Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

SIMSCRIPT 11.5 and SIMGRAPHICS: A tutorial

ABSTRACT

The SIMSCRIPT I1.5 programming language is
described, and a complete simulation example is presented.

INTRODUCTION

SIMSCRIPT I1.5 is a well established, standardized,
and widely used language with proven software support.
Experience has shown that SIMSCRIPT 115 reduces
simulation programming time and cost several fold when
compared to FORTRAN. It assists the analyst greatly in
the formulation and design of simulation models and gives
the programmer and analyst a common language for
describing the model. The benefits of using SIMSCRIPT
1.5 can be felt at all stages in the development of a model,
including:

The powerful "world-view"
consisting of Entities, Attributes, and
Sets provides a natural conceptual
framework in which to relate real
objects to the model.

Design:

The modern, free-form language
contains structured programming
constructs and all the built-in
facilities needed for model
development. Model components
can be programmed so as to clearly
reflect the organization and logic of
the modelled system.

Programming:

A well-designed package of program
testing facilities is provided. Tools
are available to detect errors in a
complex computer program without
resorting to memory dumps and
other archaic means.

Testing:

Evolution: The SIMSCRIPT program structure
allows the model to evolve easily
and naturally from simple to detailed
formulation as more information
becomes available. Many
modifications, such as choices of set
disciplines and performance
measurements are simply specified
in the program preamble in a non-
procedural manner. Animation and
presentation graphics can even be
changed without program
modification.

The powerful English-like language
allows for modular implementation.
Because each model component is

Documentation:

Edward C. Russell
CACI Products Co.
12011 San Vicente Blvd.
Los Angeles, CA 90049

115

readable and self-contained, the
model listing can be understood by
the end-user who may not be at all
familiar with programming. Because
the detailed model documentation is
the program listing, it is never
obsolete nor inaccurate.

OVERVIEW
Purpose of Simulation

The purpose of a simulation must be clearly articulated
before embarking on model development. Many modelling
efforts have been doomed to failure, because a clear goal
was never determined. The natural tendency is to model in
great detail that part of the system which is well understood
and to "sweep under the rug"” or over-simplify those parts
which are not understood. The detailed model of the well
understood parts yields many lines of model code and gives
the illusion of great progress, when in fact, a much smaller
model of the entire system may actually be of much greater
value. In general, a model is an abstraction of the real
system under study. It is not necessary or even desirable to
include all of the details of the actual system. Deciding
which details are essential and which may be omitted for
the purposes of the study is perhaps the most difficult task
which the modeller faces.

Concept of a World-View

Without its "world-view", SIMSCRIPT IL.5 would be
just another programming language, albeit a very powerful
one. But with its world-view, the modeller is guided in the
formulation of a complete specification of the problem.
The objects in the real world map very naturally into the
SIMSCRIPT IL5 objects which break down into classes
termed TEMPORARY ENTITIES, PERMANENT
ENTITIES, PROCESSES, and RESOURCES. (All
capitalized words are part of the SIMSCRIPT I1.5
vocabulary.) Any entity may have ATTRIBUTES which
give it individual characteristic values. While all instances
of a particular entity class have the same named attributes,
each instance has its own values for the attributes. In
addition, entities may be organized into SETS in order to
represent any type of ordered list with various ordering
disciplines (FIFO, LIFO, or RANKED by any combination
of attribute values).

After the static structure of the model has been
described, the dynamic aspects are described in terms of
process routines. Each process routine corresponds to a
declared process entity. Very natural commands are
employed for manipulating objects in the process routines.
Processes may WORK or WAIT for a period of simulated
time. They may be FILEd in sets or REMOVEA from
them. They may ACTIVATE, INTERRUPT, or RESUME
one another. Processes may REQUEST or RELINQUISH
resources, automatically waiting for those which are
unavailable when requested and automatically other
processes when relinquishing unneeded resources.

Animation in SIMSCRIPT I1.5 is a very natural
extension of the established world-view. Entities may be
declared to be GRAPHIC in order to participate in graphic
displays. They may be further expanded to be DYNAMIC
GRAPHIC entities in order to participate in animated
displays. The actual form of the display (the so-called
“icon") is described through the use of an editor and may
be changed independently of the model.

Self-Documenting Code

Over the years, we have observed numerous
unsuccessful simulation projects that had no documentation
except a FORTRAN listing. Many of these listings
contained few explanatory comments. Even a thoroughly
commented FORTRAN listing is difficult to decipher for
anyone other than the person who wrote it. Often, even the
original author has difficulty understanding it after a short
time.

