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ABSTRACT

This paper provides an introduction to the Johnson
translation system of probability distributions, and it
describes methods for using the Johnson system to model
The fitting
methods based on available data are incorporated into the
software package FITTR1. To handle
situations in which little or no data is available, we present a

input processes in simulation experiments,
public-domain

visual interactive method for subjective distribution fitting
that has been implemented in the public-domain software
package VISIFIT. We present several examples illustrating
the use of FITTR1 and VISIFIT for simulation input
modeling.

1. INTRODUCTION

A common problem in modeling stochastic systems is
the selection and estimation of probability distributions, and
an important step in this process is the identification of a
suitable family of distributions. When sample data are
available, this is usually accomplished by hypothesizing
standard parametric distributions and by performing
diagnostic checks to assess the adequacy of the fit. When
sample data are not available, we want the chosen family of
distributions to possess a few desirable properties that are
specified for the input process. To achieve an adequate
representation of the process being modeled, it becomes
necessary to use a family of distributions that is capable of
yielding a wide variety of shapes. The range of shapes that is
possible with a given family of distributions is a measure of

its flexibility, and many of the standard parametric
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distributions are extremely limited in distributional shapes
(Schmeiser 1977).

In this paper we discuss the use of the Johnson (1949)
translation system to model univariate populations. (The
term method of translation refers to the transformation of a

continuous random variable to a standard normal variate.)
The Johnson system is able to closely approximate many of
the standard continuous distributions through ome of four
functional forms and is thus highly flexible. This paper
describes the interactive software package FITTR1 which has
been developed to model univariate populations with the
Johnson system when sample data are available. We also
method for
distribution fitting when little or no sample data are

available, and we discuss the software package VISIFIT in

describe a visual interactive subjective

which this visual approach has been implemented. Both
FITTR1 and VISIFIT are in the public domain and are
available from the authors upon request.
This paper is organized as follows. Section 2 is a
discussion of the Johnson system of distributions. Section 3
methods of
identification and parameter estimation for the Johnson
system that have been implemented in FITTR1l. The
operation of FITTR1 is described in Section 4. The main
issues

summarizes the principal distribution

arising in subjective estimation of probability
distributions are discussed in Section 5. The operation of
VISIFIT is detailed

conclusions about input modeling with Johnson distributions

in Section 6. We summarize our

in Section 7.



2. THE JOHNSON TRANSLATION SYSTEM
Let X be a continuous random wvariable with
distribution function F(z) =Pr{X <=z} that is to be
estimated using a flexible family of distributions. Johnson
(1949) proposed three normalizing transformations having
the general form

Z=’7+5'f[£;i]. @

Here Z is a standard normal random variable, ¥ and § are
shape parameters, \ is a scale parameter and £ is a location
parameter. As described below, f is a simple function that is
chosen to complete the specification of the transformation so
that a probability distribution for X is also specified.
Without loss of generality or flexibility, we assume that § > 0
and A >0. The first transformation proposed by Johnson
defines the lognormal system of distributions Sy :

Z='7+5-log[-]£>\:§-], X>E 2)

The unbounded system of distributions Sy is defined by

s = [8)o{[225] e

A A
—00 < X < +00, (3)

and the bounded system Sp is defined by

E<X<E+N. (4)

7 =rroon| S|

Finally, for the sake of completeness, Johnson (1949) defined
the normal Sy system

Z =4+8§-X, —co<X <+oo. (5)

Given the random variable X, we define the moments

p=E(X) sad w=E[X-p)], 2<k<4 (6)
The skewness and kurtosis of X are
Pr=u3/u3 and By =p/fuf (")

respectively. Figure 1 shows that the Johnson translation
system can accommodate all possible points on the (£, 8,)
plane; this means that there is a unique Johnson distribution
corresponding to each feasible combination of £; and f,. The
Sy, system is represented as a line on this plane, and the

region between the limiting line f,—f,—1 =0 and the
lognormal line corresponds to the Sy system of distributions.
The remainder of the (8, ;) plane corresponds to the Sy

family.

Impossible Area

‘*SN System

Figure 1. Chart for Johnson subsystem identification.

