Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Introduction to SIMNET v2.0

Hamdy A. Taha

Department of Industrial Engineering

EC4207

University of Arkansas
Fayetteville, Arkansas 72701

ABSTRACT:

SIMNET is a network-based general-purpose
discrete simulation 1language developed in totally
compatible versions for the micro, wmini, and

mainframe computers. The Tanguage utilizes a fresh
design approach that limits the number of nodes to
exactly four: a source, a queue, a facility, and an

auxiliary. Traffic among the four nodes is
controlled by using special assignments, a strategy
that dis particularly suited for use with the

IF-THEN~ELSE-ENDIF constructs. PROCs are used in a
"stand alone" fashion to simulate an entire system
with repetitive elements. A unique feature of
SIMNET 1is the wuse of interactive (characters)
graphics to estimate the transient period, following
which the steady state run length is specified by
the user and independent or global statistics are
collected, all within the interactive mode of execu-
tion, The paper compares SIMNET with GPSS, SIMAN,
and SLAM.

INTRODUCTION

The first version of SIMNET was released early
in 1988. Release 2.0, which offers important enhan-
cements and extensions, will be available in the
first quarter of 1989. The basic features of the
language are summarized below.

1. It employs four nodes only in a manner that
does not necessitate the use of external
(FORTRAN) inserts,

It provides file manipulations operations
in the form of assignments which, together
with the IF-TREN-ELSE-ENDIF constructs,
allow full control over transaction flow
anywhere in the network.

It employs PROCS in a "stand alone" fashion
for simulating entire systems with repeti-
tive elements.

4, It utilizes interactive character graphics
to estimate (and deTete) the transient
period, following which independent or glo-
bal statistics (based on the subinterval or
the replication method) are collected, all
within the interactive mode of execution,

Release 2.0 allows the use of any user-

defined subscripted and nonsubscripted
variables. It also includes all FORTRAN

(single-precision) intrinsic functions and
permits their use with mathematical
expressions (with grouping parentheses)
anywhere in the model. These enhancements
offer considerable additional modeling
power and adds versatilty to the language.

93

A complete documentation of the language appears
in (Taha 1988a), A teaching manual (Taha 1988b)
that introduces SIMNET through "hands-on! experimen-
tation has also been prepared for the Tanguage.

BASIC STRUCTURE OF SIMNET

The structure of SIMNET
components:

includes three basic

1. Four nodes representing a source, a queue,
a facility, and an auxiliary

2. Seven types of branches that can be used to

direct traffic selectively between suc-
cessive nodes.
3. Twenty special assignments that can be

employed to move trans-actions among dis-
jointed nodes of the network. These
assignments are executed as transactions
traverse branches.

This design strategy differs significantly from
those employed by available process languages (e.qg.,
GPSS, SIMAN, and SLAM). Specifically, present
tanguages utilize special blocks/nodes to model
transaction flow. This approach increases model
abstractness and reduces the language flexibility,
as evident by the fact that most of these systems
still necessitate the use of external subroutines
and/or functions. SIMNET, on the other hand, does
not make use of external inserts, Its four nodes
together with the special branches and assignments
can be used to model any situation, Future expan-
sion of the language can be effected by introducing
new assignments; an approach that does not alter the
basic four-node structure of the language.

SIMNET NODES

Figure 1 depicts SIMNET's four nodes. The
source node creates new transactions, the queue node
houses waiting transactions, the facility node is
where service is performed, and the auxiliary node
represents an infinite-capacity facilily designed to
enhance the model flexibility of the language. The
choice of the first three nodes (source, queue, and
facility) stems from the fact that most discrete
simulation systems can be viewed, in some form or
another, as queueing models. By Tlimiting the
language to these three nodes (and an auxiliary),
developed models will be less abstract in nature,

= o <& O

SOURCE QUEUE FACILITY AUXILIARY

Fig. 1. SIMNET Nodes

Each node in SIMNET s assigned a user-defined
name, This name can be used both as a node
reference and as a label for orienting flow of tran-
sactions to the node (in all other process
languages, such as GPSS, SIMAN and SLAM, a distinc-
tion is made between node/block reference name and
label). Recognition of the node type is made by
suffexing the node name by one of the symbols *S,
*Q, *F, and *A to represent source, queue, facility,
and auxiliary, respectively.” -

Nodes in SIMNET are defined to be self-contained
in the sense that each node is equipped with infor-
mation that defines the manner in which transactions
enter, leave and reside in a node. Data about the
node are expressed as statements consisting of a
number of ordered fields separated by semicolons,
The last field of the node terminates with a colon.