We have also seen great amounts of money wasted on
manuals and flowcharts intended to make it easier to
develop, maintain, modify, and enhance the model. This
waste is a consequence of the realities of model
development. Most models evolve over a long period of
time because of new and increased understanding of the
system, changing goals and availability of new data.
Because of the evolutionary changes, flowcharts, prose
documentation, detailed descriptions of routines and
variables, and program comments often become obsolete,
incomplete, or incorrect shortly after they are written. The
longer the model is around--and many models in use today
were developed five or more years ago--the more this type
of documentation deteriorates.

For the purposes of computer program development,
modification, and enhancements, the only dependable
documentation in a changing environment is the source
program listing, The quality and usefulness of this
documentation is determined by the model design and the
choice of simulation language. SIMSCRIPT IL.5 has been
shown to reduce the amount of code required when
compared to FORTRAN by at least 75 %, a four to one
reduction!

Large model development

SIMSCRIPT I1.5 has traditionally been the language of
choice for very large models. There are no inherent limits
to the size of either SIMSCRIPT 11.5 programs or their data
structures. The dynamic storage allocation of SIMSCRIPT
115 frees the modeller from concerns about the size of data
elements and all the error-checking code necessary to
enforce array limits. The modularity of the language
structure permits large teams of developers to work on
independent segments of the model without needing to
know all of the details of other elements of the model.

Portability

SIMSCRIPT IL5S is a truly portable language. It was
originally developed for large mainframe computers, but it
has evolved with the industry to implementations on mini-
and now micro-computers. The IBM Personal Computer
implementation of SIMSCRIPT IL5 is one of the most
advanced software packages available on that computer.
The modelling language has been designed and maintained
to be compatible across all the implementations. These
include: CDC, Cray, Datageneral, ETA, Gould,
Honeywell, IBM, Prime, Sun, UNISYS, VAX (both YMS
and UNIX).

116

SIMSCRIPT I1.5 LANGUAGE FEATURES

SIMSCRIPT IL5 is a complete programming language.
In addition to its simulation modelling capabilities, it has a
full range of input / output capabilities including the ability
to specify either formatted or free-form input, screen-
oriented output (including cursor placement), generalized
reports which may expand to multi-page width as well as
length, The TEXT mode of variable declaration permits
very general text manipulation of character strings of
arbitrary length including operations such as concatenation,
substring search and replace, case change, etc.

The entity / attribute / set structure mentioned above is
an extension of a very powerful underlying data structure.
Arrays in SIMSCRIPT I1.5 may be of any dimension
whatever, without limit. The allocation of storage for the
arrays occurs during execution and arrays may be
deallocated and reallocated with different dimensions. (If
there were a need for much reallocation, the temporary
entity concept would more likely be used.)

SIMSCRIPT IL.5 contains all of the constructs of
modermn structured programming. Search commands relate
to the data structures to be scanned. Program segments
may be modularized along functional lines as routines,
functions, monitoring routines (to be called implicitly when
the monitored variable is either accessed or modified or
both), as well as the process and event routines of
simulation. Routines may also be executed recursively.

The support of the representation statistical phenomena
is extensive. Generators exist for random numbers
distributed according to uniform, integer uniform, normal,
log normal, exponential, beta, gamma, erlang, poisson,
binomial, triangular, and weibull distributions. If these are
sufficient, an arbitrary numerical distribution is available to
describe any distribution as a table of values versus
probability (individual or cumulative).

The collection of data in the form of statistical
performance measures is supported by three very powerful
statements; ACCUMULATE, TALLY, and COMPUTE.
ACCUMULATE and TALLY are declarative statements
which prescribe what measures to take but not how to
accomplish them. COMPUTE is an executable staterent
which performs the computations at the time it is executed.
Whereas ACCUMULATE and TALLY update statistical
counters as the variable-of observation changes values.
Then only when the results are needed are the final
statistical calculations performed. The measures available
include number of samples, sum, average, maximum,
minimum, standard deviation, variance, sum of squares and
mean square. ACCUMULATE performs these calculations
on a time-dependent basis, while TALLY performs them
on a sample-basis.

SIMSCRIPT IL5 has recently been enhanced to enable
the user to develop models which include processes which
change continuously with simulation time. This enables
models to be built for those systems which are described in
terms of differential equations with superimposed discrete
events. The combined capabilities enable the user to define
models where dependent variables may change discretely,
continuously, or continuously with discrete jumps
superimposed.