3. METHODS OF DISTRIBUTION FITTING

‘WITH DATA

3.1. Moment Matching

Suppose we have a random sample {xj: 1<7< n}
from the target distribution F' that is to be approximated by
a2 Johmson distribution. Then the sample analogs of

equations (6) and (7) are

l=n gy my=n"1% (5 —ml), 2<k<d4 (8
my=n"3 %3 m=n E("’J m{)*, <k<4 (8
=1 §=1

and

,él =m$/m? and ,éz =m,/mi. (9
The moment-matching technique for fitting a Johnson
distribution to F uses the location of the point (5 " ,éz) in
Figure 1 to identify the appropriate functional form among
systems (2)—(5). The number k of parameters to estimate
depends on the selected system, and the principle of moment
matching prescribes that the first k& sample moments should
be equal to the corresponding population moments of the
fitted théoretical distribution. The resulting system of k
nonlinear equations, which will be dependent on the k
parameters, is then solved to obtain the parameter estimates
for the fitbed distribution.

3.2. Percentile Matching

Percentile matching involves estimating k required
parameters by matching k selected quantiles of the standard
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normal distribution with corresponding quantile estimates of
the  target
{a;: 1< 5 <k}, the corresponding quantiles {zaj} and {xaj}

population. For given  percentages

are given by

Zaj = Q"l(aj)

(10)
and

To, = FY(ey), (11)
where @(-) is the standard normal distribution function.
Typical choices for {o;} are {oy =0.25, oy =0.75} when
k =2, {og =0.07, oy =0.50, 0z =0.93} when k =3, and
{0y =0.07, 0, =0.3118, 0 =0.6882, 0;;=0.93} when k = 4.

Once the functional form f(-) among systems (2)—(5)
has been identified, the method of percentile matching
attempts to solve the k equations

sz =9+ 6°f[(£aj - E)A]’ 1< .7. < k, (12)

where ﬁa’, is an estimator of the quantile Za, based on sample

data.

3.3. Least Squares

Least squares estimation for the Johnson system involves
the minimization of the distance between a vector of
“uniformized” order statistics and its corresponding expected
value. (In this context, the distance between two nx1
vectors @ and b is defined by a quadratic form
{(a —bYW(a —b), where W 1is an appropriate nxn
positive semidefinite matrix of ‘‘weights.”) Given the
ordered data set z(j) <+ < z(,) obtained by sorting the
random sample {z; : 1 < 7 < n} from the target distribution
F, we can transform the ¢th sample order statistic z(5) into

the uniformized order statistic

Bi(¥) = q>{¢1 +¥p-f [ﬂ%]}, (13)

where 'fé = [y, Uy, Y3, %) = [1,6,\&]'. Note that if the
Y+ (X —E)/N yields 2

exactly, then R;(}) has the
distribution of U(;), the fth order statistic in 2 sample of n

associated translation Z =

standard normal variate

random numbers from U(0,1), the uniform distribution on
the unit interval (0, 1). Note moreover that U, () has expected
value p; = E[Uy)] = i/(n+1). The difference €;(3) =
R;()—p; represents the random deviation between the
observed and expected values of the {th uniformized order
statistic, so that E[e;(¢)] = 0. The covariance between €;(?))
and €;(¢) is
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Cov(e; (1), ()] = (_;(_:T—);’(.%F%,

Let R (%) = [By(), s Bal@ls £ = (o1, o £, ], 2nd c(af) =
B(Y)—p. In addition, let V = ”Cov[e,-(?), e;(P)]l| denote
the covariance matrix of the errors; and let D denote the
diagonal matrix obtained by setting the off-diagonal elements
of V to zero—that is, D = diag {Varley (), ..., Varle, (D)

1<i<i<n.

(14)

The least squares approach to the parameter estimation
problem can be stated as

minznize () = [(DN W [e()]

subject to:

Y2 >0,
(15)
>0 for Sy,
Y31 > z(n)—% for Sp,
=1 for SL and SN’
" <z for Sy and Sp,
=0 for Sy.