Figure 2 demonstrates a typical definition of a
facility node named FI. The facility has two
parallel servers and the service time per transac-
tion is EXponential with mean 18 time units, When a
service is compieted, the associated transaction
will go to the shorter of two "out" queues named Q3
and Q4. When "the facility becomes idle, it will
draw transactions from the longer of two "in" queues
named Q1 and Q2.

o

HBC _@ LBC o3

F1

Qa2 Q4

Fig. 2. A SIMNET Model Segment

The SIMNET statement of SRVR
follows:

F1 *F;HBC(Q1,Q2);EX (18);2;LBC(Q3,04)
(2) (3) (4)

Field (1) specifies that F1 will draw an incoming
transaction from Ql or Q2, whichever has the Highest
Busy Capacity. Similarly, field (4) indicates that
3 transaction representing a completed service will
enter either Ql or Q2, whichever has the Lowest Busy
Capacity. Fields (2) and (3) are used to specify
The service time and the number of parallel servers,
Any or all the fields may be defaulted. Thus, a
default in either (1) or (4) would signify fixed
route specification (normaily dictated by the physi-
cal sequence of the nodes). On the other hand, a
default in field (2) signifies zero service time,
whereas a default in (3) will represent a single
server facility.

is expressed as

node name (1)

and facilities ias user-
defined files with ordered entries. A queue may
have a finite or infinite capacity. The capacity of
a facility is necessarily finite, and it represents
the number of parallel servers.

SIMNET treats queues

ROUTING TRANSACTIONS IN SIMNET

Transactions routing in SIMNET can take place in
one of three ways:

94

1. Direct sequencing of nodes.
2. Transfers.
3. Branches.

In the first case, the physical ordering of nodes
decides the route of the transaction. We can
override the physical ordering of nodes by using
either transfers or branches. Both transfers and
branches perform equal functions in so far as tran-
saction flow is concerned. The main difference
occurs in that branches must be used only when it is
desired to check conditions or execute assignments
(among other functions). Otherwise, in the absence
of these functions, transfer should be used since it
provides more compact coding and also utilizes less
storage.

In SIMNET, any number of branches (transfers)
may emanate from the same node. Traditionally,
available process languages, such as SIMAN and SLAM,
utilize three types of branches: deterministic, pro-
babilistic, and conditional. SIMNET takes advantage
of the fact that branches (transfers) are scanned in
their strict order in the 1ist by proposing an addi-
tional three types of branches:

1. Dependent (D)

2. Exclusive (E)

3. Last choice (L).
A dependent branch (or D-branch) is designed to be
taken only if at least one of the (deterministic,
probabilistic and/or conditional) branches preceding
it is taken. This requires the D-branch to be
placed following the deterministic, probabilistic
and/or conditional branches,

An exclusive branch (or E-branch) performs a

function simiTar to that of the D-branch in the
sense that it will be taken only if at least

one of the preceding branches is taken. However, it
differs from the D-branch in that it will block all
the preceding routes if the E-branch itself cannot
be taken,

The last choice branch (or L-branch) always
appears at the very botton of the list of branches
emanating from the node. The L-branch is designed
to be taken only if none of its preceding branches
are taken. Example:

To illustrate the power of branching in SIMNET,
consider the following situation. In the final
stage of automobile manufacturing, a car moving on a
transporter is situated between two parallel
workstations to allow work to be done on both the
left and right sides of the car simultaneously. The
service time on the left station follows a UNiform
distribution between 18 and 28 minutes. That on the
right station is also uniform between 20 and 30
minutes. When both operations are completed, the
transporter moves the finished car outside the sta-
tions area. Transporters arrive at the parallel
workstations every 25 to 35 minutes, uniformly
distributed.

Figure 3 provides the network for the model.
Transporters are created at source FEED every
UN(25,35) minutes and wait in queue LINE until- the
workstations LEFT and RITE are both available. When
one of the stations finishes its operation, it will
send a transaction to auxiliary OUT. A job is said
to be finished when the workstation with the longer
service time is completed. (For the sake of simpli-
city, we will not detail how the model senses the
termination of the longer of the two service times.)

UN{20,30)
, Uni2s,35) e
=ED—< D
FEED LINE N oy
RITE

Fig. 3. Synchronized Parallel Stations

The 1important aspect of the present model is
that work may not begin in either station unless
both are free simultaneously. There are several
ways for accomplishing this result in SIMNET using
appropriate branching. Figure 3 shows how two con-
ditional branches out of LINE are used to effect the
desired result., These two branches, recognized by
the symbols *B, are defined as follows:

LINE *Q:
*B;LEFT/2;LEN(LEFT)+LEN(RITE)=07:
*B;RITE/2;LEN(LEFT +LEN(RITE)=07:

The combination LEN(LEFDT)+LEN(RITE)=0? (located in
field 2 of each branch) tests the sum of the LENgths
of LEFT and RITE., If the sum is zero, both stations
are empty. The code /2 in field 1 of each branch
indicates that (at most) two conditional branches
will be taken out of LINE when their (respective)
conditions are satisfied.

We can effect the same result by using a depen-
dent D-branch in the following manner:

LINE *Q:
*B;LEFT/1;LEN(LEFT)+LEN(RITE)=07:
*B;RITE/D:

In this case, the branch to LEFT is conditional and
carries the code /1 to indicate that at most one
conditional branch will be taken. The second branch
to RITE now has the type /D, indicating that it is
dependent and that it will be taken only if the pre-
ceding conditional branch is taken. Since the con-
dition LEN(LEFT)+LEN(RITE)=0?, when satisfied,
guarantees that both stations are empty, the com-
bined use of conditional dependent branch will pro-
duce the same result as when two conditional
branches are used.

A third way for effecting the same result is to
use exclusive branching as follows:

LINE *Q:
*BJLEFT/A:
*B;RITE/E:

In this arrangement, the branch to LEFT will always
(A-branch) be taken provided LEFT s empty.
Simultaneously, since the (second) branch to RITE is
an E-branch, it will be taken only if the A-branch
to LEFT is taken, but will also block the A-branch
if RITE happened to be busy.

