbalances between the rate
at which each processor executed events in the following
manner. OLPS can, at user specified intervals, display on
a monitor during execution a processor number and the
number of events executed so far by each processor. This
facility can be made arbitrarily unobtrusive to the simu-
lation behavior by selecting a suitably infrequent display
interval.

3 PERFORMANCE MEASUREMENTS

In this section we illustrate the use of OLPS in compar-
ing the performance of two simulation algorithms. As a
benchmark we use the tandem, cyclic, and central server
queueing networks of Reed, Maloney, and McCredie [19].
This benchmark is also used by Wagner, Lazowska, and
Bershad [23].

Test environment: Measurements were made on a
five processor network on the five processor Firefly, built

by Digital Equipment Corporation. DEC describes the
machine as follows:

The Firefly is a closely-coupled multiproces-
sor machine with 5 processors, 8 megabytes
of memory and an Ethernet interface. Each
processor is a MicroVAX II processor run-
ning at 12 MHZ for an effective performance
of about 2 MIPS, or 90 percent of a VAX
11/780 per processor. Each processor has a per-
processor cache of 16 kilobytes of memory with
the “snoopy cache” (or write-broadcast) proto-
cols for ensuring cache consistency. The caches
are direct mapped. A test-and-set instruction
is used for synchronization.

The caches are interconnected and connected to
main memory by a 10 Mbyte per second mem-
ory bus that is separate from the I/O Bus. A
cache miss adds 3 or 4 wait cycles to an in-
struction cycle. We have observed at most & 14
percent degradation in processor performance
due to cache misses and bus contention with 5
processors.[9]

Each workstation had sufficient memory to accommo-
date all executing processes (i.e., no virtual memory or
swapping was used). Each workstation ran the V 6.3 op-
erating system. A minimum number of processes other
than the simulation was run on the machines during tests
(e.g., to manage the display, service network traffic, and
provide a command executive). Thus each machine exe-
cutes a small background load during simulation (e.g., to

update the processor clock, reject multi-cast or broadcast

packets on the Ethernet).

The time required to create and destroy processes is

reflected by the time required to simulate zero jobs in a

five node tandem network: 1.21 seconds.

The measurements reported are the means of three to
five runs. (Five runs were used when a high variance was

observed in the first three runs.) The number of events

simulated was chosen so that simulation runs lasted for at
least 100 seconds, which from experimentation appeared
to be the shortest duration that maximized the speedup.

The speedups we report are optimistic because the single

processor execution of the parallel simulation performs

locking, which results in unecessary context switching.

Tandem network. A tandem queueing network with
N processors should achieve near IV fold speedup on a
Ideally, the jobs
This
behavior was observed by Reed, Maloney, and McCredie

workstation with at least N nodes.

should pipeline as they pass through the nodes.

[19], subject to bus and memory contention at higher
numbers of processors.

o 417 0——9¢ Deadlock avoidance, V spin lock
5 O =+ =0 Deadlock avoidance, busy waiting
>
o
Q
<
S
e
o -
2 3
Q
8,
K
g
&
24—
1 ! | | |
1 2 3 4 5
Number network nodes

Figure 6: Tandem Queueing Network Speedup

215

Figure 6 illustrates the measured behavior of two to
five nodes with the Chandy-Misra algorithm and eager
deadlock avoidance, in the terminology of Wagner, La-
zowska, and Bershad. [23]. (Eager avoidance means that
a node only sends a null message if its input queue is
empty.) We used equal, deterministic service times at
each node. Reed, Maloney, and McCredie [19] obtained
linear speedup in the two to five processor range on a Se-
quent Balance 2100. Three factors may account for the
limited speedup that we obtained:

1. The five Firefly processors are not homogeneous in
the sense that one processor has an additional load
from the Q-Bus to which the display and Ethernet
interface is attached. This processor is only used
in the five node network simulation. Therefore sub-
linear speedup when the number of processors is in-
creased from four to five is understandable.

. The bus transfer rate of the Firefly is lower than
the 80 MByte per second maximum transfer rates of
the Sequent, Balance 21000. The queueing network
benchmark requires a minimal amount of processing
to service an incoming job because a node performs
one addition to calculate the job departure time.
Thus communication is expensive relative to local
processing activity, and accesses to locks occurs fre-
quently.

