Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

New advanced features of GPSS/H

Robert C. Crain
Daniel T. Brunner
‘Wolverine Software Corporation
7630 Little River Turnpike, Suite 208
Annandale, VA 22003-2653

ABSTRACT

Although most of the features that distinguish GPSS/H from
other tools are widely used and have been documented in earlier
papers, use of certain features remains low among some
practitioners, particularly academics, who are accustomed to older
and/or less functional versions of GPSS. Meanwhile, GPSS/H
continues to acquire new features and capabilities. This paper
documents three 1988 developments.

In support of the discussion of one of these developments,
this paper also includes a discussion of techniques for modeling
changeovers in a job shop.

1. INTRODUCTION

GPSS/H is a simulation language and model development
system that was originally created to run models developed for
IBM’s widely used GPSS implementations, GPSS/360 and
GPSS V, which have been available for over 15 years. Because of
its speed, GPSS/H was quickly accepted by the GPSS user
community.

Soon the advanced functionality of GPSS/H gave it a
personality of its own. GPSS/H offered improvements in three
major areas of concern to the modeler: designing and executing
simulation experiments, creating enhanced user interfaces, and
building and debugging models. An earlier Winter Simulation
Conference paper (Crain, Brunner and Henriksen 1987) describes
many of these improvements.

The three new enhancements that are presented in this paper
are (1) increased model transportability, thanks in part to new
hardware platforms for GPSS/H; (2) better management of in-service
units of traffic through the new RESCHEDULE Block; and (3) the
long-awaited incorporation of built-in probability distributions and
mathematical functions.

As a means of illustrating the RESCHEDULE Block, this
paper analyzes the problem of modeling a random occurrence that,
whenever it occurs, has a sweeping impact on the system being
studied. An example of such an event is an unscheduled changeover
in a manufacturing process. A sample model is presented that
addresses the simpler problem of modeling scheduled changeovers.
The same model is also suitable for modeling the more difficult case
of unscheduled changeovers.

2. MODEL TRANSPORTABILITY

GPSS/H has the ability to run models on a variety of
hardware types. For a system as fast as GPSS/H to be able to do

146

this is not an easy task, because GPSS/H is a compiler, and many
separate code generators must be maintained. Several different
operating systems must be supported, and there are two completely
different underlying implementations of GPSS/H underneath it all.

Despite these difficulties, the goal of model transportability
has been met. A GPSS/H model can be moved among the following
environments.

Mainframes
* IBM 370 and compatible
« MVS
« CMS
« TSO
« VM/PC

Minicomputers
» Digital VAX
* VMS
» Ultrix

Workstations

s Sun-3 (7nix)

« Apollo DN (Unix)

o Integrated Solutions (Unix)

* NCR Tower 32 (Unix)

» Silicon Graphics IRIS 3xxx and 4D (Unix)

Personal Computers
« IBM PC (MS-DOS)

GPSS/H model transportability took a big step forward in
1988 with the introduction of two GPSS/H implementations for IBM
PC and compatible microcomputers running MS-DOS, The full
commercial version contains all of the functionality of the other
versions except that model size is limited to moderate-sized problems
by the 640K MS-DOS address space limit. Transactions, data, and
compiled model code can each extend beyond one 64K segment,
which at least allows for maximum flexibility in utilizing the
constrained memory.

Wolverine Software has also introduced a low-priced student
version of GPSS/H. Student GPSS/H, coupled with the new
Learning Simulation With GPSS/H tutorial text (scheduled for
publication in early 1989), provides a powerful, full-function
environment for learning simulation and GPSS/H. The only
limitations of this inexpensive software are that it will process only
student-sized models and that it does not support external routines.

3. USING THE RESCHEDULE BLOCK TO MODEL
CHANGEOVERS

3.1 The Need for RESCHEDULE

Any system in which: (1) discrete units of traffic (2) compete
for scarce resources (3) over a period of time {4) in the presence of
randomness...is a candidate for discrete event simulation.

