Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

The SIMPLE__1 simulation environment

Philip Cobbin
Sierra Simulations & Software
303 Esther Avenue

Campbell,

California 95008

(408) 378~6374

Overview

SIMPLE 1 is a simulation language and
integrated environment for IBM PC and
compatible computers which blends visual and
iateractive modeliang features with C, Pascal,
and object oriented programming (00P)
concepts. SIMPLE 1 is a discrete and a

continuous simulation language implemented as
a modeling environment with integrated editor,
documentation, diagnostics, and tutorials.
The language has undergone continued
refinement from introduction d1in 1985 and
features wuser defined varliables, functions,
and an object oriented procedure concept
called a process. A key -element in the
language is a rule based construct called a
CONDITIONS block which defines rules for
releasing entities from queues.

SIMPLE_1 supports modeling discrete and
continuous systems world views using a network
modeling orientation. Features of the
language include the ability of the user to
declare variables and statistics requirements,
perform I/0 operations on files and to animate
simulation results in real time. Both text and
bit-mapped images can be imported by models in
the latest version of the language for
animation and graphic display purposes. The
language is reported to have a more natural

syntax than other simulation languages[l6],
due in part to a more close resemblance to
high~level programming languages and the

free-~format syntax of the language.

The body of a SIMPLE 1 model 1is composed of
five sections: DECTARE, PRERUN, DISCRETE,
CONTINUOUS, and POSTRUN, The DECLARE section
is used to define key model variables such as
entitlies, matrices, and so forth. The PRERUN
and POSTRUN sections execute in a procedure
like manner. SIMPLE_1 models typically
employ the basic block types of the language
to define discrete and continuous models.
There are vrelatively few block types in
SIMPLE_1 and this brevity of language concepts
is due to the flexibility of the CONDITIONS
block.

Discrete event aspects of a model are defined
using an activity on node network structure.
The Continuous aspects of the system model are

described using algebrailc state equations
which define variables overtime via first
order differential equations. The coatinuocus
aspects of the model are simulated using a
Runge Kutta or other supported integration
method with the step size assignable by the
modeler.

141

The discrete aspects of the model are
processed via an eveunt scheduling mechanism to
sequence the flow of entities through blocks
in the network model. The discrete eveant
processing algorithm evaluates and resolves
interdependence conditions in the model prior
to advaucing to the next event.

An example of a MMI queuing model in
SIMPLE_1 would look like:

system

DECLARE;
GLOBALS: TimeInSystem OBSERVE_STATS;
ENTITIES: CUSTOMER(Ll);

END;

PRERUN;
SET STOP TIME := 1000;

END; -

DISCRETE;

CREATE, 1,CUSTOMER,EXPON(5.0,1);

SET CUSTOMER(1):=STIME;
WaitServer

QUEUE,FIFO;

CONDITIONS,NUM(Service)<1,
WaitServer,,Service;

Service

ACTIVITY EXPON(4.5,1);

SET TimeInSystem:=STIME~CUSTOMER(1l);

KILL;
END;
CONTINUOUS; END;
POSTRUN;

REPORT;

STOP;
END;
Where the CREATE statement is generating the
arrival streanm and the QUEUE-~CONDITIONS-
ACTIVITY statement sequence is modeling the
servicing of entities waiting in the queue.

The CONDITIONS statement in this model is used
to specify the conditions necessary for a
customer to leave the queue and enter the
service activity.
Cornerstone Concept: The CONDITIONS block:
The CONDITIONS block is
state conditions required
leave queues. The block is
the language and provides a unified queue
release mechanism. The block functions
somewhat analogous to a chameleon, in that a
CONDITIONS block can be configured for a
diversity of queue release constraints in much
contrast to traditiomal discrete simulation
languages. In a basic queue-server
relationship a CONDITIONS bloeck is wused to
associate a specific QUEUE with an ACTIVITY
block. The CONDITIONS block is the principal

used to define the
for entities to
the cornerstone of

means for formatlon of groups of entities and
1s readily applied to modeling assembly
constraints in manufacturing.

Notably absent in SIMPLE 1 is the concept of
a resource for modeling complicated queue-
server relationships. SIMPLE_1 does not
employ resources because the CONDITIONS block
is wused to model simplistic and complex
resource situations. Key system resources in
SIMPLE_ 1 models are typically modeled as
entities that are grouped with other euntities
while in use and SPLIT from the customer and
routed to a QUEUE when the resource entity
becomes idle. The advantage inherent in
modeling resources as a separate entity type
is the ability to model explicitly the
decision making processes of the resource
inclusive of the resources own attribute
state. For example, the entry of passengers
onto a bus is typically a function of the
route assigned to a bus. Accordingly,
modeling such a situation in SIMPLE_ 1 involves
modeling decisions based on passenger
attributes and bus system state variables.