. The current version of V on the Firefly serializes
accesses to the kernel. Kernel accesses are made in
allocating memory and in delaying when using the
V spin lock mechanism.

Figure 6 contains two curves reflecting the behavior of
two locking policies. One is the V spin lock mechanism.
In the event the lock is not available, this mechanism
tests the lock once, and then sleeps for one clock tick (10
milliseconds). This cycle is repeated until the lock is ac-
quired. The second lock mechanism busy waits until the
lock is available, executing several NO-OP instructions
between retries. The lock is tested every 8 microseconds.

‘When locks are unavailable in the tandem network it
is usually because of contention for access to the shared
SEQUENCER object between nodes. Since the lock hold-
ing time of a process is only a few instructions to enqueue
or remove a message, the V lock mechanism with its 10
millisecond delay for not acquiring a lock performs worse
than than busy waiting. Busy waiting improves the per-
formance somewhat, but at the same time introduces
additional bus traffic due to more frequent lock testing.

216

Total Speedup (20,000 events)

|
48
Customer population

-
56 64

O |
40

Figure 7: Four Node Cyclic Queueing Network Speedup

Cyeclic network: Figure 7 depicts the behavior of our
implementation of the Chandy-Misra on a cyclic network
of four nodes. Previously Reed, Maloney, and McCredie
obtain under two fold speedup. Wagner, Lazowska, and
Bershad obtained up to four fold speedup for a four
node network. Our speedup exceeds four, which may re-
flect the fact that the single processor execution acquired
locks.

Central Server network: We measured the same
central server network (Figure 8) that Reed, Maloney,
and McCredie did. The result is illustrated in Figure
9. All results indicate that our Chandy-Misra dead-
lock avoidance as well as Time-Warp implementations
ran slower in parallel than sequentially.

The Time-Warp implementation follows the algorithm
described by Jefferson and Sowizral [11]. Ours differs in
two respects:

1. “State” in the queueing network model requires only
one memory word: the departure time of the last
job. Thus we save all states, which eliminates the
need to perform a coast-forward step.

4

0.1
Server }—DI Fork I—-—

Merge

Figure 8: Ceniral Server Queueing Network

~~ 1 [
g O=——=< Chandy-Misra, deadlock avoidance
3 O =+—=0O Time-Warp
I
<
=
&
k<!
8
8,
)
=
S
_______________)
o Yo gy T
0 10 20 30 40 50 60
Number Customers

Figure 9: Central Server Queueing Network Speedup

2. Rather than send one antimessage for each outdated
message whose effects are being undone in the can-
cellation step, we send a single message interpreted
to mean “annihilate all messages from this source
whose time stamp is equal or greater to my time
stamp.”

Our implementation of the Chandy-Misra algorithm
performed two to four times more slowly in parallel
than when executed sequentially, which is consistent with
Reed, Maloney, and McCredie’s results. They obtained
a sixteenfold decrease in running time.

Two phenomena may account for our Time-Warp im-
plementation performing more slowly than the Chandy-
Misra algorithm:

1. Simulation traces showed that the annihilate mes-
sages chase outdated messages around the network.
QOutdated messages are only destroyed when they
are waiting in the input queue of a node and, before
the message is processed, an annihilate message ar-
rives. When the number of logical processes in the
simulation does not exceed the number of physical
processors (as is the case in our implementation),
outdated messages are dequeued and processed be-
fore the corresponding annihilate message arrives.
The number of annihilate messages that originated
in our system for 10,000 simulated events ranged
from 2198 to 3728.

217

2. The holding time for locks is longer in our Time-
Warp implementation than in our Chandy-Misra im-
plementation. This is because whenever an annihi-
late message arrives, all messages in the input queue
must be searched to delete outdated messages.

4 RELATED WORK

An object orient approach to parallel simulation has
also been used by Bezivin [1, 2]. However, our work is
novel in two respects:

1. OLPS implements multiple parallel simulation al-
gorithms in one system, allows for new algorithms,
and provides a single interface to the simulation pro-
grammer.

OLPS facilitates comparison of existing algorithms.
This is significant, given the limited measured per-
formance results available [19, 12, 20].

Part of the challenge of implementing multiple simu-
lation algorithms on a multiprocessor is to tune the op-
erating system; the parameterized spin locks of §3 are
an example. An alternative approach to using an Object
Library is to implement a special purpose operating sys-
tem, as is proposed by Jefferson {12]. The Time-Warp
Operating System is a three layer operating system im-
plementing the Time-Warp mechanism. Applications re-
side in a fourth lasrer.