How does a simulationist model random events? Software
tools for discrete event simulation typically have data structures and
built-in algorithms that are well adapted for modeling random events
that affect individual units of traffic or scarce resources.

In GPSS/H, the ADVANCE Block is often used to model
random intervals for service or delay times. Model logic typically
translates these isolated sources of random delay into a system-wide
context, making it possible to model virtually any type of small or
large scale randomness. However, in cases where some other
random occurrence causes sweeping, system-wide effects, the
simulation model becomes more difficult to construct.

Particular difficulties arise when work in process must be
interrupted and/or rescheduled. This is because a unit of traffic (a
GPSS/H Transaction) that represents work in process typically
resides on the Future Events Chain (FEC), where it is oblivious to
outside events until its scheduled completion time is reached.
Forcing such “sleeping” units of traffic to respond to unexpected
events is a problem in most discrete event simulation languages.

A typical example of this problem occurs with changeovers in
a manufacturing system. Changeovers, both scheduled and
unscheduled, are similar to machine downtime. Most simulation
tools have good capabilities for modeling isolated downtimes.
GPSS/H hiandles downtime easily via the FUNAVAIL and FAVAIL
Blocks, which toggle the status of a single server from “one unit
available” to and from “zero units available.” Most GPSS/H models
use this scheme for modeling downtime. It’s effective because
execution of the FUNAVAIL Block can actually affect the status of
Transactions on the Future Events Chain.

In contrast to simple, isolated downtimes, changeovers can
have much more sweeping effects on the system, and are thus more
complicated to model.

Through careful management of User Chains, a GPSS/H
simulationist can model virtually any type of random changeovers.
However, this typically takes the model away from the simple
SEIZE-ADVANCE-RELEASE paradigm. The problem is that at the
time of the changeover, the units of work in progress are resting,
oblivious, on the Future Events Chain, waiting for their
predetermined ADVANCE Block time to expire. With random
changeovers, FUNAVAIL and FAVAIL are often less convenient
constructs. Unfortunately, before 1988, FUNAVAIL and
PREEMPT (used for wresting control of a Facility away from its
current user) were the only Blocks that could affect a Transaction on
the Future Events Chain. (SUNAVAIL cannot affect FEC
Transactions because no record of “ownership” is kept for
Transactions that ENTER or LEAVE a Storage.)

Now there is a new GPSS/H Block: RESCHEDULE. The
explicit purpose of the RESCHEDULE Block is to allow direct
manipulation of selected Transactions that are resting on the Future
Events Chain. With the implementation of RESCHEDULE came an
immediate need to uniquely identify Transactions on the Future

Events Chain so that they could be manipulated, so the XID1 (unique
Transaction identifier) Standard Numerical Attribute came into the
language at the same time as RESCHEDULE.

3.2 The Changeover Modeling Example

3.2.1. Problem Statement. In the sample system, a job shop
operates around the clock with scheduled shift-boundary
changeovers. At three shift boundaries each day, the capacities of
each of three stations change due to changes in the number of
operators. When the capacities change in a downward direction,
work in progress must be interrupted and possibly rescheduled.

The capacities of the stations are as follows:

Station 1 Station 2 Station 3

Shift 1 3 2 1
Shift 2 2 2 1
Shift 3 1 0 1

Note that the stations can have capacity greater than one.
This precludes straightforward use of the GPSS/H FUNAVAIL
Block unless the natural Storage construct for multiple servers is
replaced by an array of Facilities.

The sample GPSS/H model presented here shows scheduled
changeovers taking place. However, this model is flexible enough to
handle different changeover schedules or even random, unscheduled
changeovers.