Part of the ongoing development effort of SIMSCRIPT
I1.5 is to make the interface between user and mode] easier
to understand. Traditionally, the output of a simulation run
was collated tables of data which required extensive
analytical capability on the part of the user in order to
understand the underlying interactions between various
parts of the system under investigation. Much progress has

been made in providing facilities within the language
whereby these interactions may be represented graphically.
This enables models to be developed in which the
parameters can be easily represented as presentation
graphics such as pie charts, strip charts, dials, level meters,
bar graphs, etc. These so-called "smart icons" are updated
on the screen as the simulation proceeds. In addition,
animation capabilities have been developed to display
moving objects against a static background in order to give
further insight into the complex interactions which take
place within a system. ;

The preparation of the presentation graphics as well as
the icons for animation is accomplished through the use of
editors. The icons are stored with the program but may be
modified without need to modify the program or clutter it
with non-system-related code. At present, these facilities
are available only in the PC version of SIMSCRIPT 11.5,
but development is underway for several other
implementation.

THE PC SIMLAB ENVIRONMENT

Many of the capabilities of PC SIMSCRIPT IL.5 are
made possible because of SIMLAB. SIMLAB is an
operating environment for the SIMSCRIPT I1.5 compiler,
editors, and run-time. SIML.AB supports a multitasking
environment in which it is possible to perform several tasks
simultaneously. During program development, it is
possible to edit several portions of the program
simultaneously (in different windows). During execution,
it is possible to open "debug windows", set break points,
and track the execution of the program through its source
code. Itis also possible to have multiple, concurrent output
streams to different windows. SIMLAB also makes it
possible to write, maintain, and execute programs which
are much larger than the actual memory of a PC can
contain, Through its virtual addressing mechanism,
programs which would normally require main frame
capacity are being developed on PCs.

A TUTORIAL EXAMPLE

As an example of model building in SIMSCRIPT I1.5,
we shall now construct a model and discuss its components
as we proceed.

The problem is one which has appeared from time to time
in the literature (origin unknown).

Consider a mining operation which uses a lift to
carry ore from the underground levels to the
surface. There are two underground levels where
level one is the deepest. Level one is the most
productive level, so the lift always descends directly
to it if ore is available there. The decision to go
deeper is made once the lift approaches level two on
a descent. If neither level has ore ready for transit
then the lift descends to level one and waits for ore
to be produced there. Assume the following
characteristics for the lift system:

1. The lift has a capacity of three loads of
ore.

2. Each level produces an average of five loads per
hour distributed according to a
Poisson process.

3. The lift requires three minutes to travel
between levels except that an
extra thirty seconds is required to
stop at level two. This thirty
seconds is applied both to the
movement to and from level two.

4. The time to place one load of ore on the lift
is uniform over the interval
(0.75,1.25) minutes. The time to
remove one load of ore from the
lift follows the same distribution.

The system starts empty and idle with the lift at the
surface. Estimate the average content of the lift as
it approaches the surface. Also estimate the average
and maximum queue length at each level. Run
length will be an input parameter.

The SIMSCRIPT Approach

The first step in the model design is to specify the
components of the model. In SIMSCRIPT IL5 these very
closely relate to the objects of the real system. The
PREAMBLE (figure 1) contains the static description of
the model. The lift is the dynamic player in the system and
will be modelled as a PROCESS. The loads are passive.
They appear randomly on each level, queue for the lift, and
eventually are loaded and carried to the surface. We model
them as TEMPORARY ENTITIES. In this way we do not
need to be concerned with the number of loads in the
system at any given time. SIMSCRIPT IL5 will allocate
and deallocate storage for them as needed. Certain
information is to be stored about each level in the mine.
Since the number of levels is fixed, we model them as a
PERMANENT ENTITY with two copies. Two somewhat
artificial processes are defined to start and stop the
simulation. The first is LOAD.GENERATOR which will
generate loads at the required rate for each floor. The
second extra process is FINAL.REPORT which will print
the final results and stop the simulation at the specified
time. The attributes of each of these various entities should
be self-explanatory. A SET is used to contain the loads
waiting for the lift on each floor. This set is described as
OWNED by each floor and BELONGED TO by each load.
The set discipline is declared as LIFO although it should
really be FIFO. The reason for this was to speed up the
animation of the model by only deleting and redrawing
loads at one end of the queue rather than moving them up
one space at a time.