The above illustrations demonstrate the power of
using branches in SIMNET where complex routing logic
can be simulated by using the proper combination of
branches. This should prove helpful in modeling
certain situations in a convenient manner.

Actually, branches play important roles in
SIMNET modeling that go beyond transactions routing
in the network. Specifically, branches perform the
following additional functions:

95

. Execution of assignments.

Collection of data for statistical
variables,

3. Return model's resources back to their base
stock.

N
.

These points will be discussed later in this paper.

SIMNET ASSIGNMENTS

SIMNET utilizes two distinct types of assignments:

1. Arithmetic assignments
2. Special assignments

The arithmetic assignments are the familiar ones
that allow carrying out numeric calculations in the
model. The special assignments, on the other hand,
provide means for manipulating (swapping, deleting,
replacing, and reordering) the entries of the
systems files (queues and facilities) as well as
cessation, movement and destruction of transactions
anywhere in the network. They may also be used to
collect data on statistical variables and adjust the
level of a resource.

An important feature 1in SIMNET 1s that both
arithmetic and special assignments can be used
within the conditional statement IF-THEN-ELSE-ENDIF.
The use of the conditional statement provides power-
ful modeling opportunities, particularly with regard

to the use of the special assignments,

Arithmetic ‘Assignment/Expressions:

The original release of SIMNET limits arithmetic
expressions and assignments to the reserved
variables I,J,K,L,M,N and the subscripted variables
A(.), V(.) and W(.,.). Release 2.0 relaxes these
restrictions and allow the utilization of any user-
defined subscripted and nonsubcripted variables.
The subscripted variables are Timited to one and two
dimensions only and their size must be declared by
the $DIMENSION statement. For example,

$DIMENSION; ENTITY(200),TIME(10),A(3),TOTAL(3,5):

defines two single-dimensional arrays named TIME and
A whose sizes are 10 and 3. Array TOTAL is two-
dimensional with size 3X5. We remark that ENTITY
does not vrepresent a single-dimensional array.
Rather, it is a reserved word that allocates 200
entries for the operation of SIMNET files. Also,
the array A(.) is always reserved to represent the
attributes of transactions.

In addition to SIMNET's reserved arithmetic
function (e.g. LENgth of a file or LEVel of a
resource), release 2.0 now incorporates all known
single-precision functions that are available in
FORTRAN, including all trigonometric functions.
Additionally, release 2.0 admits the use of grouping
parentheses in expressions and sets no restrictions
on using (complex) expressions as subscripts func-
tions arguments, or special assignments data. The
following is a typical example of a SIMNET arith-
metic assignment:

TOTAL (NV+(J-1)*MM,KK)=ABS ((A (T)}+MM)/LEN(QQ))

Notice that NV,
defined variables.

Jd, MM, KK, and I are all user-

Special Assignments:

A1l SIMNET's special assignments assume the for-
mat
A=B

where A and B represent special codes. Among the
most useful of the special assignments are those
dealing with file (queue and facility) manipula-

tions. For example, the execution of the special
assignments

2(QQ)=K(WW)

will move the Kth entry of file WW and place it
second in file QQ. Such an operation, when imple-
mented in available process language such as GPSS,
SIMAN, and SLAM, will vrequire considerable
programming effort. The reason 1is that these
languages are capable of routing transactions to
labels only. The node/block associated with the
TabeT then decides how the arriving transaction will
be processed.

Actually, the file manipulation assignments have
the following general format:
(expression)(file name) = (expression)(file name)
This means that we can use the following assignment:

(A(I)+J**2)(QQ)=(SQRT(K)) (WW)

In this case, we remove entry SQRT(K) from WW and
place in position A(I}J**2 in QQ.

Another important special assignment deals with
switch control. A switch im SIMNET is defined by
using $SWITCHES statement. For example,

$SWITCHES: GATE,ON,QQ:

indicates that the switch named GATE is initially ON
and that it controls a queue named QQ. The special
assignment for changing the status of a switch assu-
mes the format:
Switch name = ON or OFF

A declared status can then be used as a condition to
either block or unblock a branch Teading to a node.
A notable use of the switch occurs when its status
is changed to ON. In this case, an attempt will be
made to release transactions from queues controlled
by the switch.

SIMNET provides a total of 20 special assign-
ments which, in addition to file manipulations and
switch control, allow resuming or suspending
creations from a source, stopping the simulation
altogether, controlling the level of a resource, and
collecting data on statistical variables. The use
of SIMNET assignments is enhanced by the use of the
conditional statement IF-THEN-ELSE~ENDIF. To
illustrate the modeling power of conditional state-
ment, consider the situation of a simple single-
server model in which the selection of customers for
service in the facility alternates between the head
and the tail of the {queue on a strict rotational
basis: Figure 4 provides the network and its asso-
ciated SIMNET model. The assignments

1D=1-1D,
IF,1D=1,

THEN, 1(QQ)=LAST(QQ),
ENDIF:

96

-IDm1-ID;
IF'ID-éinggi(wnxT)
1{WATT) = ,
uN(s,6) UN(7,10) LiWAr
D d
ARIV WAILT SERV