So far we have found that an operating system whose
structure minimizes the services provided directly in the
kernel can be tuned to parallel simulation. In contrast,
a special purpose operating system may be less suitable
implementation of new parallel simulation algorithms in
the future.

Using the terminology of Kaudel [15], OLPS in its
present form offers one of four categories of parallel sim-
ulation techniques, namely model function partitioning:

s Independent Replicas: Run one independent, se-
quential simulation on each processor. Amenable to
Monte-Carlo simulation.

Support Function Distribution [3, 7, 24]: Sim-
ulate all events on one processor, but assign sup-
port functions (e.g., event list management, random
number generation, event logging) to separate pro-
Cessors.

Model Function Partitioning [4, 5, 8, 10, 11,
14, 18]: The simulation events to be executed

are assigned in some manner to multiple proces-
sors. This permits simultaneous execution of multi-
ple events by multiple processors.

¢ Hybrids: The above techniques may be combined.

Implementation of the remaining categories within
OLPS is feasible, but would require a significant amount
of additional work.

5 CONCLUSIONS

Incorporating several parallel simulation algorithms
into a library of C++ objects provides several advan-
tages:

* Modularity: We can change an object in our library
to alter any aspect of simulation, add it to the li-
brary, and build a new simulation in a straightfor-
ward manner to compare the performance of the
original and modified versions.

o Hierarchy: The object model forced us to organize
the code in a way that identified what was common
to all simulation algorithms.

e Efficiency: C++ offers the efficiency benefits of C.
Only objects implementing the desired simulation
technique are linked to the complete simulation pro-
gram. The object mechanism cost is primarily com-
pile time type checking. C-++ also permits in-line
code substitution when desired. (The in-line code
feature allowed us to replace many Argonne macros
[16] with functions, making the resultant code more
readable while not sacrificing efficiency.)

The chief difficulty we have encountered is that the
present form of C++ does not allow multiple inheri-
tance. Therefore we use instantiation to simulate inheri-
tance, slightly increasing the execution time of the inner
loop of the simulation. (Instantiation is evident in the
CreateNode call, which requires passing pointers to the
desired objects which a NODE is constructed from. Point-
ers slightly decrease run-time efficiency, because calls to
inherited operations require an extra level of indirection
and cannot be expanded in-line. Unfortunately these
calls are in the inner-loop of our simulation (that per-
forms Input, then RespondTo, then Output.)

Appealing directions for further development of OLPS
include:

¢ Creation of a set of sequential objects, that would
allow construction of a simulator that is purely se-
quential and not organized as a set of processes.
This would permit more realistic speedup estimates.

218

e Support function distribution techniques,

¢ Complex simulation stopping rules (Simulation now
stops when a specified node executes a specified
number of events.),

o Efficient facilities for collection of simulation statis-
tics (as opposed to measurements of the simulation
program itself), and

e An interactive user interface to control the simula-
tion.

ACKNOWLEDGEMENTS

This work was sponsored in part by the Defense
Advanced Research Projects Agency under contract
N00039-84-C-0211. It was also supported by equipment
from Digital Equipment Corporation. The author wishes
to thank T. Abrams for running the experiments and E.
Sznyter for help in formatting the text.

REFERENCES

[1] J. Bezivin. Adapting a Simulation Language to a
Distributed Environment. Proc. 8rd Inter. Conf.
on Distributed Computing Systems, Miami, Florida
(Oct. 1982) 596-605.

[2] J. Bezivin. Some experiments in Object-Oriented
Simulation. Proc. Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
Orlando, Florida (Oct. 1987) 394-405.

[3] J. S. Birnbaum. Towards the Domestication of Mi-
croelectronics. Comm. ACM 28, (1985) 1225-1235.

[4] R. E. Bryant. Simulation of Packet Communica-
tion Architecture Computer Systems. Tech Rep.
MID,LCS,TR-188, M.I.T., Cambridge, MA (1977).

[5] K. M. Chandy, V. Holmes, and J. Misra. Dis-
tributed Simulation of Networks. Computer Net-
works 8, (1979) 105-113.