The remainder of the PREAMBLE describes performance
measures and graphic controls, each of which will be
described below.

The Main Program

The main program (figure 2) is where execution begins in a
SIMSCRIPT IL5 program. In our example, we have
modularized the program along functional lines such that
the main program consists of a series of subroutine
invocations followed by the start of simulation.

Each routine will be described in turn, After the
initialization has been completed, START SIMULATION

passes control to the iming mechanism. This is the heart

117

of discrete simulation. The timing routine sequences the
execution of the processes according to the “next event”
policy. That is, a list of currently scheduled processes is
automatically maintained, ranked according to the
scheduled time of execution (in simulation time units). As
each process comes to the head of the list, it is removed and
executed. If the process was waiting for a passage of time
(e.g, in a WORK statement, execution resumes at the next
statement after the WORK statement. The timing routine
continues to sequence processes until either the list is
empty or one of the processes stops the simulation. (In our
case, FINAL.REPORT will stop the simulation.)

Initialization Routines

The bulk of the code in this model is concerned with setting
up the initial conditions. First a set of default values are
established in routine SET.DEFAULTS (figure 3). Then
the user is offered the opportunity to change many of these
values in READ.THE.MENU (figure 4). Routine
INITIALIZE (figure 5) sets up the starting conditions for
the simulation and finally, the graphics portion is initialized
in INITIALIZE.GRAPHICS (figure 6).

Graphics will be discussed as a separate topic. For now, let
us concentrate on the simulation aspects of the'model.

Routine READ.THE,MENU (figure 4) illustrates a means
of displaying the current parameters and cycling through
them allowing the user to change as few or as many as
he/she wishes. Two possible exits from this cycle are
either to "Run" the simulation or "Exit", which will
terminate the program without running the simulation. The
PRINT statements are followed by their formats which are
copied verbatim to the output device (screen). Any
variables to be printed are placed where asterisks appear in
the format. WRITE statements are similar to PRINT
statements but are used to allow the cursor to remain on the
same line. The VGOTOXY library routine is used to
position the cursor on the menu,

Routine INITIALIZE (figure 5) activates the initial
processes for the simulation. (There must be at least one
pending process when the simulation starts.) Two copies
of LOAD.GENERATOR are activated, one for each floor.
Each potentially has a different inter-arrival rate passed to
it as a parameter, and each has the floor number as the
second parameter. The LIFT is activated immediately and
the FINAL.REPORT is scheduled for occurrence after a
delay of STOP. TIME hours.

The Simulation Routines

Process LOAD.GENERATOR (figure 6) models the arrival
of new loads on each floor. When a new load arrives, it is
placed in queue and if the lift is idle, it is reactivated.
(Other code in this routine pertains to positioning the load
for display.)

Process LIFT (figure 7) is the representation of the physical
lift. It operates in a continuous loop moving between
floors, examining LOAD.QUEUES, loading, and
unloading. The code should be self-explanatory. The only
additions to the logic for animation purposes are the setting
of the velocity.a attribute and the LIFT.STATUS attribute.
The velocity.a attribute controls the animation of the lift
icon and LIFT.STATUS is used to control the color of the
icon (red for stopped and green for moving).

Statistics and the Final Report

Process FINAL.REPORT (figure 8) pauses to wait for the
user to finish admiring the animation (the READ AS /from
UNIT 5) then proceeds to print the final text results from
the model. The statistical

results were all generated from the ACCUMULATE and
TALLY statements which appear in the preamble. These
statements declare what results are required but not how to
collect the data, SIMSCRIPT IL.5 automatically monitors
the variables in the ACCUMULATE and TALLY
statements (CONTENTS and n.LOAD.QUEUE in our
example) and whenever their values change, the necessary
statistical variables are updated.

Presentation Graphics

A variety of presentation graphics are available in
SIMSCRIPT IL5. Several are used in our model. The
queue length on each level may be displayed in several

118

ways. The program includes options to display them as
plots (queue length vs. time), level meters (much like a
thermometer), or dials. In addition simulation time is
displayed as either a 12 or 24 hour analog clock. These
presentation icons were prepared using the PC SIMSCRIPT
IL5 presentation graphics editor. This editor is completely
menu driven, It is used to prepare presentation graphics
before, during, or after model development. The icons may
be changed at any time without any need to recode the
model.