3.2.2. The Look-Ahead Approach. Among the several
approaches available in GPSS/H for modeling scheduled

changeovers, the most simple-minded approach would be to “look
ahead” before placing a particular Transaction on the Future Events
Chain, comparing its Move Time with the time of the next scheduled
changeover. In this way, the Transaction can be scheduled to come
off the FEC in anticipation of the changeover. For scheduled
changeovers, this would solve the sample problem quite nicely. A
non-GPSS/H illustration of the Look-Ahead approach to solving the
sample problem appears in a software vendor newsletter (Systems
Modeling Corporation 1987).

The Look-Ahead approach becomes complex in the case of
randomly occurring (unscheduled) changeovers. If the randomness
of the changeover times results from complicated combinations of
circurnstances elsewhere in the model — not an unlikely scenario —
then the Look-Ahead method fails, because there is no known time to
which to look ahead.

3.2.3. The Look-Out Approach. A more sophisticated,
albeit slightly more complex, approach would be a “clone” method.
In this method, one “watchful” Transaction is used to monitor each
“oblivious” Future Events Chain Transaction. This “Look-Out”
Approach could be implemented without a RESCHEDULE Block as
follows.

Each Transaction about to be placed on the FEC SPLITs off a
“clone” that does the actual waiting on the FEC. The original
Transaction then waits on a User Chain, where it can more easily be
forced to respond to an unpredicted event. If no changeover occurs,
then the clone Transaction eventually comes off the FEC, UNLINKs
the original Transaction from the User Chain for further processing,
and destroys itself. If a random changeover caused the original
Transaction to be UNLINKed before its originally scheduled time,
then the original Transaction can proceed through the model earlier

147

than it was originally scheduled to do so. The clone Transaction will
eventually exit the FEC, attempt to UNLINK its clone (this will have
no effect), and quietly destroy itself.

The “Look-Out” approach is effective, even in the case of an
unscheduled changeover, but sometimes the model gets too complex
for all this artful handshaking to be comprehensible. That’s where
the RESCHEDULE Block comes in.

RESCHEDULE allows GPSS/H to remove immediately the
original Transaction from the FEC, or to recalculate its Move Time
while leaving it on the FEC.

RESCHEDULE does havé some limitations. In particular,
RESCHEDULE can affect only one FEC Transaction at a time. This
forces the simulationist to maintain a list of Transactions that would
need to be RESCHEDULEG in the event of a changeover. The
underlying problem is that in an efficiently executing model, a
Transaction cannot wait and watch at the same time.

A simple way to maintain such a list is to resort again to a
clone method, where this time the clones are waiting on the User
Chain and the original Transactions are on the FEC. Although this
may seem like the non-RESCHEDULE method with a twist,
RESCHEDULE is somewhat simpler to use than the method
described above, because the original Transaction waits where
expected — on the FEC. It seems likely that GPSS/H users will
discover cases where RESCHEDULE brings dramatic simplification,
especially in complex models.

3.2.4, The GPSS/H Sample Model. A GPSS/H model of

the sample problem is presented in Figure 1. This model uses the
Look-Out approach for handling the shift transitions and the
RESCHEDULE Block for notifying Future Events Chain
Transactions of each shift change. Standard statistical output for this
model appears in Figure 2. For the simple system presented, a
GPSS/H Look-Out model that does not use RESCHEDULE is also
possible, and would require about the same number of statements as
the model in Figure 1.

The problem statement for the scheduled changeover example
was adapted from an article that appeared in the newsletter of another
simulation vendor (Systems Modeling Corporation 1987). The same
article contains a solution for this scheduled changeover problem that
uses the less flexible Look-Ahead method, which is not easily
adaptable to an unscheduled changeover problem. That model],
coded in the SIMAN language with FORTRAN User Code, contains
20 lines of Model code, 27 lines of Experiment code, and 53 lines of
FORTRAN code, or a total of 100 lines of code.

The GPSS/H model presented in Figure 1, which uses the
more flexible Look-Out method, contains 28 Block Statements and
11 lines of Compiler Directives and Control Statements, and does not
require the use of an external programming language. There are 39
total lines of code. This is a concrete example of the superior
modeling flexibility that is often claimed for GPSS/H.