[6] D. R. Cheriton. The V Distributed System. Com-
mun. ACM 31, 3 (March 1988), 314-333.

[7] J. C. Comfort. The Simulation of a Master-Slave
Event Set Processor. Simulation 42, 3 (March 1984),
117-124.

[8] A. DeCegama. Parallel Processing Simulation of
Large Computer Networks. Sim. of Computer Net-
works. IEEE, Colorado Springs (Aug. 1987), 51-62.

[9] Digital Equipment Corporation. Confidential Infor-
mation Nondisclosure Agreement No. {584. 1988.

[10] B. Groselj and C. Tropper. Pseudosimulation: An
Algorithm for Distributed Simulation with Limited
Memory. Int. J. of Parallel Programming 15, 6 (Oct.
1986), 413-457.

[11] D. Jefferson and H. Sowizral. Fast Concurrent Simu-~

lation Using the Time Warp Mechanism. Dist. Sim.

1985. Soc. for Comp. Sim., San Diego (Jan. 85), 63-

69.

[12] D. Jefferson. et al. Distributed Simulation and the

Time Warp Operating System. Proc. 11th ACM

Symp. on Operating System Principles, Austin,

Texas (in 08 REVIEW 21 (5)), (1987) 77-93.

[13] S. C. Johnson. Yacc: Yet Another Compiler-

Compiler. Uniz Programmer’s Manual Supplemen-

tary Documents 1. Dept. of Electrical Eng. and

Comp. Science, University of Calif., Berkeley, CA

(1986).

[14] D. W. Jones. Concurrent Simulation: An Alterna-

tive Approach to Distributed Simulation. Proc. 1986

Winter Sim. Conf. IEEE Press, Wash. D.C., 417-

423.

[15] F. J. Kaudel. A Literature Survey on Distributed

Discrete Event Simulation. SIMULETTER 18, 2,

ACM Press, (June 1987) 11-21.

[16] E. Lusk, et al. Portable Programs for Parallel Pro-

cessors. Holt, Rinehart, and Winston, Inc., New

York, 1987.

[17] J. Misra. Distributed Discrete-event Simulation.

ACM Computing Surveys 18, 1 (March 1986), 39-

66.

[18] J. K. Peacock, J. W. Wong, and E. G. Manning. Dis-

tributed Simulation Using a Network of Processors.

Computer Networks 3, (1979) 44-56.

[19] D. A. Reed, A. D. Malony, and B. D. McCredie.

“Parallel Discrete Event Simulation: A Shared

Memory Approach.” IEEE Trans. on Soft. Eng. 14,

14 (April 1988), 541-553.

[20] H. Sowizral. The Time Warp Simulation System

and Its Performance, Distributed Systems Research

Seminar given at Stanford Univ., 31 March 1988.

[21] B. Stroustrup. The C++ Programvming Language.
Addison Wesley, Reading, MA, 1986.

[22] C. Thacker. The Firefly Multiprocessor Worksta-
tion. In Proc. of the Symp. on Architectural Support
for Programming Languages and Operating Systems,
(Palo Alto CA, Oct.). ACM, New York, 164-172.

219

{23] D. B. Wagner, E. D. Lazowska, and B. N. Ber-
shad. Techniques for Efficient Shared-Memory Par-
allel Simulation. TR 88-04-05, Dept. of Computer
Science, University of Washington., 1988.

[24] D. L. Wyatt. Simulation Programming on a Dis-
tributed System: A Preprocessor Approach. Dist.
Sim. 1985. Soc. for Comp. Sim., San Diego (Jan.
85), 32-36.

[25] A. Yonezawa, H. Matsuda, and E. Shibayama. Dss-
crete Bvent Stmulation Based on an Object Oriented
Parallel Computation Model. T.R. C-64, Tokyo In-
stitute of Technology (Nov. 1984).

AUTHOR’S BIOGRAPHY

MARC ABRAMS received a Ph.D. in Computer Science
from the University of Maryland in 1986. He then spent a
year at the IBM Zurich Research Laboratory, and is cur-
rently a post-doctoral scholar in the Distributed Systems
Group at Stanford University. He also developed simu-
lation models for the U.S. Army. His research focuses on
the performance of distributed and parallel software.

Marc Abrams

Building 460, room 422
Stanford University
Stanford, CA 94305-2140
(415) 960-0295
marc@pescadero.stanford.edu