A example of a presentation graphics edit screen is shown
in figure 12,

Adding Animation

The entity/attribute/set structure of SIMSCRIPT IL.5
extends very nicely to allow the inclusion of animation in a
simulation model. Entities which are to be displayed are
declared as GRAPHICAL ENTITIES and those which are
also to move are declared as DYNAMIC GRAPHICAL
ENTITIES. These declarations (in the preamble) cause the
compiler to include additional attributes which are required
for these purposes. The icons are usually prepared with the
Icon Editor and associated with their respective entities
with the DISPLAY statement.

Routine INITIALIZE.GRAPHICS (figure 9) initializes a
"virtual terminal” to display the graphical output of our
model. Several objects are drawn as part of the
background. These appear in figure 14 as the ground, a
building and a truck. These icons were constructed with
the Icon Editor and may be changed at will. The lift is
displayed with a user-written display routine. The
association of this routine with the process is made in the
initialization program. The “"smart icons" for queue and
clock displays are initiated here as well.

Routine UPDATE.CLOCK (figure 10) forces the displayed
clock to keep up with simulated time. This routine can be
enhanced to do such things as "time warp", i.e., leap ahead
when nothing is moving on the screen. The usual
convention is to produce an audible signal when such a
leap occurs,

The display routine for the lift (figure 11) had to be written
by the user rather than to use a system-generated default
routine because of the need to change the color of the lift
based on its STATUS attribute and the desire to redraw all
the load icons which represent loads within the lift. This is
more efficient than treating the loads as dynamic entities in
their own right and avoids the "rubber band" effect of
moving the lift and then moving each load on the lift,

SIMSCRIPT I1.5 AVAILABILITY

SIMSCRIPT 115 is the proprietary product of CACI
International Inc. Itis sold on a free-trial basis.

A special university program is supported by CACIin
which SIMSCRIPT 1.5 is supplied to educational
institutions for the cost of distribution.

TRAINING

Week-long training courses are given by CACIon a
regular basis. These courses are held in their training
facilities in Los Angeles and Washington, D.C., as well as
at other locations throughout the world. The same course is
available for on-site training as well. For further
information on courses, contact:

CACI International Inc
3344 N. Torrey Pines Court
La Jolla, CA 92037

Phone: (619) 457-9681

preamble
normally mode is undefined

processes include FINAL.REPORT
every LOAD.GENERATOR
has a MEAN.RATE
and a LOAD.FLOOR
define MEAN.RATE as a real variable
define LOAD.FLOOR as an integer variable

every LIFT
has a LIFT.STATUS
and owns a LIFT.LOAD
define LIFT.STATUS as a text variable

permanent entities
every LEVEL
has a QUEUE.ICON
and owns a LOAD.QUEUE
define QUEUE.ICON as a text variable

temporary entities
every LOAD
has a FLOOR
and may belong to the LOAD.QUEUE
and may belong to the LIFT.LOAD
define FLOOR as an integer variable

define LIFT.CAPACITY as an integer variable
define STOP.TIME and CONTENTS as real variables
define LIFT.WAIT as an integer variable
tally AVG.CONTENTS as the average

+ and NO.OF.LOADS as the number of CONTENTS
accumulate AVG.QUEUE as the average

and MAX.QUEUE as the maximum of n.LOAD.QUEUE

define MINUTES to mean units
define HOURS to mean * 60.0 units

define LOAD.QUEUE as a LIFO set
*’ cheat ! ..no need to re-draw all
** loads as they move up 1 place

‘* simAnimation graphic declarations

graphic entities include LOAD ** these are visible
dynamic graphic entities include LIFT ‘’..and this moves!

graphic entities include SHAPE
define LOADSHAPE as a pointer variable
define SCALER as a real varilable '’ time scaling factor

define .STOPPED.COLOR to mean 2 ' red
define .MOVING.COLOR to mean 3 ’* green

define CLOCKTIME as a double variable
define TIMEICON as a text variable

display variables include n.LOAD.QUEUE, CLOCKTIME

end ‘‘preamble

Figure 1 - The PREAMBLE

119

mai.