4. NEW MATH AND RANDOM VARIATE SNAs

Prior to 1988, doing complicated mathematics and calling
mathematically defined random variate (probability distribution)
generators in GPSS/H required the use of external routines.

148

People often ask whether GPSS/H supports calling external
routines during a simulation run The answer is yes. On IBM
mainframes, the language must be FORTRAN or Assembler; under
VAX/VMS, the langnage can be any that follows VMS calling
conventions (most do); under Unix, the language must be C (but
other languages can often be glued in via a dummy C routine); and
under MS-DOS, at least C and FORTRAN will be supported,
although external routines were not available under MS-DOS
GPSS/H as of this writing,

Despite this extensive support, Wolverine Software
Corporation has recently stated that calling external (e.g.
FORTRAN) routines for such mundane things as I/O, math,
statistical routines, and complicated model logic should be
completely abandoned. Simulation languages are complicated
enough without requiring the simulationist to deal with another
compiler and another set of syntax.

This way of thinking is evident in the /O capabilities that
have been part of GPSS/H almost from its inception. Historically,
GPSS simulationists often used FORTRAN solely for writing
custom output, for file I/O, or for custom user interfaces. Some
users still do this, although GPSS/H eliminated that need years ago.

GPSS has also always had the flexibility to deal with
arbitrarily complex logic. The only thing that prevented earlier
adoption of the “avoid-FORTRAN" position was the long-delayed
introduction of built-in random variate generators and sophisticated
math functions into the GPSS/H language.

In 1988 these capabilities became part of the language:

Math Distributions

ACOS RVEXPO (Exponential)
ASIN RVNORM (Normal)
ATAN RVTRI (Triangular)
COS

EXP

LOG

SIN

SQRT

TAN

Other closed-form distributions can be built using the ones
provided and coded directly into a model.

Although these new features are implemented and classified
as Standard Numerical Attributes, each one behaves syntactically like
a programming language function that returns a value. The sample
model from the previous section shows one of these features in use.

GPSS/H already has a partial built-in Janguage for addressing
programming needs through its Control Statement Programming
Language (Crain, Brunner and Henriksen, 1987); see also
(Henriksen and Crain 1983). The new math and probability
distribution SNAs add strength to this language. As this built-in
language is expanded and refined, GPSS/H simulationists should
find that the need to call routines written in FORTRAN or another
external language continues to diminish.

5. SUMMARY

GPSS/H has emerged as a leading tool for people who
regularly model complex systems. This acceptance comes despite

L GPSS/H MODEL OF A SIMPLE JOB SHOP WITH THREE STATIONS

*okk SCHEDULED SHIFT CHANGES TAKE PLACE EVERY EIGHT HOURS
*kk THIS MODEL LOGIC WOULD ALSO WORK IF THE CHANGEOVERS
Tk OCCURRED AT UNPREDICTABLE TIMES
*kKk
o THIS MODEL ILLUSTRATES SEVERAL ADVANCED FEATURES OF GPSS/H,
Kk INCLUDING THE NEW RESCHEDULE BLOCK AND BUILT-IN PROBABILITY
>k DISTRIBUTIONS
*kk
SIMULATE
*
INTEGER &SHIFT DATA DECLARATION (INTEGER AMPERVARIABLE)
CAPS MATRIX MH, 3,3 DATA DECLARATION (HALFWORD MATRIX SAVEVALUE)
*
PMEAN FUNCTION PH (STATION) ,M3 FUNCTION TO RETURN MEAN PROCESSING TIME, WHICH
1,0.3/2,0.6/3,0.9 DEPENDS ON WHICH STATION THE UNIT IS VISITING
*