The CONDITIONS biock has proved to be a
flexible and powerful construct of the
language. The bloé¢k ties together SIMPLE 1-s
basic set of discrete simulation primitives
namely the QUEUE and the ACTIVITY block. A
MONITOR block construct operates in a similar
fashion as the CONDITIONS block by monitoring
specific aspects of the simulation and is
typically used to drive real time animation of
simulation results. As changes occur in the
model during an event the affected MONITORs
are executed prior to advancing to the next
event. For example when an INSPECT activity
is started or completed a MONITOR is wused to
detect the change in state of the activity.
As a side affect K of the INSPECT activity
changing state a MONITOR block would be used
to update information on the screen to show
the current number of INSPECT activities in
progress. MONITOR statements in general are
used for driving model animation and in tandenm

with CONDITIONS ©bloek £for calculation of
decision making variables.
The CONDITIONS block concept also supports

building models in stages. In most situations
you start off modeling the main processes aund

add embellishments to capture additional
constraints on .system operation. When
modeling assembly of a product one can start

by modeling the basic process sequence and add
part queues later to capture the affects of
assembly constraints ou the overall efficiency

of the system. In addition, blocking, and
other constraints on system operation can
typically be added in stages without a major
restructuring of the model.

Groups of Entities:

The CONDITIONS block 4is used to release

entities from queues. Entities are a dynamilc
type with each entity type defined by a unique
identifier i.e. TV, ForkTruck. The CONDITIONS
block can release multiple QUEUES as a set and
organlze the released entities into a group of

142

entities. Entity groups in turn are viewed as
traveling together and can share attributes.
Constructs in the language allow further

processing on groups of entities to SPLIT them
up, CLONE the groups, or REGROUP their
relative ordering.

Manipulation of entity attributes
unique name simplifies referencing attributes
and improves the self documentation of
models. When entities are organized into
groups the operator is used in referencing
individual entities. For examnple, If
televisions go by the TV and each has
four attributes then

by their

-~

name

TV(3)"5

would reference the third attribute of the

fifth TV in a group of TVs.

The entity grouping feature of the language is
particularly suited for modeling assembly
operations in manufacturing and complex
resource management situations.

OOP concepts & SIMPLE_1

Object oriented programming languages ala
Smalltalk are based on the Simula simulation
language and emphasize message sending among
objects to accomplish programming tasks.
Fundamental properties of OOP languages are:
abstraction, euncapsulation, inheritance, and
polymorphism. SIMPLE_1 was developed
independently from the 00P community.
SIMPLE 1 is not a pure OOP 1language but it
does possesses 00P like characteristics. The
language supports the application of ooP
methods while differing from OOP languages
such as Smalltalk by being more closely
related to high level programming languages.
SIMPLE 1 differs from the OOP constructs by
requiring a less rigorous adherence to
polymorphism and encapsulation. The
implementation of SIMPLE_1 has evolved to
require less run time binding of variables to
improve execution speed with current
development efforts migrating to that of a
compiled language. The CONDITIONS block in
particular maximizes binding of event
dependencies at compile time for efficient
evaluation of queue release conditions at ruun
time. SIMPLE 1 is in essence a blending of
Simulation concepts with bloeck oriented
procedural languages such as C and Pascal.
The four fundamental concepts of 00OP languages
do however form a good outline for surveying
SIMPLE_1 concepts.

Abstraction:

Simulation languages emphasize abstraction in
their constructs and SIMPLE_1 uses abstraction

for modeling the behavior of entities in a
system primarily with QUEUE and ACTIVITY
blocks. Message passing in models is
accomplished by one of two mechanisms.

Organizing entities into groups is used to
share/transfer information and the CONDITIONS
block is used to both define rules for

releasing entities from queues and for
defining monitoring conditions (a kind of
message) between modeling elements.

A simple example illustrates abstraction. The

SIMPLE_1 code fragment:

CREATE, l,custonmer,
WaitForTellerIn QUEUE,FIFO;
CONDITIONS ,NUM(TellerService)<
WaitForTellerIn,,TellerService
ACTIVITY 40;

45

TellerService

Describes a simple queuing situation. As a
representation of the system the model creates
customer entities and sends them to a queue to

walt for an available teller to conduct a
banking transaction. Embellishing the
fragment with comments within braces {} the

code can be interpreted as:

CREATE, l,customer, {every} 45;{minutes}
WaitForTellerIn QUEUE,FIFO0; {uuntil the}
CONDITIONS, NUM(TellerService) < 1,
{are true at which time remove the customer
from } WaitForTellerIn,, {and send them to
the activity} TellerService; {where }
TellerService {is an } ACTIVITY{taking} 40;
{time minutes to complete}
The CONDITIONS statement is wused here as a
message manager to monitor the state of both
the WaitForTellerln queue and the
TellerService activity. As the queue and/or
activity blocks change state the CONDITIONS
block is informed to trigger the next release
from the queue. Encapsulation is occurring
here in that the CONDITIONS block is an object
performing a queue release fuanction without
the modeler having to operate on event list
structures or other low level simulation
details.