When the weight matrix W = I in (15), we obtain the
ordinary least squares (OLS) estimators for -, §, \ and &.
Since the errors {¢;(¢)} are neither independent nor
homoscedastic, weighted least squares (WLS) parameter
estimators are of interest. The standard approach in this
situation is to take W = ¥~ in (15). However in small to
medium samples, this approach can yield relatively large bias
in the fitted CDF as well as in the WLS parameter
estimators. As an alternative approach to WLS estimation,
Swain, Venkatraman and Wilson (1988) took W = D! =
diag {1/Var[ey({)}, ..., 1/Var[e, (1)]}; and in a wide variety of
data sets, they obtained WLS fits for Johnson distributions
that are comparable (and often superior to) the fits obtained
by the other methods described in this paper.

3.4. Minimum L, Norm Estimation

In this section we discuss the use of L, and L, norms in
estimating the parameters of the Johnson distribution. The
principle is to minimize some metric based on the distance
between the empirical CDF F, and the fitted CDF F. I
1< p < o0, then the L, norm for the distance between F,
and F is defined as

1/p

1#n = Fl, = | ] 1R@) = Rl aFe)| - o)



To fit a Johnson distribution by minimum L, norm

_—
m ” (a7

in (16) and minimize [|F, -F l, over all values of the

parameter vector 1 = [ty, ¢y, Uy, Y] = [1,6,) €] that are
feasible for the selected translation function f(-).

estimation, we take

ﬁ(z;g},f)E‘i’[%+¢zf

To fit a Johnson distribution based on the minimum
sum of absolute errors, the L; norm

(>
|Fo —Flly= [ [Fo(z) ~ F(z)| dF(2) (18)
—-00
can be evaluated as follows. For notational convenience, let

a; = 1;:[1:(]-)], for j =1, .., n, and let b; = (5 —1)/n, for
J =2, ..., n. Then we can evaluate the L; norm as

A n
”Fn '—Flll = %alz + '22 QJ' + %(1 - an)z’ (19)
j=

where
3(af —afy) = b(a; — ;) i b < ajy,
Q=1 F(f+ely) —bilo; +a;) +bF o <b<ay,
bite; — aj_l) - -;—(af — af_l) if b; > a;.

(20)

The L, norm is defined as

£ = Fllo=__swp _[Fo(s)—Fla)l,  (21)

—0LT <

and is evaluated as max{D,’, D}, where

- oy f—1
D = 12“?;{1‘"[’”(:')1 - ‘%‘} (23)

Note that (21) is simply the Kolmogorov-Smirnov statistic
corresponding to the fitted distribution F.

4. USING THE FITTR1 SOFTWARE

The program starts execution by prompting the user for:
(2) the name of a “seript” file that will maintain a record of
the entire interactive session, and (b) the name of the input
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data file. (At a later time, the first file can be printed out to
provide a hard copy of the results of the interactive session.)
After the user has responded to these prompts, the data set is
read in, some basic data checks are performed, and a variety
of sample statistics are calculated and displayed. FITTR1
then computes and displays moment matching estimates for
the parameters, and then waits for a command from the
The available commands are explained below. A

interactive session with FITTRI1
Appendix A. See Venkatraman and Wilson (1988) for a more
complete discussion of FITTRI.

user.

sample is shown in

stat Command. This command displays the computed
sample statistics—mamely, the mean, standard deviation,
skewness ﬁ 1» kurtosis ,@ 9» range, minimum and maximum of
the data set being analyzed. (See equations (8) and (9) for
precise definitions of ﬁ 1 and ﬁ 2¢)

fit
distribution to the sample data as specified by the fitting

ijkm Command. This command fits a new

code ijkm. The four digit code ijkm is parsed to obtain
k and m. The table
below describes the values of these variables.

the values of the variables i, 3,

0 = automatic distribution selection
1 = 8, distribution
i | 2 = Sy distribution
3 = Sp distribution
4 = Sy distribution

0 = no end point known
1 = lower end point known

J 2 = upper end point known
3 = both end points known
x 0 = compute starting parameter values
1 = use previous parameter values
0 = moment matching
1 == percentile matching
n 2 = ordinary least squares estimation of the CDF

3 = weighted least squares estimation of the CDF
4 = L, estimation of the CDF (minimize sum of absolute errors)

5 == L, estimation of the CDF (minimize maximum absolute error)

The command £it O has special meaning: it identifies the
type of distribution to fit based on the location of the point
(,é 1 ,éz) and also performs parameter estimation by moment
matching. All valid fit commands except the fit 0
command query the user for additional fitting information

when the program is in the verbose mode {see below).

raxr Command. This command displays the parameters of

the fitted distribution—namely the type of distribution that



has been fitted, the fitting method, and the current values of

the parameters -, §, A and &,

gof Command. This command invokes goodness of fit
testing using the latest set of estimated parameters. The ¥?
goodness of fit test and the Kolmogorov-Smirnov test are

performed and the results displayed on the screen.