*%k%k%x%% MODEL BLOCKS FOR UNITS OF WORK PASSING THROUGH THE THREE STATIONS
*

GENERATE RVEXPO(L,1),,, s 4PH, 2PL EXPONENTIAL ARRIVALS, RANDOM STREAM 1, MEAN IAT = 1
JOBSIN ASSIGN STATION, 1,PH FIRST STOP IS STATION 1
*
NEXTSTN ASSIGN PROCTIME, RVEXPO (2, FN (PMEAN)) , PL. EXPONENTIAL SERVICE TIMES, MEAN IS FUNCTION OF STATION
INQ QUEUE PH {(STATION) RECORDING ENTRANCE TO STATION FOR STATISTICS
STN ENTER PH (STATION) ATTEMPT TO GRAB ONE MACHINE AT CURRENT STATION
ASSIGN DONETIME, PL (PROCTIME) +AC1, PL CALCULATE AND KEEP TRACK OF COMPLETION TIME
ASSIGN MYBRO, XID1,PH STAMP SELF WITH UNIQUE NAME, WHICH CLONE WILL ALSO GET
SPLIT 1,CLONE SEND CLONE OFF TO WATCH FOR SHIFT CHANGE
ADVANCE PL (PROCTIME) WAIT ON FUTURE EVENTS CHAIN
LEAVE PH (STATION) RELINQUISH MACHINE
ouUTQ DEPART PH (STATION) RECORD EXIT FROM STATION FOR STATISTICS
*
ASSIGN STATION, PH(STATION) +1,PH INCREMENT CURRENT STATION NUMBER
TEST G PH(STATION) , 3, NEXTSTN TRANSFER TO NEXT STATION UNLESS PAST STATION 3
*
JOBSOUT TERMINATE EXIT THE MODEL

*

%%%%% MODEL BLOCKS WHERE UNITS OF W-I-P WAIT (ZERO TIME) FOR SHIFT CHANGE TO COMPLETE
*

SUSPEND LEAVE PH (STATION) ALL XACTS DRAINED FROM STORAGE COME HERE
GATE LR SCHANGE WAIT FOR CAPACITIES TO BE READJUSTED
ASSIGN PROCTIME,PL (DONETIME)-ACL,PL REFIGURE SERVICE TIME
TRANSFER ¢ STN TRY TO GO BACK IN SERVICE

*

%kk%* MODEL BLOCKS WHERE CLONE TRANSACTIONS WAIT FOR SHIFT CHANGE TO OCCUR
*

CLONE GATE LS SCHANGE CLONE DOES NOTHING UNTIL A SHIFT CHANGE OCCURS
RESCHEDULE PH (MYBRO) , AC1, SUSPEND, OK SIBLING, IF STILL ALIVE, GOES NOW TO BLOCK NAMED SUSPEND
OK TERMINATE CLONE DIES PEACEFULLY

*

%%%k% MODEL BLOCKS FOR SCHEDULING SHIFT CHANGES
*

GENERATE 8,res-1 IN THIS EXAMPLE, SHIFT CHANGEOVERS OCCUR EVERY 8 HOURS
NEWDAY LOGIC S SCHANGE SET 'SHIFT CHANGE IN PROGRESS' FLAG

BUFFER PAUSE TO ALLOW W-I-P TO HALT

BLET &SHIFT= (N (NEWDAY)) @3+1 FIGURE QUT IF THIS IS SHIFT 1, 2, OR 3

BSTORAGE S1,MH (CAPS, 1, &SHIFT) /S2,MH (CAPS, 2, &SHIFT) /S3,MH (CAPS, 3, &SHIFT) MODIFY CAPACITIES

LOGIC R SCHANGE CLEAR 'SHIFT CHANGE IN PROGRESS' FLAG

TERMINATE 1 TELL EXPERIMENT CONTROL THAT SHIFT IS DONE

*

*%k%x%k%x% DATA INITIALIZATION AND EXPERIMENT CONTROL
*

INITIAL MHSCAPS (1,1),3/MH$CAPS (1,2),2/MHSCAPS(1,3),1

INITIAL MHS$CAPS (2,1),2/MHSCAPS (2, 2) ,2/MHSCAPS (2,3) ,0

INITIAL MHS$CAPS (3,1),1/MHSCAPS (3,2),1/MH$CRPS(3,3),1
*

STORAGE S1,MH(CAPS,1,1)/52,MH(CAPS,2,1)/S3,MH{CAPS,3,1) SET INITIAL CAPACITIES
*

START 20%*3 RUN 20 DAYS (60 SHIFTS)