$PROJECT ;ROTATE, 4/27/88,TAHA:
$DIMENSION;ENTITY(30):

$BEGIN:

ARIV *S;UN(5,6):
WAIT *Q:

SRVR *F;;UN(7,10)

*B;TERM; ;ID=1-1ID;
IF,ID=1,THEN,
1(WAIT)=LAST(WAIT),
ENDIF%:
SEND:

Fig. 4. SIMNET Single Server Model

are executed as transactions complete service in
facility FF. Here, the (user defined) variable ID
initially has a zero value (by default) and will
alternate rotationally between 0 and 1 following
each service completion. For the cases where ID=1,
the IF-statement will move LAST(QQ) and place it as
1(QQ), fimmediately before facility FF attempts to
draw transactions from QQ.

The power of SIMNET's file manipulation assign-
ment in conjunction with the conditional
IF-statement is realized by comparing the SIMNET
model with those of GPSS, SIMAN and SLAM. In GPSS
the logic of the (otherwise simple) single-server
model will be significantly changed through the use
of the advanced LINK/UNLINK blocks. Figure 5 gives
the GPSS model of the problem.

GENERATE 55,5
LINK 1,FIFO,GO
GO SEIZE 1

ADVANCE 85,15
RELEASE 1
TEST E X1,1,HEAD
SAVEVALUE 1,0
UNLINK 1,G0,1,BACK
TERMINATE

HEAD SAVEVALUE 1,1
UNLINK 1,G0,1
TERMINATE

Fig. 5. GPSS Single Server Model

The SIMAN model follows a Tlogic similar to (though
simpler than) that of the GPSS model through the use
of the REMOVE block. The SLAM model, on the other
hand, s considerably more involved, both in logic
development and in the use of file manipulations
which can be effected only through the use of exter-
nal FORTRAN subroutines. Figure 6 gives the SLAM
model,

GEN,TAHA ,ROTATE,4/27/88,1;

LIMITS,2,2,100:

NETWORK;
RESOURCE,RS(1),1;
CREATE,UNFRM(5,6);
AWAIT(1),RS/1;

AX1 GOON,1;

ACT/1,,XX(1).EQ.0.0,AX2
ACT/2,,XX(1).EQ.1.0;
ASSIGN,XX(1)=0.0;
ACT/3,UNFRM(7,10);
FREE,RS/1;

TERM;

ASSIGN,XX(1)=1.0;
ACT/4,UNFRM(7,10);
EVENT, 1;

TERM;

AX2

QUEUE(2);
ACT, , ,AX1;
END
INIT,0,300;
FIN;

SUBROUTINE EVENT(IX)

COMMON/SCOM1/ ATRIB{100),DD(100),DDL(100),DTNOW,II,
MFA,MSTOP , NCLNR , NCRDR , NPRNT , NNRUN , NNSET,
NTAPE,SS(100),SSL(100) , TNEXT, TNOW, XX (100)

DIMENSION A(3)

IF (NNQ(1).LE.1) RETURN

CALL REMOVE(NNQ(1),1,A)

CALL FILEM(2,A)

RETURN

END

N

Fig. 6. SLAM Single Server Model

REMOTE CONTROL IN SIMNET

Remote control in SIMNET allows the modeler to
initiate the movement of transactions out of queues
and facilities from a disjointed segment of the net-
work, To illustate this point, consider the network
segments in Figure 7, Here, the transaction coming
out of source SS executes the special assignment
SW=0ON, where SW is the name of the switch that is
defined to control a queue named QQ. The second
special assignment on the branch from source SS is
1(LL}=TRANS, which instructs the system to take a
copy of the current transaction leaving SS and place
it first in the gueue named LL. The dashed routes
show the impact of executing the asignments. First,
SW=0ON, will release a transaction from QQ and then
sends it as far as it will go in the network (in
This example, to facility FF provided it is free),
before returning back to the branch on which SW=ON
was executed., Next, the assignment 1(LL)=TRANS is
executed. In this case, an attempt will also be
made to send a copy of TRANS out of LL, if possible,
This can only happen 1if the node following LL is
free and the conditions, if any, on the branch from
LL to WW are satisfied. Otherwise TRANS will simply
occupy the first position in LL.

The preceding example illustrates two points,
(1) File manipulation and switch assignments can be
used to remotely effect movement of transactions in
a disjointed segment of the network. (2) The
assignments are truly dynamic in the sense that they
will attempt to move "dislodged" transactions as far
as they will go in the network.

SIMNET RESQURCES

Resources in SIMNET represent scarce items that
can be used by one or more facilities in the model.
The facilities in turn may have exclusive rights to
given resources or may compete for them with or
without preemption privileges. In this regard, we
can think of facilities as ‘"workplaces" whereas

97

EEJLsu-on.mL)-mns
—n A N 1""’:0

Ss AR
} \7<\ \
! VAR
[CIPEye==an
a0 / [—2
/ \ 33
/
/ \
EI:ED | Ny
LL \\‘:a”/

Fig. 7. Remote Control in SIMNET

resources represent the "tools" needed to perform
services at these workplaces. A workplace may thus
become (or made) idle because of the lack (or forced
absence) of necessary tools. Distinction between
facilities and resources in SIMNET provides oppor-
tunities for modeling certain logics that otherwise
may be difficult to accomplish.