¢df Command. This command creates files of fitted and
empirical CDFs that can be used as input to plotting
packages for display on high-resolution output devices—
usually color monitors and/or laser printers. The plot-files
generated by this command are text files——that is, they
contain free-format numbers specifying the appropriate
abscissa (X) and/or ordinate (Y) values for the points to be
plotted. To create the desired graphs, the user may pass
these files to any available plotting package. The specified
points should be connected with lines to obtain the desired

graph.

pdf Command. This command creates files of histogram
values and fitted density function values that can be used as
input to plotting packages for display on high-resolution
output devices—usually color monitors and/or laser printers.
The plot-files generated by this command are text files—that
is, they contain free-format numbers specifying the
appropriate abscissa (X) and/or ordinate (Y) values for the
points to be plotted. To create the desired graphs, the user
may pass these files to any available plotting package. The
specified points should be connected with lines to obtain the

desired graph.

mode Command. This command will toggle the program
from the verbose mode to the terse mode and vice versa. In
verbose mode, the user has an opportunity to change any of
the parameters of the available fitting procedure (for
example, error tolerances and iteration limits). In terse mode,
the user is not prompted for these parameters; instead,

standard default values are taken.
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spec Command. This command allows the user to change
the specifications of the available fitting procedures (for
example, error tolerances and iteration limits). It is different
from the mode command in that the program will be in terse

mode after execution of this command.

next Command. When there is more than one set of data
to be analyed during one interactive session, this command is

used to proceed to the next data set within the input file.

comm Command. This command allows the user to insert
comments into the script file. Such comments may be useful
for future reference when reviewing a printed copy of the

script file.

what Command. This command displays the name of the

data set being currently analyzed.

help Command. This command displays the available list

of commands.

stop Command. This command provides for a quick and

graceful exit from the interactive program.

5. SUBJECTIVE DISTRIBUTION FITTING

6.1. The Johnson Sp System Revisited

In developing a visual interactive approach to fitting
Johnson distributions when little or no data are available, we
confined outselves to the Sp subsystem of the Johnson
translation system because it matches well our notions of the

general characteristics of many potential envisioned target

distributions. Sp distributions are bounded and they are

capable of matching the skewness and kurtosis of most
practical distributions. Real-world measurements are always
bounded, even if only by the limits of technology. The Sp is
capable of assuming U-shaped forms, but because we seek to
model fundamental

input processes, we consider only

unimodal Johnson Sp distributions to be appropriate.



Now if X has an Sp distribution with parameters =, §,

X, and &, then the “standardized” variate
(24)

lies between zero and one with the same shape parameters as
X but with location parameter zero and scale parameter one.

The density of Y is then given by (Johnson 1949):

& 1 1 :
ply) = BV y(l_y)exp{—; [’7 +6-log [1—_'%]] },

§>0, —o<y< 0. (25)
The density p(y) can take a surprising variety of shapes.
Figure 2 presents some examples of Sp distributions. Figure
2a has “broad shoulders” but is symmetric. In Figure 2b,
the distribution is negatively skewed and broadly dispersed.
Figure 2c presents a symmetric distribution with nearly
normal shoulders that is a common shape for many practical
applications. Figure 2d and Figure 2e show some asymmetric
distributions that typical of the

are activity-time

distributions used in many simulation studies. Figure 2f
displays a density shape within the scope of the Johnson Sp
function, but perhaps unlikely to describe a real-world
process.