END

Figure 1. The GPSS/H Model

149

RELATIVE CLOCK: 480.0000 ABSOLUTE CLOCK: 480.0000
BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL
1 483 OUTQ 1412 OK 1986
JOBSIN 483 12 1412 22 60
NEXTSTN 1439 13 1412 NEWDAY 60
INQ 8 1439 JOBSOUT 456 24 60
STN 1986 SUSPEND 19 574 25 60
6 1986 16 555 26 60
7 1986 17 555 27 60
8 3972 18 555 28 60
9 1986 CLONE 1986
10 1412 20 1986
~-AVG-UTIL~DURING-—
STORAGE TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT
TIME TIME TIME TIME/UNIT STATUS AVAIL
1 0.102 503 0.293 AVAIL 100.0
2 0.314 502 0.601 AVAIL 100.0
3 0.909 981 0.445 AVAIL 100.0
QUEUE MAXTMUM AVERAGE TOTAL ZERQ PERCENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS
1 8 0.385 483 0
2 14 2.922 482 0
3 28 9.098 474 v}
HALFWORD MATRIX SAVEVALUE CAPS
ROW/COL 1 2 3
1 3 2 1
2 2 2 0
3 1 1 1
RANDOM ANTITHETIC INITIAL CURRENT SAMPLE CHI-SQUARE
STREAM VARIATES POSITION POSITION COUNT UNIFQRMITY
1 OFF 100000 100484 484 0.90
2 OFF 200000 201439 1439 0.22

Figure 2. GPSS/H Model Output

150

CAPACITY

AVERAGE

TIME/UNIT
0.382
2.910
9,213

AVERAGE
CONTENTS
0.307
0.629
0.909

$AVERAGE
TIME/UNIT
0.382
2.910
9.213

the fact that many of the advanced features of GPSS/H are not well
known or (in some cases) well understood. Papers such as this one
provide GPSS/H users as well as other observers with the
opportunity to keep up with the latest developments in the language.

REFERENCES

Crain, R. C., Brunner, D. T., and Henriksen, J. O. “Advanced
Features of GPSS/H,” Proceedings of the 1987 Winter Simulation
Conference, 269-275.

Henriksen, J. O., “Alternatives for Modeling of Preemptive
Scheduling,” Proceedings of the 1987 Winter Simulation
Conference, 575-581.

Henriksen, J. O., and Crain, R. C, GPSS/H User's Manual,
Second Edition. Wolverine Software Corporation, Annandale,
Virginia, 1983.

Pegden, C. D., Introduction to SIMAN. Systems Modeling
Corporation, 1982.

“The Sample Example,” SIMAN SEZ.., Fall 1987, page 6 (author
unknown). Systems Modeling Corporation, State College,
Pennsylvania.

AUTHORS’ BIOGRAPHIES

ROBERT C. CRAIN has been with Wolverine Software
since 1981. He received a B.S. in Political Science from Arizona
State University in 1971, and an MLA. in Political Science from The
Ohio State University in 1975. Mr. Crain is a member of SCS,
SIGSIM, and ACM, and served as Business Chairman of the 1986
Winter Simulation Conference.

DANIEL T. BRUNNER received a B.S. in Electrical
Engineering from Purdue University in 1980, and an M.B.A. from
The University of Michigan in 1986. He has been with Wolverine
Software since 1986. Mr, Brunner is a member of IIE and SCS, and
served as Publicity Chair for the 1988 Winter Simulation
Conference.

151