end

n

call SET.DEFAULTS

tall READ.THE.MENU

call INITIALIZE

call INITIALIZE.GRAPHICS
start simulation

e

main

Figure 2 - MAIN

routine to SET.DEFAULTS
create every LEVEL(2)

end

let
let
let
let
let
let

re

LIFT.CAPACITY = 3
STOP.TIME = 12 ‘‘hours
SCALER = 30

TIMEICON = "aclock"
QUEUE.ICON(1) = "tracel"
QUEUE.ICON{2) = "trace2"

routine to SET.DEFAULTS

Figure 3 - Routine SET.DEFAULTS

select case CHOICE
case "1®

routine to READ.THE.MENU
define ICON.NAME as a text variable
define INPUT.TIME as an integer variable
define CHOICE as an alpha variable
define DONE as a text variable
let DONE = "n"
until DONE = "y®
do
call vclears.r !
print 8 lines with STOP.TIME, TIMEICON, SCALER,
QUEUE.XCON{1) ,QUEVE.ICON(2) thus,

write as "Enter new simulated run time in hours =>"
o+
read INPUT.TIME
if INPUT.TIME > 0 and INPUT.TIME <= 99999
let STOP.TIME = INPUT.TIME
always

case "2"
write as YEnter new time scalev,/,
"{real seconds per simulated hour => ",+
read INPUT.TIME
if INPUT.TIME > 0 and INPUT.TIME <= 3600
let SCALER = INPUT.TIME

>>>>>>>>>> GOLDMINE SIMULATION MENU <<<<<<<<<<

Default values

Simulated run time is *** hours Time icon = *¥dkkkdkix alvays
Time scale is *** real seconds per simulated hour
Quene 1 icon = *kkkkkkEkk® case "3"
write as "Enter new icon for the clock",/,

Queue 2 icon = *¥kkkkkkkkk
" {aclock or 24clock) => ¥, +

read ICON.NAME

print 11 lines thus
let TIMEICON = ICON.NAME

1) Change the simulated run length (hrs.)
2) Change the time scale (sec/hr)

case "4"
write as "Enter new icon for queue 1v,/,
“*{tracel, levell, or diall) => ", +

3) Change the icon for time {available list of icomns
4) Change the icon for queue 1 is displayed when you read ICON.NAME
5) Change the icon for queue 2 select the menu item.) let QUEUE.ICON(1) = ICON.NAME
R) Run the simulation case "5v
E) Exit the simulation ' write as "Enter new icon for queue 2",/,
. . ¥ (trace2, level?, or dial2) => *,+
call vgotoxy.z{21,0) read ICON.NAME
write as "Enter your choice => ", + let QUEUE.ICON(2) = ICON.NAME
call rer.r case "R", “rm
read CHOICE as A 1 let DONE = "y»
call vgotoxy.r(21,0) . case "E", "e¥, "X", "x"
call vclearl.r : stop
default
endselect
loop
end ’‘ routine to READ.THE.MENU
;
Figure 4 - Routine .READ.THE.MENU
routine INITIALIZE ' process LOAD.GENERATOR given INTER.ARRIVAL.TIME and
activate a LOAD.GENERATOR giving 1 / § and 1 now LOAD.FLOOR
activate a LOAD.GENERATOR giving 1 / 5 and 2 now define INTER.ARRIVAL.TIME as a real variable
activate a LIFT now define LOAD.FLOOR as an integexr variable
let STOP.TIME = STOP.TIME * 60 define X and Y as real variables
activate a FINAL.REPORT in STOP.TIME minutes until time.v >= STOP.TIME
end ‘’ routine INITIALIZE do

wait exponential.f (INTER.ARRIVAL.TIME,1) HOURS
- create a LOAD
Figure 5 - routine INITIALIZE let FLOOR(LOAD) = LOAD.FLOOR

tr give the load an icon and position it at end of queue
let X = 15 + n.LOAD.QUEUE (LOAD.FLOOR) * 12.0
let ¥ = -100.0 * (3-LOAD.FLOOR)
display LOAD with "LOAD" at (X, ¥)
file LOAD in LOAD.QUEUE (LOAD.FLOOR)
if LOAD.FLOOR = 1 .
and sta.a(LIFT) = 2 *’ ie, the lift is idle
reactivate the LIFT now
always
loop
end ’! process LOAD.GENERATOR