Resources acquisition and release are specified
by using special codes in a specific field of each
of the four nodes. 1In this case, SIMNET stipulates
that resources be acquired only at a facility, but
may be released anywhere in the network, including
the exit end of a branch. We can override the
restriction requiring a resource to be acquired only
at a facility by using a special resource level
assignment, which assumes the format

LEV(resource name)=expression

In this case, the 1level of a resource may be
adjusted up or down anywhere in the network,

There are two advantages to specifying the use
of a_resource by a node f?%?d n pf%ce 3% g resource

level assignmeni, First, the field code is designed
to allow positive transit time between the location
of the resource and its requested destination (and
vice versa); and, second, preemption of resources
from lower priority facilities is only possible when
the use of a resource is specified by a node field.

Priority and preemption of resources are insti-
tuted 1in the definition statements, as opposed to
the use of special blocks in GPSS, SIMAN, and SLAM.
For example, consider the definitions:

$RESOURCES: R1;4(F1/F2,F3):
R2;V(1)(F4,F5(NPR)/F6):

Resource R1, which has an initial level of 4, may be
assigned to facilities named F1, F2, and F3, with F1
having a higher preemptive priority over F2 and F3.
Resource RZ2, on the other hand, has an initial level
of V(1) (a SIMNET arithmetic variable) and can be
used with facilities F4, F5, and F6. In this case,
F4 and F5, though of higher priority than F6, do not
have pgeemptive privileges because of the use of the
NPR code.

STATISTICAL VARIABLES IN SIMNET

There are two types of statistics collection in
SIMNET:

(1) those dealing with queues, facilities, and
resources, and (2) those requested by the user.
The first type is totally automated as part of the
standard output of SIMNET. User-defined variables
on the other hand, are of three types:

1. Time based.
2. Observation based.
3. Run end.

The first two types are familiar elements in all
simulation languages. The run-end type is added to
allow computing certain variables only once at the
end of the simulation run.

A1l variables are given names and defined in
SIMNET by using the $VARIABLES statement.
Collection of data within the model is achieved
either by using the special assignment:

COLLECT = Variable name
or by listing them in the fourth field of a branch.
In either case, the output of the model will provide
a summary of the statistics of all user-defined
variables,

INTERACTIVE DEBUGGING

SIMNET interactive debugger is designed to iso-
late model logic errors. The idea of the debugger,
as in other Tlanguages, is to suspend execution at
selected MARKpoints along the simulation time scale.
At these points, the user can modify and/or display
pertinent input and output data as well as view the
model source statements. Snapshots of execution may
also be stored and retrieved as desired,

The interactive TRACE command 1is particularly
useful because of the level of automatic details it
provides. The user may employ the command in a
single step or interval format by using TRACE or
TRACE TI 12, réspectively. Figure 8 provides a
single step TRACE for the single server model ‘intro-

duced in Figure 4, immediately after a transaction
leaves facility SRVR.

INTERACTIVE EXECUTION

One of the unique features of SIMNET is the use
of interactive (character) graphics to estimate the
Jength of the transient period during execution.
The estimated transient period is then truncated and
independent or global statistics (based on either
the subinterval or the replication method, or both)
are collected, all without leaving the interactive
mode of execution. Such procedures are implemented
in most available process languages by using either
manual or automated post-run analysis.

The estimation of the transient period in SIMNET
is based on a heuristic that has been proposed in a
variety of forms by a number of researchers (Conway
1963, Fishman 1972, Schriber 1974, Gordon 1975,
Gafarian 1977). Essentially, we say that a simu-
Tated system has reached steady state if its output
measures become stationary over time. A necessary
(but not sufficient) condition for reaching steady
state is that the mean and variance of desired out-
put measures become stationary with time., This idea
is the crux of SIMNET's procedure for estimating the
length of the transient period.

98

HARK #F/

Bebugger MARKpoint at node SRVR #

sxibnter debugger command {or 7): CUR.TINE = 176,331400
TRACE
JI7B3E+03 Exit ‘SRVR ##

K= .1000E+01

Unlink entry 12 from ‘WAIT ## --CUR.LEN = {|
Link as entry 1 to “NAIT ##° -- CUR.LEN = 12
Terainate transaction

Hake server in 'SRVR ##* idle -~ CURLUTILIZ = @
Leave "WAIT #%° -- CURLEN = 11

Enter "SRVR ¥ -- CORTILIZ = |

File departure from 'SRVR ##‘ at T = ., 1DABE+03

Fig. 8. SIMNET Single Step Trace

The implementation of the procedure is based on
the use of character graphics to represent the
(cumulative) mean and standard deviation of each of
the desired output variables. Plots of these
variables are then displayed interactively for
various (user-specified) incremental simulation
periods. At the point in time where the user can
visually detect "stability" in the plots, commands
are issued to delete the "warm-up" period, following
which steady state statistics can be gathered,

Desired graphs of the means and standard
deviations are generated by using SIMNET's $PLOT
statement as part of the original model. This sta-
tement assumes the following format:

$PLOT=NAME or STD(NAME)/
symbol/lower limit/upper 1imit, repeats...

where NAME may represent a file, a statistical
variable, or a resource. There is no limit on the
number of plots to be generated by the statement,

The interactive session starts by issuing the
following command at time T=0:

PUT PLOT=(n,t)

This command proposes (a maximum of) n plot points
spaced Tt time units apart. For example,
PLOT=(100000,20) allows plotting as many as 100000
points spaced 20 time units apart.