Historically the Sp distribution has been difficult to
work with because of the mathematically complex
relationship of its shape to the parameters -y and §. There
are no convenient explicit equations relating the mode or any
of the moments of an Sy distribution to its parameter values.
Therefore, for the distribution to be wuseful, the shape
parameters must be recast into familiar terms that
correspond to the envisioned characteristics of a target

distribution.
5.2. Subjective Specification of Sp Distributions

Describing a distribution in sufficient detail to permit its
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approximation by a parameterized functional form is a
nontrivial task, even when restricting consideration to
smooth, thin-tailed, unimodal densities. Typically, numerical
measures of central tendency, variability, and other complex
nuances of a density’s ‘“‘shape” are employed. Familiar
examples include the mean, standard deviation, skewness,
and kurtosis. While these statistical descriptors are easy to
obtain from raw data, they are difficult to estimate for an
envisioned distribution. The mean of an asymmetric,
bounded distribution rarely coincides with other common
measures of central tendency such as the mode, median, and
midrange; and inexperienced estimators are frequently unable
to make the proper distinctions among these measures
(Spencer 1963). Subjective estimates of means are influenced

by distributional variance and skewness, and may be biased
(Beach and Swenson 1966). Intuitive variability estimates
are inappropriately correlated with the magnitude of the
mean (Lathrop 1967). Descriptors defined in terms of a
distribution’s higher moments are for practical purposes

unavailable except by calculation from data.

We believe that a target distribution’'s mode is more
easily specified than any other measure of central tendency.
It is a natural, easily understood “best guess’ of what one is
most likely to see on any single realization of the target
random variable. TUnlike the mean, the mode is not
necessarily tied to the behavior of the distribution in its tails;
and unlike the median, it is not necessarily tied to the degree
of asymmetry in the distribution. For skewed distributions,

estimates of the mode and median are demonstrably better

than estimates of the mean (Peterson and Miller 1964).

In addition to the end points and mode, which suffice for
the triangular distribution, at least one other descriptor is
necessary to uniquely specify the more complex functional
form of the Johnson Sp distribution. Fortunately, percentile
points for envisioned distributions can be subjectively
estimated with accuracy (Kahneman, Slovic, and Tversky

1982). An Sy distribution can be uniquely determined by its



end points together with (a) two percentile points, or (b) the
mode and one percentile point. Doubilet et al. (1985) have
developed a method for the estimation of a logistic-normal
distribution (which is a Johnson Sy distribution with
€ =0.0 and X =1.0) from the mean and either the 5th or
95th percentile point. In an extreme case, if one provides
multiple percentile

points, an approximation to the

distribution’s cumulative distribution function or probability
density function can be generated directly, but such

information demands are in most cases unrealistic.

Some  combinations of  desired  distributional
characteristics describe “‘impossible” distributions, which
cannot be approximated by the Johnson Sp; or any other
smooth unimodal density. Omne example is a distribution
bounded between 0.0 and 1.0, with a mean of 0.2 and a mode
of 0.4. Even when an Sp distribution can be found with the
desired characteristics, the corresponding density may have a
shape quite unlike what the modeler imagines, as with a
distribution bounded between 0.0 and 1.0 with a mean 0.45
and a mode of 0.1 (see Figure 2f). If a modeler fails to
describe the target distribution accurately (that is, if he
specifies characteristics inappropriate for the envisioned
distribution), then the only way that this can be detected in

the absence of data is by visual inspection of the resulting

density’s shape.

8. USING THE VISIFIT SOFTWARE

VISIFIT combines flexible numerical description with
interactive visual curve modification to capture and refine
available subjective information into a parameterized
Johnson Sp density. Primary design goals were ease of use,
high and the

speed on inexpensive microcomputers,

requirements of minimal information and information

processing from the user.

8.1. Specifying the Desired Characteristics

At the outset of the interaction with VISIFIT, the user
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must specify the upper (maximum) and lower (minimum)
end points of the distribution. These are subject to later
modification, if desired. Next the modeler is prompted for

values of any two of the following characteristics:
(a) Mode

(b) Mean

(c) Median

(d) Arbitrary percentile point(s)

(e) Standard deviation

Significantly, the user is free to provide two arbitrary,
asymmetric percentile points, such as the 10th and 25th
percentile points. Unlike other algorithms (Mage 1980), there
is no requirement that the four input points (two end points
and two percentile points) must correspond to equidistant
normal deviates. As a default, motivated by the three-
parameter specification of a PERT-type estimate (Wilson et
al. 1982), the standard deviation can be optionally chosen to
be one-sixth of the range. By accepting a variety of different
descriptions, we minimize the need for processing information

prior to its input. Thee modeler is free to use whatever is

convenient, familiar, or easily understood.