Figure 6 - Process LOAD.GENERATOR

120

process LIFT

define LIFTSPEED as a real variable

let LIFTSPEED = 100.0 / 3.0 *r ft/min

until time.v >= STOP.TIME
do

let velocity.a(LIFT) = velocity.f(LIFTSPEED, -PI.C/2)

let LIFT.STATUS(LIFT) = “moving™
wait 3 MINUTES ‘’to descend to level 2

if LOAD.QUEUE (1) is not empty
or LOAD.QUEUE (2) is empty,
wait 3 MINUTES ‘‘to descend to level 1

let velocity.a(LIFT) = 0

let LIFT.STATUS(LIFT) = "stopped"

if LOAD.QUEUE(1l) is empty,
suspend

always

until n.LIFT.LOAD = LIFT.CAPACITY
or LOAD.QUEUE (1)} is empty
do
remove the first LOAD from LOAD.QUEUE{1)

let location.a(LOaD) = 0 disappear

file this LOAD in LIFT.LOAD

display LIFT

walt uniform.£(0.75, 1.25, 1) MINUTES
loop

let velocity.a(LIFT) = velocity.f(LIFTSPEED,
PI.C/2)

let LIFT.STATUS{LIFT) = “moving"

walt 3 MINUTES ‘‘to ascend to level 2

always

if LOAD.QUEUE(2) is not empty
and n.LIFT.LOAD < LIFT.CAPACITY,
let velocity.a(LIFT) =0
let LIFT.STATUS(LIFT) = “"stopped”
display LIFT
wait 0.5 MINUTES .
until n.LIFT.LOAD = LIFT.CAPACITY
or LOAD.QUEUE(2) is empty,
do
remove the first LOAD from LOAD.QUEUE (2)
let location.a(LOAD) = 0 7¢ disappear
file this LOAD in LIFT.LOAD
display LIFT
wait uniform.£(0.75, 1.25, 1) MINUTES
loop
display LIFT
wait 0.5 MINUTES
let velocity.a(LIFT) = velocity.f(LIFTSPEED, PI.C/2)
let LIFT.STATUS(LIFT) = "moving"

always
wait 3 MINUTES ‘’to ascend to surface

let velocity.a(LIFT) = 0
let LIFT.STATUS(LIFT) = “"stopped®

let CONTENTS = n.LIFT.LOAD
until LIFT.LOAD is empty,
do
remove the first LOAD from LIFT.LOAD
destroy this LOAD
display LIFT
wait uniform.f£(0.75, 1.25, 1) MINUTES
loop

loop
end ‘‘process LIFT

Figure 7 -

Process LIFT

process FINAL.

REPORT

use 5 for input

read as /

use 6 for output
print 13 lines with time.v, AVG.CONTENTS, NO.OF.LOADS,

AVG.QUEUE (1},

thus

MAX.QUEUE (1), AVG.QUEUE(2), MAX.QUEUE(2)

Results after ***xtx¥x *x** simulated minutes

Average lift contents were *** xkxixx
Number of 1ift trips was *¥k¥xx

Average

Maximum

Average

Maximum

stop

queue at the
queue at the

queue at the
queue at the

flrst level was ¥k¥ kkk%
first level was *¥¥x¥%

second level was ¥¥%¥ dk¥k
secand level was *¥¥%*x

end '‘process FINAL.REPORT

Figure 8 - Process FINAL.REPORT

121

routine INITIALIZE.GRAPHICS routine UPDATE.CLOCK given TIME yielding NEWTIME

define DEVICE.ID as a pointer variable define TIME, NEWTIME as double variables
define GROUND, BUILDING and TRUCK as pointer variables
let timescale.v = SCALER * 100 / 60.0 let NEWTIME = TIME
‘fclock ticks (1/100 sec) / unit let CLOCKTIME = TIME / (60 * 24)
let timesync.v = ‘UPDATE.CLOCK’
return
‘! Create a ‘Graphic display’ using 2 néw I/0 units end '’ routine UPDATE.CLOCK
call devinit.r("VT,GRAPHIC") yielding DEVICE.ID Figure 10 - Routine UPDATE.CLOCK
open 7 for input, device = DEVICE.ID
open 8 for output, device = DEVICE.ID
use 8 for graphic output
** Select a viewing transform and establish its mapping display routine LIFT{(LIFT)
let vxform.v = 1 define LIFT and LOAD as pointer variables

call setworld.r({~-50.0, 200.0, -220.0, 20.0)
let vxform.v = 1 ’’ set viewing transform

create a SHAPE called GROUND if LIFT.STATUS(LIFT) = ™"stopped"
display GROUND with "ground" call fillcolor.r (.STOPPED.COLOR)
create a SHAPE called BUILDING else
display BUILDING with "build" at (80, 0} call fillcolor.r (.MOVING.COLOR}
always
create a SHAPE called TRUCK
display TRUCK with "truck" at (150, 0) display icon.a(LIFT)
call mxlate.r(~12.0, 0.0)
*’ override the standard routine for each LOAD in LIFT.LOAD(LIFT)
let drtn.a(LIFT) = ’'V.LIFT’ do
let LIFT.STATUS(LIFT) = "stopped" display icon.a (LOAD)
display LIFT with "1lift" at (0, 0) call mxlate.r(8.0, 3.0)
loop
create a SHAPE called LOADSHAPE
show LOADSHAPE with "load" end ’’display routine LIFT
let vxform.v = 0 Figure 11 - Display Routine LIFT