The next step is to execute the simulation for a
time period which we "suspect™ may subsume the tran-
sient period. This step is achieved by issuing the
following command:

ADVANCE T
where T is a time increment specified by the user,

Now, we can view the $PLOT of the variables for
the period (0,T) by issuing the following command:

DISPLAY PLOT

The ADVANCE/DISPLAY commands can be repeated as
many times as needed until the user is satisfied
that the obtained $PLOT reflects steady state con-
ditions. At this point, the simulation period up to
the end of the Tast ADVANCE increment is taken to
represent the transient period, meaning that all the
statistical arrays must be cleared in preparation
for collecting steady state statistics,

To clear the arrays and collect steady state
statistics, we issue the following command:

PUT 0BS=(N,T) RUNS=M
where T represent the time base per observation. The

specific choices of N and M automatically define the
method to be used, as the following table shows:

Number Number
of Observations/Run of Runs
Method N M
Independent runs 0 >1
Global statistics:
Subinterval >1 1
Repiication 1 >1
For example,
PUT 0BS=(5,500) RUNS=1

will collect global statistics based on the subin-
terval method by subdividing a single run (past the
transient period) into five subintervals, each with
a time base of 500 time units. On the other hand,
PUT 0BS=(1,500) RUNS=5
will specify the replication method consisting of
five (independent) runs. Finally, the command
PUT 0BS=(0,500) RUNS=5
will produce five independent runs. In this case,
each run is expected to have its own initial data
(see the section titled Data Initilization).

interactive session
The

Figure 9 gives a typical
applied to the single server model of Figure 4.
associated $PLOT statement is defined as follows:
$PLOT= WAIT/W/.4/1.5;SYS TIME/S/3/12;STD(WAIT/*/0/4;
STD(SYS TIME)/+/2/10:

The figure shows that steady state is estimated to
start approximately at T= 300,

The global statistical summary may now obtained
by using the following command (which implements the
subinterval method):

PUT 0BS =(5,500) RUNS=1

Figure 10 summarizes the results of the command.
Observe that the output automatically provides 95%
confidence intervals for all the output variables of
the model.

SIMNET PROCS

In the model in Figure 11, three parts manufac-
tured in three different departments are assembled

99

tribnter debugger command (or 2): CUR.TIME = 000000009
PUT PLAT=(10000¢,10)

tifnter debugger cosmand {or 7): CURLTINE = 000000000
ADVANCE 300

ttsbnter debugger command (or ?): CUR.TINE = 300.000000

DISPLAY PLOT

HESTHNET PLOTS ##2

SCALES:
H=NAIT

5=8Y5 TIKE
£=5TD-HAIT
+=5T0-8Y5 TI

+A000E+00
+3000E+01
+0000E+00
< 2000E+01

9500E+00
+7500E+01
«2000E401
«H000E+01

«1500E+01
+1200E+02
+4000E+01
+1000E+02

0% 20% 407 b0% 80% 1002
TIKE ACTTTSITTTS JPTOL SAOUE R NP PO SPUE SONE SR
JI000E402 +
+2000E402 +
S000E402 M Sk o+
LA000E402 §
L5000E+02 #
6000E+02
LT000E+02 .
LB000E+02 . i N
«F000E+02
1000E+03
. 1100E403
1200403
1300E+03
1400E403
. 1500E403
«1800E+03
ITO0E+03
1800E+03
9008403 .
«2000E403
. 2100E+03
+2200E403
+2300E403
+2400E+03
+ 2500403
«2600E403 .
L2700E403
L2000E403 .
J2900E+03
+3000£403
TIHE L

(113 20%

T
L B L R I)
4

L
;n
E

® * * a2 2 4 s 4 a s a ® oa = e = o oa

L] .
LYY VYRS FRPIS FRE S TPTIE SO 3
01 §0% a01 100%

¥
£ 2
¥
%
* Rt
¥
3
wetienetinnlt,

Fig. 9. Interactive Estimation of Transient Period

to form one component. Assembled units are then
sent to one of two departments to be painted.

The repetitive nature of the elements of the
model suggests the need for a modeling facility that
allows representing the system in a compact and
nonredundant fashion. SIMNET offers this facility
by using the concept of a PROC. Figure 12 gives the
model statements associated with the stated example.
The PROC is defined for the range (1-3) to represent
the three parallel departments of the model, Each
node is given a base name and blind index (). The
blind index assumes one of the values specified by
the PROC range. Thus, the "generic" node ARIV() *S
represents sources ARIV(1), ARIV(2), and ARIV(3).

assEnter debugger command ‘(or 73 CURLTINE = 300.000000

PUT 08S=(5,5001 RUNS=1

##1 Revised run specifications:
Run fength = 2000.000000
Fusher of runs = 1
Nusher of obsfrun =
Time base per obs =
Transient period =

]
500000000
300.000000

#8 GLOBAL STATISTICAL SUHKARY wt
{SUBINTERVAL NETHOD - NBR OF 0BS =)

NINFBAX/LAST HEAM/S.D, MEAN/S.D. PERCENT NO-WAIT
LERSTH DELAY{ALLY DELAY(+VE) TRANSACTIONS
[V JJAGEEROL (B2B2E+D LAS00EH02

J2ALSEL0F L J043E4OE

JEB3EX00 20056401

JBAB4E101 L 1006E#02

FACILITIES

HEAN/S.D, KEAW/S.D.