‘When the desired characteristics are entered, VISIFIT
computes the parameters of the Sp distribution that most

closely match those characteristics. Several miscellaneous

numerical techniques are employed in this calculation, and all

are detailed in DeBrota et al. (1988).

8.2. Interactive Curve Modification

Once the parameterization of the fitted Sp density is
complete, the wuser is immediately presented with the
distribution’s actual shape on a graphical display screen.
Such visual feedback will sometimes suggest to the user
different values for the characteristics of the target random
variable X than were originally chosen. From these revised

specifications a new set of parameter values is generated, and




then a new fitted density is presented to the user (see Figure
3). Cyclic interaction permits the user to experiment with

different curve shapes until a satisfactory one is obtained.

VISIFIT also provides a still simpler scheme of
interactive curve shape modification that frees the user from
having to deal with numerical input by providing single-
keystroke commands that directly manipulate the shape of
the displayed curve. The modeler can adjust the shape of a
displayed Johnson Sp curve by trial-and-error until he is
satisfied with the way it looks. Motivated by our belief in
the wuniversal ease of specifying the mode, width, and
percentile points of a distribution, we implemented various
single-keystroke commands the

producing following

immediate effects:
(a) Move the mode towards the upper bound

(b) Move the mode towards the lower bound

(¢) Increase the width of the curve

(d) Decrease the width of the curve

(e) Move the 2.5th percentile point to the right
(f) Move the 2.5th percentile point to the left
(g) Move the 97.5th percentile point to the left
(h) Move the 97.5th percentile point to the left

The magnitude of the change (in the direction indicated by
the choice of control key pressed) is determined by an
adaptive seeking strategy. The modeler need only indicate
the direction of desired change from each displayed curve to
the next. The curve can be updated approximately twice
each second on an IBM PC/AT class machine with a 80287
numeric coprocessor, and thus the overall process of changing
a curve, even drastically from an initial shape, takes at most

a few seconds in the hands of an experienced useer.

Modification of the end points may be accomplished in

two ways. The scale of the X axis may be changed,
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preserving the shape of the distribution while altering the
absolute values of the end points. This rescaling also changes
the absolute values of the mode and width. Alternatively, the
absolute values of the mode and width may be preserved
during a change in the end p'oints, in which case a new curve

with a visually different shape is obtained.

7. CONCLUSIONS

As a general tool for simulation input modeling, the
main advantage of the Johnson translation system of
probability distributions is its flexibility in approximating the
target distributions that arise in a diversity of applications.
The main disadvantage of the Johnson system is its
analytical intractability. The software packages FITTR1 and
VISIFIT have been specifically designed to alleviate this

latter limitation.

Another attractive feature of the Johnson system is that
it can be extended easily to provide systems of multivariate
distributions, and this property should enable us +to
conveniently model dependencies among the inputs to a

simulation. Multivariate extensions of FITTR1 and VISIFIT

are currently being developed (Venkatraman 1988).

In many simulation studies the analyst has both sample
data and subjective information about the input process to
be modeled, and he would like to use both sources of
information in an integrated procedure for building a
simulation

input model. We are currently developing

methodology and software that effectively synthesizes
FITTR1 and VISIFIT to provide a unified approach to input

modeling.
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Figure 3. VISIFIT’s graphical display.