display CLOCKTIME with TIMEICON

display n.LOAD.QUEUE({1) with QUEUE.ICON (1)
display n.LOAD.QUEUE(2) with QUEUE.ICON (2)

let vxform.v = 1
end ‘‘routine INITIALIZE.GRAPHICS

Figure 9 - routine INXITIALIZE.GRAPHICS

LEVEL HETER DETAILS [
; Tithe: Level 2 Queue
Color: -
} Style: -
! Haxinun: 18.00 ‘
! Mininun: 8.
1’ Increnent: 1.060
j Nunbering: 2.008
}‘ Leavel 2 Queue Axis Color: [|
! Set Position & Size
! UIEY
PREVIOUS HENU

Figure 12 - Preparation of a Presentation Graphic

122

EDIT HENU

|

'

: 4 |Shape: LINE

! Add shape

' Hove shape

5 = Copy shape
e { Capy shap

. N s s
. — .
@ 50 .. Edit shape

R I e Dinenslon
) CLEAR
B VIEW
} ’ PREVIOUS HENU

Figure 13 - Preparation of an Animation Icon

vel 1 Queue vs Tine EVEL 2|

Figure 14 - A Snapshot of the Animated Simulation

>>>>>>>>>> GOLDMINE SIMULATION MENU

<LLLLLLLLK

Default values
Simulated run time is 12 hours Time icon =
aclock

Time scale is 30 real seconds per simulated hour
Queue 1 icon

tracel
Queue 2 icon =

trace2

1) Change the simulated run length (hrs.)

2) Change the time scale (sec/hr)

3) Change the icon for time {available list of
icons

4) Change the icon for queuve 1 is displayed when
you

5) Change the icon for queue 2 select the menu
item.)

R) Run the simulation

E) Exit the simulation

Enter your choice => r

Figure 15 - The Opening Menu

Results after 720.0000 simulated minutes

Average lift contents were 2.813953

Number of lift trips was 43
Average queue at the first level was .8380
Maximum queue at the first level was 4

Average queue at the second level was 2.6098
Maximum queue at the second level was 9

Figure 16 ~ A Sample of the Final Results

123

SIMSCRIPT IL5 Bibliography
The following publications,are available from CACL

Building Simulation Models with SIMSCRIPT IL5 by
Edward C. Russell, 1983.

Introduction to Simulation Using SIMSCRIPT I1.5 by
Averill M. Law and Christopher S. Larmey, University of
Arizona, Tempe, 1984. -

SIMSCRIPT I1.5 Programming Language by Harry M.
Markowitz, P.J. Kiviat and R. Villanueva (1987 edition).

SIMSCRIPT II.5 Referencfe Handbook, 1987 edition.

PC SimAnimation User’s Guide and Case Book, 1987
edition. :

Introduction to Combined Discrete-Continuous
Simulation Using PC SIMSCRIPT I1.5 by Abdel-Moaty
M. Fayek, California State University, Chico, 1987

i

PC SIMSCRIPT 1L.5 Introéduction and User’s Manual,
1987 edition. '

and User’s Manuals for all other implementations

AUTHOR’S BIOGRAPHY

EDWARD C. RUSSELL is Vice President.of CACI
International Inc. and manager of the Modelling and
Simulation Depart-ment. He has responsibility for soft-
ware products including SIMSCRIPT I1.5, NETWORK
I1.5, and SIMFACTORY. He has developed and regularly
teaches a one-week short course on Simulation and
SIMSCRIPT ILS5. He is also actively engaged in major
modelling and simulation projects. He is the author of the
teaching text for SIMSCRIPT 1L, Building Simulation
Models with SIMSCRIPT I1.5. He is also an adjunct
professor in the Graduate Schools of Computer Science and
Management at the University of California at Los Angeles
(UCLA). Dr. Russell’s academic background includes a
BSEE from Wayne State University, and MSE and PhD
degrees in computer science from UCLA.

Edward C. Russell
CACI International Inc.
12011 San Vicente Blvd.
Los Angeles, CA 90049
(213) 476-6511

124