Encapsulation:

In SIMPLE 1 the fuundamental modeling unit

discrete systems is the entity. Entities

SIMPLE 1 have attributes and form a packet
data. In an OOP sense a SIMPLE_1 entity
itself is not an object. Rather an object
a combination of entities aund a network
discrete processes. A current developments
SIMPLE 1 is the encapsulation of discrete and
continuous processes in a procedure 1like
structure. Unlike procedures however a
SIMPLE 1 process can have the return from the
proces? delayed by interactions with QUEUE and
ACTIVITY blocks. The process construct allows
extending model abstractions and packaging the
implementation. In a manufacturing system
context a process model of a manufacturing
process might be:

CREATE,BatchSize,Castings,24;

{setup} {run}
Turn,UNIFORM(3.0,5.0,1),NORMAL(21.5,3,1);
Mill,EXPON(15.2,1) ,NORMAL(45.0,60.0,1);
ExitSystem;

Where details of how the
implemented is defined by a

TURN operation are
SIMPLE_1 process.

1,

143

A process for the Turn operation defines
activities associated with the operation and
can iInclude ACTIVITY, QUEUE, and CONDITIONS
statements to define a sub-model for the Turn
operation. An example process is:

the

PROCESS Turmn,Setup,Run;

ENTRY POINT LatheWip;

DECLARE;
GLOBALS: NumLth3
END;
PRERUN;
SET NumLth := 33
END;
DISCRETE;
LatheWip QUEUE,FIFO;
CONDITIONS,
NUM(LSetup)+NUM(LRun) < NumLth,
LatheWip, ,LatheSetup;
LSetup ACTIVITY Setup:
LRun ACTIVITY Run;
END;
CONTINUOUS; END;
POSTRUN; END;

END_PROCESS;

Where the calling entity referemnces Turn which
results in the entity begianing processing at

the entry point labeled LatheWip which 1is a
QUEUE.

The PROCESS construct 1s a current development
in the Jlanguage which allows the ACTIVITY,
QUEUE, and CONDITIONS blocks to be wused for
developing libraries of detailed 1low 1level
sub-models that are then wused to construct
other models at a high level of abstraction.

Inheritance:

Identifiers are globally scoped ian SIMPLE 1
thus diverging markedly from the inheritance
principle of O0OP. In addition the related
"need to know" and data hiding concepts are
counter to the thrust of the language.
SIMPLE 1 as a simulation language maximizes
the communication among variables in the
model. Data hiding and inheritance are
concepts driven by the practical needs to
control large programming projects and to some
extent the '"need to know" constraints of
military systems applications.

Data hiding inhibits Statistics collection
model behavior. When variables are declared
key words are wused to specify automatic
collection of time persistent and
observational statlstics. The language
supports statistics collection for scalars and
matrices; Data hiding would complicate the
referencing and reporting of these statistics.

on

Polymorphism:

The language supports Polymorphous message
passing by employing entities to pass messages
via their attributes. The mechanism in
outline form involves assigning the message
information to an entity which din tura 1is

combined with the receiver entity, or entity

group. The transmission of the message is
accomplished by joining the messenger entity
with a target receiver group with a CONDITIONS
statement. Orders for example might be
transmitted to a "RED" field commander by the
code fragment:

atrol:

SET ORDERS(Immediate) := P
ORDERS (Area) = Sector(5);
SendOrders
QUEUE,FIFO; ‘

CONDITIONS,,$end0rders,,RedCommands:
NextRedMsg, ,RedCommands;

When the RedCommands block is processed the
receiver entity will have access to the ORDERS
entities information. The actions taken by a
Red commander to the Patrol command may be
quite different ‘from those of a Blue
commander. Note that the Polymorphous
property is supported here ia a fashion
similar to implementations with C or Pascal.
The context specific actions on messages is
supported by SIMPLE 1 versus being a
requirement in the language.

