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ABSTRACT

A fundamental use for system simulation is to predict
system performance in new situations or with new system
designs. In other words, the analyst uses simulation to aid
in answering “what if” questions. We say that simulation is
used to compare alternatives. This tutorial assumes that the
simulation output is stochastic and has a distribution that is
unknown to the analyst. The tutorial prescnts methods for
making comparisons by either ranking alternatives or
selecting the best alternative with respect to a single output
performance measure. To increase the cffectiveness of the
comparisons, these methods consider the usc of the variance

reduction technique of common random numbers.

1.0 INTRODUCTION

This tutorial addresses the problem of analyzing a simu-
lation which represents system performance by moving the
system from state to state as simulated time clapses and cal-
culates output performance measurcs as the simulation
progresses. The time the system is in a state and/or the
sequence of state changes may be random variables so the
output performance measures are subject to random or
stochastic variation if we repeat the simulation with the
same inputs. The analyst uses the simulation to compare
system performance in different situations or with different
system designs. For example, an industrial engineer may
use a simulation of a manufacturing shop to cstimate the
effect on lead time and on shop throughput realized by
We

define lead time as the time to producc an asscmbly and

reducing the setup time for a particular operation.

shop throughput as the mean number of assemblies
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produced. per shift. The emphasis is on comparing the sim-
ulation output obtained from two or more scts of inputs.
Another way; of stating the output analysis problem is that
the analyst wants to answer “what if" questions. We arc
assuming that the analyst will rarely use a simulation to
estimate performance for a single set of inputs. We will call
each set of inputs defined for comparison purposes an alter-

native.

Output analysis is complicated by the stochastic nature of
output performance measures. In addition, this tutorial will
make the following assumptions concerning the probability

distribution of output performance measures:
* The form of the true underlying distribution is unknown.
* The variance can and will change with the alternative.

The above assumptions are common occurrences in system
simulation. Even so, we will measure the stochastic or sta-
tistical variation in our estimates by interval estimates called
confidence intervals which are random intervals that are
purported to contain the true performance measurc value
with a stated probability. We use the term replication to
specify repetition of a simulation with fixed inputs but dif-
ferent outputs due to different random numbers. Wide con-
fidence intervals may mean that we nced to add replications

to reduce the statistical variation in our cstimates.

1.1 Example Analysis Problem

To motivate the tutorial and show typical problems, the
tutorial will illustrate the output analysis methods using the
following production control problem. We have a nctwork

of machines representing several manufacturing operations.



The Production Control Manager must sclect one of scveral
different priority rules for sequencing jobs to be processed
by each machine. Candidate sequencing rules include
shortest processing time, earliest job due date, and carliest
operation due date. We will call each priority rule an alter-
native, and the analysis must comparc the alternatives
based on output performance measures. Important per-

formance measures are job tardiness and throughput.

1.2 Output Analysis. Issues

We will find that this problem illustraics many challenging
output analysis issues. The selection of a sequencing rule
may be based on the rule which is expected to be best
during the next shift given the state of jobs at the start of
the shift. For output analysis purposes, we call this a finite-
horizon analysis. Some authors call simulations conducted
On

the other hand, the Production Control Manager may want

for finite-horizon analyses as terminating simulations.

to compare these sequencing rules based on their long-run
or steady-state performance. We call analyses of stcady-
state performance infinite-horizon analyses. After we obtain
some output data from a simulation producing tardiness
values we will find that the data clearly come from a dis-
tribution that is far from normal. A significant issue in this
tutorial will be analysis procedures we can use to construct
approximate confidence intervals using statistics developed
for normal distributions. Another issuc is that we poten-
tially have more than one performance measure, viz.,
tardiness and throughput. Decision analysis mecthods
involving multiple measures such as presented by Keeney
and Raiffa (1976) are beyond the scope of this tutorial, but
it will discuss the effect on confidence intervals of consid-
ering multiple performance measures. The analyst may
want to simultaneously compare all combinations of the
alternatives, e.g., generate a ranking with respect to a single
output measure, or the analyst may want to select the best
alternative based on each output measure, An option
potentially leading to much narrower confidence intervals
when comparing alternatives accrues from being able to use
the same random numbers for cach altcrnative. This is an
example of a variance reduction technique and is called

common random numbers.
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The tutorial will first examine finite-horizon analyses and
later extend the mecthods ecxamined for infinite-horizon ana-

lyses. The tutorial will discuss the above issues in the

context of the finite-horizon analysis in the following order:
1. Batching to Approach Normality
2. Bounds on Simultancous Confidence Intervals
3. Common Random Numbers
4. All Pairwise Multiple Comparisons