APPENDIX A: SAMPLE INTERACTIVE SESSION

##4% FPITTRT Vezrsion 1.1 #w#»»
May 1988

Enter file name for printable copy of session

>> example

Enter file name for data set to be fitted

>> gluc.dat

Pitting population Glucose Data Set

*#*% Sample statistics *#*

Sample size = 80

Mean = 226.2 Std., Dev, = 122,7
Skewness = 1.340 Kurtosis = 4.205
Minimum = 34.00 Maximum = 666.0
Range = 632.0

*%% Infeasible moment matching estimateg #**

##% Parameter estimatesg *#**
Distribution: SB
Method: Moment matching
Gamma = 1.653 Delta = 1.059
Lambda = 855.7 Xi = 47 .24

>> £it 3001

Requested fit characteristics
Distribution: SB
Method: Percentile matching
Number of parameters: 4
Will compute starting parameter values
Neithex end point known
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*##% Goodness of fit tests *#**
Kolmogorov-Smirnov statistic 0.0942

Significance probability 0.4762

Chi-squared statistic 7.3000

Significance probability 0.1209
>> mode

**% Verbose mode on #*##

>> f£it 3002

Requested fit characteristicas
Distribution: SB
Method: Oxdinary least squares
Number of parameters: 4
wWill compute starting parameter values
Neithexr end point known

Enter no. of accurate digits in l.s. methods
Current values are 4
For no change, press RETURN

>>

Enter no. of function evals. in l.s. methods
Current values are 500
For no change, press RETURN

>>

Enter rel., function tol. for l.s. methods
Current values are 0.1000E-03
For no change, press RETURN

>>
##%* Swyitching to Nelder-Mead algorithm ***
#** Least squares iteration limit *w#*
Least squares minimum SSE 0.2905E-01
*%** Goodness of f£it testg **+*
Kolmogorov-Smirnov statistic 0.0612
Significance probability 0.9257
Chi-squared statistic 4,8250
Significance probability 0.3057
>> mode
*** Terse mode on **¥*
>> cdf

Do you want a table of CDF values?
>> yes

For empirical vs. fitted CDF over the range
low (inecz) high, enter values for low, incx, high

>> 30 32 670

CDF values for Glucose Data Set

Fitting method: Ordinaxy least squares
Distribution: SB

Gamma = 3.676 Delta = 1.344
Lambda = 2623, Xi = 34.00
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----- X===-- ~=Empirical-- --~Fitted--~

30.00 0.0000E+00 0.0000E+00
62,00 0.2500x~-01 0.7945E-02
94.00 0.6250E-01 0.8528E-01
126.0 0.2000 0.2180
158.0 0.3500 0.3592
190.0 0.5125 0.4861
222.0 0.6125 0.5924
254.0 0.6750 0.6782
286.0 0.7250 0.7464
318.0 0.7500 0.8002
350.0 0.8500 0.8424
382.0 0.8875 0.8755
414.0 0.9125 0.9015
446.0 0.9250 0.9219
478.0 0.9625 0.9380
510.0 0.9750 0,9507
542.0 0.9750 0.9607
574.0 0.9875 0.9687
606,0 0.9875 0.9750
638.0 0.9875 0.9800
670.0 1.000 0.9840

Enter file name if CDF values arxre to be saved
Press RETURN othezrwise

>> gluc.tbl
*%% CDF file named gluc.tbl has been created **+*

Do you want a plot of CDF values?
>> ves
For the empirical and fitted CDFs each considered
gseparately, you can request:
{a) 1 plot-file with all (X, Y) pairs for the

CDF to be plotted; or
(b) 2 plot-files of X~ and Y-values for the

CDF to be plotted.
Enter a or b for the desired option

>> a

Enter file name for (X, Y) values of fitted CDF
>> gluc,fdf

#*% CDF file named gluc.fdf has been created ##+
Enter file name for (X, Y) values of empirical CDF
>> gluc,edf

*#% CDF file named gluc.edf has been created *#»
>> next
Is the next data set in a different file?
>> yes

Enter file name for data set to be fitted
>> lsedf1

Fitting population Ozturk and Dale Data Set

*##% Sample statistics w**=*
Sample size = 75

Mean = 5.109 Std. Dev. = 1.006
Skewness = 1.019 Kurtosgis = 3,344
Hinimum = 3.836 Maximum = 7.863
Range = 4,027
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*##% Paramet

Distribution: SB

Method: Moment matching
Gamma = 1.088 De
Lambda = 5.008 Xi

**# Goodnes
Kolmogoxov-Smirnov statist
Significance probability

Chi~squared statistic
Significance probability

>> comm This is a demo of the

>> stop
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