Applications of SIMPLE 1:

applied in manufacturing,
academia, and by the United States Military.
Applications to date Thave ranged from
manufacturing systems, robotics justification,
health care systems, emergency planuning, and
analysis of logistic support systems.
SIMPLE 1 has been used to plan for future
manufazturing systems, as well as a tool for
scheduling current systems. Factory
scheduling applications have been developed
with the simulations in one case interfacing
with shop floor data collection systems to
trace drive the simulation via historical bar
code data. CIM applications include
simulations automated circuit board
assembly and automated material handling
systems for defense-aerospace application in
addition to cellular manufacturing
investigations[9]. The language has not been
limited solely to manufacturing with health
care applications; reported by Smith[l12]. A
number of students throughout the United
States have emploﬁed the language ia support
of thelr graduate work and the language is
currently being used in simulation courses at
a number of universities. The language has
been employed by Starr et al [13] to
investigate schedule recovery strategies and
currently the software 1is being’® wused in
applied research for scheduling an electronic
assembly system in a Midwesterm aerospace
site. Inspection issues relative to FMS
systems was iavestigated using SIMPLE 1
according to Hauck [10]. SIMPLE 1 was
developed to model complex logistics issues
and one of the Ffirst applications of the
language was an investigation of logistics
support for avionics equipment by
Bottomley[1l].

SIMPLE_1 has been

of

144

SIMPLE_1 References

[1]

Loading on

Bottomley, Larry D. Capt. USAF, *"Station
the DATSA (Depot Automated Test
Station for Avionies)", unpublished Masters
Thesis, Air Forcé Institute of Technology,
Wright-Patterson AFB, OH, 1986.

[2] Cobbin, Philip, "SIMPLE 1:
environment for the IBM PC",
Simulation on Microcomputers,
Barnett, Editor, Society
Simulation, La Jolla, 1986,

[3] Cobbin, Philip, "Applying SIMPLE 1 to
manufacturing systems", Summer Computer
Simulation Conference, July 28-30 1986, Reno,
Nevada, Roy Crosbie and Paul Luker, Editors,
Society for Computer Simulation, La Jolla, pp
724-730.

{41 Cobbin,
SIMPLE_1 simulation
Simulation Conference
1976, Washington D.C.

[5] Cobbin,
operation as a WIP storage device",
Simulation Conference proceedings,
1986, Washington D.C. pp 597-605.

[6]1 Cobbin, Philip, "SIMPLE_ 1l: Follow-on
developments in the 1life of a micro-based
simulation language”, Modeling ¢« and Simulation
on Microcomputers, Paul F, Hogan Editor,
Society for Computer Simulation, Jolla,
1987, pp 29-32.

[7] DiBiase,
A microcomputer
Simulation on Microcomputers, Paul F, Hogan
Editor, Society for Computer Simulation, La
Jolla, 1987, pp 101-103.

[8] DiBiase, Debra, "The inventory simulator:
A nlerocomputer based inventory model",
Modeling and Simulation on Microcomputers,
Paul F. Hogan Editor, Society for Computer
Simulation, La Jolla, 1987, pp 104-106.

{9] Dooley, Starr, Vig & Mahmoodi, "Cellular
Manufacturing Project Workshop", CIM
Consortium University of Minnesota, May 1988.

A simulation
Modeling and
Claude, C.
for Computer
pp 243-248,

A Tutorial
environment",
proceedings,

pp 168-177.

Philip, on the
Winter

December

" tote stacker

Winter
December

Phildip, Modeling

La

"The cash flow simulator:
Modeling and

Debra,
based model™,

[10] Hauck, Warren Stephen, "A study of
heuristics for inspection location in flexible
manufacturing systems", unpublished Masters

Thesis, The University of Towa, Iowa City
Iowa, 1987.
[11] Sierra Simulations & Software: SIMPLE_1

User”“s guide and reference manual, 1985,

[12] Smith, Philip E. "Simulation as a
valuable tool: A proposal to combine admitting
and outpatient registration" Midwest Regional
Conference of the Health-care Information
Management Systems Society, 1987.

[13] Starr, Patrick, Skrien,Douglas, and
Meyer, Robert,"Simulating schedule recovery
strategies in manufacturing assembly
operations" Winter Simulation Conference
proceedings, December 1986, Washington D.C. pp
694-699.

[14] Thinnes, Keren, M., "Simulation of
Printed Circuit Board Manufacturing"
unpublished Masters Thesis, The University of
Iowa, 1987,

[15] "Introduction to SIMPLE_ 1", Video tape
lecture series developed at The University of
Idaho, Moscow, Idaho, 1988.

{16] Van Houten, Keren, "Simulation Languages
for PCs take different approaches" IEEE
Software, January 1988 pp 91-94.

Authors” Biography

Philip Cobbin is the owner of Silerra
Simulations & Software and is the developer of
SIMPLE_l. 1In addition to simulation software
development Phil has taught undergraduate and
graduate level simulation courses and consults
on the application of simulation. He holds a
Master of Science in Industrial Engineering
from Purdue University aund a Bachelor of
Science in Industrial Engineering and
Operations Research from the University of
Massachusetts at Amherst. Phil is a native of
Los Angeles and has been previously employed
by the General Products Division of the
International Business Machines corporation
(IBM) performing simulation modeling and
material handling engineering activities.

145