5. Selection of the Best

1.3 Notation

Let X; represent the ith value observed of the random vari-
able X and n be the total number of observations for X.
Assume that all values of X are independent and identically

distributed. Define the following quantitics:

E(X) expected value of X

V(X) variance of X

Y another random variable

p(X,Y) correlation between X and Y

— n

X Y. Xjln
i=1
n —

s(X) .ZI(X,' = XP(n—1),
i=.
the unbiased estimator of the variance of X

tap quantile of the t distribution with d degrees of
freedom which is exceeded with probability

H@) b1 ops(X)Jn, half width of the (I —a)x 100
% confidence interval

L) X — H, lower (1 — o) x 100% confidence boundary
for E(X) when X is normally distributed

Ua) X + H, upper confidence boundary analogous to

L{e)

In the following discussion for finite-horizon simulation, let
n be the total number of replications, and y be the number

of alternatives compared.  The performance measurc



observed on replication i for alternative j is XP).  Denote

alternative j by I, and the mean of X{) by 0;.

2.0 BATCHING TO APPROACH NORMALITY

We can operate a finite-horizon simulation so that cach rep-
lication is independent and identically distributed. If b is a
factor of n, the total number of replications, we can regard

the n observations as m batches of size b, where n/b m.
Let Y(b) be the average valuc of a performance measure for
batch s, where s = I,m. Under wecak assumptions as b
becomes large, the central limit thcorem shows that the
values of Y,(b) approach a normal distribution even when X
is not normally distributed. That is, when the data is not
normal, we can batch to improve the accuracy of confidence
intervals calculated under the assumption of normal data.
That is, we can compute L(x) and U(o) using the baich
means Y{b), for s = 1,m. However, large batches mean
fewer batches which will increase the width of the confi-
dence interval. Schmeiser (1982) shows that the effect on
confidence interval width is negligible even when the data is
truly normal so long as the number of batches is not smaller
than 30. For the simulations discussed in this paper, we arc
never sure the output data is normal. The counclusion is
that we should always use batchcs and limit the number of
In the

remainder of this paper, the output performance measure

batches to 30 even with very large samples.
XU represents the average of batch i for alternative j.

Kleijnen (1987) discusses the effect of non-normal data and
describes methods for empirically checking for normal data.
He recommends the use of a modified t statistic developed

by Johnson (1978) when the data is clearly not normal.

3.0 BOUNDS ON SIMULTANEOUS CONFIDENCE
INTERVALS

Consider the single alternative case with two pcrformance
measures, e.g., tardiness and throughput. Assume we calcu-
lated an average tardiness value from a set of n replications
and an average throughput from another independent sct of
n' replications. If we estimate a 95% confidence interval for
tardiness and a 95% confidence interval for throughput,
then the probability that one or both of these confidence

intervals do not cover the true value of their respective
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means is | - .952 or .0975.

intervals are independent, we would need /.95 x 100

In this case when the confidence

97.47% confidence intervals for cach performance measure
to give us 95% confidence that both intervals cover their

respective means.

In actual practice, we usc data from the same replications to
calculate confidence intervals on both performance meas-
ures. This practice means that the confidence intervals are
correlated. Kleijnen (1975, 1987) describes how onc can use
the Bonferroni inequality to calculate a conservative joint
is

confidence interval when the amount of correlation

unknown. Assume that we want simultancous confidence
intervals for two unknown mean performance measure
values, i.e, ity and p,. Let L) be the lower (1 — o) x 100
% confidence boundary for g , and let Uy{e,) be its corre-
sponding upper boundary. If .S, implics the statement that
Ly(ot) < py < Upleey) and Py_, is the probability that both S,

and S, are true, then by the Bonferroni inequality

Pl_,,Zl——ot]—otz.

4.0 COMMON RANDOM NUMBERS

Becausc we construct the simulation model, we have the
ability to design and control simulation cxperiments to
increase their effectiveness. Another tutorial by David
Kelton in this conference will discuss this issue further.
Some of the approaches for doing this are called variance
reduction methods. Nelson (1987) reviews the variance
reduction method of common random numbers as well as
two other commonly used methods. Brately, Fox, and
Schrage (1987) give a comprehensive description of variance

reduction in simulation.