£APA-
an
T

INuT
RATIB
11

HEAN/S.D.
LENGTH
JAZIEHO0
+5405E400
4b48E-01
+ 1438301

WALT

952 LOWER €L =
95%-UPPER CL =

NBR HIN/HAX/LAST MEAN/S.D. HEAN/S.D. MEAN/S.D.

SRVRS UTILIZATION UTILTZATIOR BLOCKAGE BLKGE TIKE IOLE TIME BUSY TINE
SRVR 1 o1t +SH4BE400 J0000E400 L OD00E+0D 46226401 «b1BOE+01
JI99E-01 J0000E400 .0000E+00 3071E400 « 1537401
95% LOWER CL = ,4753E400 +0000E400 . .0000E+60 JAZA1ER01 ATE]
95% UPPER CL = ,6342E400 +0000E400 .000OE+00 50036201 8113E+01
VARIABLES
GLOBAL MEAN GLOBAL §.D, GLOBAL HIK GLOBAL MAX 95 LONER CL 952 UPPER CL

§Y5 TIHE .4390E:0% J2427E401 1B17E-04 SATAGE+02 L3376E401 J9403E401

#4¢ TRANSACTIONS COUNT AT T = ,2B00E+04 OF RUN 1:

NOOE N OUT RESIDING SKIPPING UNLIMKED/LINKED TERHIKATED
{BLOCKED) {DESTROVER) ‘

485

ARIV 568 § 0 0

RS

W E TR TR 255 o 0 0

2

SRR S S5t L 0 0 565
Fig. 10. SIMNET Global Statistical Summary

The assemble facility MACH, on the. other hahd, is
not blind-indexed because the model requires one
assemble facility only.

The code ASM() appearing in Field 4 (/4/) of
queues LINE() signifies that LINE(1l), LINE(2), and
LINE(3) are ASseMbled into one transaction before
entering MACH. A transaction leaving MACH will then
choose one of two paint departments on a ROTational
basis by using the select code ROT{QPAINT(1-2)) in
field 4 of MACH. Notice carefully that the range
(1-2) overrides the PROC range {(1-3) since the
system has two paint departments only. Thus, within
the same PROC, we are able to represent one, two,
and three parallel elements. The example demonstra-
tes the flexibility of PROCs in SIMNET.

We now compare SIMNET's PROCs with similar
modeling facilities in other languages. GPSS allows
the modeling of members of a repetitive set by using
indirect addressing. SIMAN accomplishes the same
task by employing STATION blocks and indexed names.
SLAM offers this option by allowing the user to
define resources, queues and service activities over
indexed ranges. In general, the implementations in
the three languages are based on similar ideas that
require visitation of one member at a time, pri-
marily through an "external" index change.

SIMNET PROCs provide special modeling power not
available in GPSS, SIMAN, or SLAM., Specifically, a
PROC can represent a "stand alone" model from the
moment of creation until termination. Moreover,

100

simultaneous actions on parallel members of a
{repetitive) set are permissible as demonstrated by
the application of ASM() operation to LINE().

Indeed, implementation of simultaneous actions is
possible in SIMNET mainly because each
(self-contained) node carries information that

describe the manner in which transactions enter and
leave the node.

In GPSS, SIMAN, and SLAM, a "stand alone" repre-
sentation is not feasible since, unlike SIMNET, the
GENERATE/CREATE block/node (among others) cannot be
indexed. More importantly, simultaneous actions on
parallel members of the set are impossible, at Teast
in a direct sense, since these members are reached
only one at a time,

We should point out that the design of PROCs in
SIMNET does allow modeling implementations in which
the members of a set can be visited one at a time.
In this regard, an "external" routing segment of the
model is used to decide on the specific member to be
visited next, exactly as in GPSS, SIMAN, and SLAM.

‘\
/,,
I[% HACH

ARIV LINE

QPAINT FPAINT

Fig. 11. A SIMNET Parallel Network Segment

INDEXING IN SIMNET

The design of PROCs in SIMNET dictates the need
for indexed referencing of nodes, variables, resour-
ces, and switches. For example, 1in Figure 11,
ARIV(1) is recognized as a legitimate (source) name
by the SIMNET processor.

SIMNET allows considerable freedom in using
indexing, not only in names, but also in arithmetic
operations. Thus, A(LL(I)*NN**2) refers to the
attribute of a transaction whose index 1is given as
LL(I)+NN**2, where LL, I and NN are user-defined
variables. In the model in Figure 11, we can use
ARIV(A(2)+I) to refer to the source whose index is
given by the current value of attribute A(2)+1.

One of the advantages of indexing in SIMNET is
its use is not restricted to the PROC domain

Rather, indexing may be used anywhere in the
model, In particular, the use of indexing with
SIMNET's special assignments offers powerful
modeling opportunities.

that
only.

DATA INITIALIZATION IN SIMNET

The fact that SIMNET does not make use of exter-
nal (FORTRAN) inserts necessitates that the language
be self-contained, particularly in terms of data
initialization, The following is a 1list of the
types of initial data supported by SIMNET.

1. $INITIAL-ENTIRES define the initial transactions
(by attributes) in SIMNET's queues and facili-
ties at the start of the simulation.

2. S$TABLE-LOOKUPS functions
independent/dependent
format.

define pairs of
variables wusing tabular

3. S$DISCRETE-PDFS define empirical or discrete
distributions used in the model (SIMNET also
supports all common probability distributions).

4. $SUBSCRIPTED-VALUES provide initial values for
SIMNET's (user-defined) subscripted variables.

5. $CONSTANTS provide initial values for SIMNET's
(user-defined) non-subscripted variables.

Both $TABLE-LOOKUPS and $DISCRETE-PDFS can be
accessed in the model in either discrete values or
by using piecewise Tlinear interpolation. For
example, DI(l) will yield a discrete sample of
Discretée pdf 1, whereas DI(-1) will apply Tlinear
interpolation to the same function. A similar idea
applies to $TABLE-LOOKUPS.

An important feature of SIMNET is that all ini-
tial data above can be presented in a run-specific
format., In this manner, the user can execute as
many runs as desired in the same session, each with
different 1initial data as the following example
itlustrates:

$SUBSCRIPTED-VALUES:
v: 1-2/NS/11,22,33:
3-3/NS/-11,-2,-33;
These data specify the following values for the
user-defined single subcripted variable V(.):

Runs 1 and 2: V(1)=11, V(2)=22, V(3)=33
Run 3 : V(1)=-11,v(2)=-22,V(3)=-33

There is no 1imit on the number of run levels to be
used in a model,

GPSS and SLAM allow the use of run-specific ini-
tial values for certain arithmetic variables.
Additionally, in GPSS a user may redefine functions
(among other statements) prior to the start of each
run. In SLAM, different initial entries in queues
can be associated with different runs. SIMAN, on
the other hand, does not have provisions for uti-
lizing run-specific initial data in the same execu-
tion session, Instead, an experimental segment
representing a single set of initial data is Tinked
to the execution model. A different simulation
session is thus needed with each new experiment.

CONCLUSIONS

SIMNET utilizes only four nodes, which, together
with a number of special asignments, has proven
effective in handling complex simulations.

SIMNET is the first language to use interactive
graphics directly during execution to estimate the
transient period, and then interactively choose the
subinterval method, replication method, or indepen-
dent runs to collect steady state statistics.

Release 2.0 now allows the use of complex mathe-~
matical expressions anywhere in the network and per-
mits the user to specify any variables for use
within these expressions.

PROCS offer the advantag of allowing the simula-
tion of an entire system with repetitive segments by
a "stand-alone" model. This differs from all
available languages in that the equivalent of a PROC
must be driven by an external segment of the model.

REFERENCES

Conway, R. 1963. "Some Tactical Problems in Digital
Simulation.” Management Science 10. no. 1
(Feb.): 47-61.

Fishman, G. 1972. "A Study of Bias Considerations in
Simulation Experiments." Operations Research 20.
no.5 (Aug.):785-790,

Gordon, G. 1975. The Application of GPSS V to
Discrete System Simulation, Prentice-HalT,
Englewood CTiffs, N.dJ.

Gafarian, A.; C. Ancher; and T. Morisaku. 1977. “The
Problem of the Initial Transient with Respect to
Mean Value in Digital Computer Simulation and
the Evaluation of Some Proposed Solutions.®
Technical Report 77-1. University of Southern
California.

Henriksen, J. and R.C. Crain. 1983. GPSS/H User's

Manual. 2nd ed. Wolverine Software Corporation,
‘Annandale, VA.

Pedgen, C.D. 1986. Introduction to SIMAN. Systems
Modeling Corporation, College Station, PA.

Pritsker, A.A.B. 1986. Introduction to Simualtion
and SLAM II. 3rd ed.” Wiley (Halsted Press), New
York.

Schriber, T. 1974,
New York.

Simulation Using GPSS, Wiley,

Taha, H., 1988a. Simulation Modeling and SIMNET.
Prentice-Hall, Englewood C1iffs, N.d.

Taha, H. 1988b, SIMNET Teaching Manual, SimTec Inc.,
P.0.Box 3492, Fayetteville, AR 72702.

HAMDY A. TAHA is Professor of Industrial Engineering
at the University of Arkansas and President of SimTec
Inc. He is the developer of SIMNET and the author of
Simulation Modeling and SIMNET, Prentice-Hall, 1988,
SIMNET Teaching Manual, SimTec Inc., 1988, Qperations
Research, 4th Ed., Macmillan, 1987, and Integer Pro-
gramming: Theory. Applications and Computations,
Academic Press, 1975. He has extensive consulting
experience in industry and government in the United
States, Latin America, and the Middle East.

Hamdy A. Taha

Industrial Engineering Department
EC 4207

Bell Engineering Center
University of Arkansas
Fayetteville, AR 72701

(501) 575-6031

SIMNET is a trademark of SimTec, Inc.