Common random numbers is frequently used in simulation
to reduce variance when one is comparing alternatives. The
objective is to use the same random numbers for ecach alter-
native to obtain a large positive correlation among their per-
formance measure values on each replication and thus on
each batch. This reduccs the variance of the difference
between their respective performance measurce values. For
alternatives 1 and 2,



X = xiP) = vx) + )

= 200X, X V(D) mx)

For example, if we want to estimate the difference in mean

M

waiting times for jobs entering a queue when two alterna-
tives have unequal mean service times, we could usc the
same random number(s) for the kth interarrival time (as
well as for all other interarrival times) for each alternative.
This may increase the correlation between X§) and X(2 |
The

problem of coordinating random numbers so that identical

where these quantities are mecan waiting times.

random numbers determine analogous cvents in cach alter-
native is called the synchronization problem. Scc Bratley,
Fox, and Schrage (1987) for suggestions on how to obtain

synchronization.

The usual way to estimate 0; — 6, for two different alterna-
tives, 7; and g, when using common random numbers is to
form pairs for each batch, i.e.,

DY = 1~ 1

and calculate DV) and s2(DY®)). Then calculate a confidence
interval for 0;— 6, using the equations for L(x) and U(w)
with the random variable X replaced by DU%), Nelson
(1986) has shown that calculation of the confidence interval
in this way is computationally equivalent to using (1) and

replacing values in (1) with their respective estimates.

5.0 ALL PAIRWISE MULTIPLE COMPARISONS

To enhance the power of the comparisons, we want to simu-
late y different alternatives using synchronized random
numbers. To rank the alternatives, we will in essence be

making
v=(3)

pairwise comparisons. For example, with four alternatives
we would make six pairwise comparisons. The statistics
X0 — X190 and X¥)— X9 are correlated because of the

common random numbers and the common quantity X¥.
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We can estimate i simultancous confidence intervals that
jointly hold with probability of at least 1 — a by using the
Bonferroni inequality. This may allow us to rank the alter-

natives if we allow three possibilitics:

1. Regard 6; =6, when the confidence interval for 0;-- 8,

includes zero

2. Regard 6;> 0, when the lower bound on the confidence

interval for 6, — 8, is positive

3. Permit contradictory relations, c.g., 8| = 0,, 04 = 03, and
61 > 03

In practice, the third possibility can usually be resolved by

adding replications to reduce the confidence interval widths.

6.0 SELECTION OF THE BEST

We assume here that more is better so that we want to iden-
tify the alternative having the largest mean, We attempt to
do this by running a number of replications on each alterna-
tive and declaring the alternative with the largest average
performance measure value as the “best.” The challenge is
to determine the number of replications which give a spcci-
fied probability of actually choosing the best alternative.
Call that probability P*. When other competing alterna-
tives have means almost as large as the best alternative, the
required number of replications can be quite large. That is
The
length of the indifference zone is § which is specificd by the

why we resort to the indifference zone approach.

analyst before conducting the simulation experiments. Any
alternative with a mean within & of the truly best alternative

is a satisfactory choice or a correct selection.

When we assume normally distributed outputs, unknown
variances, and unequal variances, we consider two possible
procedures for implementing the indifference zone approach.
Dudewicz and Dalal (1975) present an cxact procedure for
these assumptions when the outputs for cach alternative are
independent. We should use common random numbers so
the specified number of observations by the Dudewicz and
Dalal procedure are probably in excess of the minimum
requirement. Clark and Yang (1986) present a procedurc
that does consider the correlations induced by common

random numbers, but they use the Bonferroni inequality



and another bounding assumption which renders their pro-
cedure conservative. Clark and Yang’s procedure is pre-
ferred when the correlations are large and the number of

alternatives is not large.

7.0 INFINITE-HORIZON ANALYSES

When we are looking for a comparison under steady-state
conditions, we are faced with a morc complex analytical
task. Dave Kelton discusses experimental design problems
with this tybe of experimentation in his tutorial. Since a
steady-state comparison should be unaffected by initial con-
ditions, we have a problem of climinating the effect of initial
transicnts. Also, when simulating under stcady-state condi-
tions, the successive observations can be very correlated, e.g.

waiting times in a queue.

Law and Kelton (1982) and Bratley, Fox, and Schrage
(1987) review the numerous approaches to this statistical
Sargent, Kang, and Goldsman (1987)
present empirical comparisons of several of thesc proce-

analysis problem.

dures. This tutorial will discuss the nonoverlapping batch

means approach to estimating confidence intervals.

8.0 CONCLUSIONS

The procedures presented and reviewed in this tutorial
provide a basis for measuring the risk the analyst assumes
in making incorrect conclusions when comparing alterna-
tives by stochastic simulation. In addition, they provide
guidance in determining the number of replications required
to reduce that risk to an acceptable level. They are casily
programmed so they can be automated and used by individ-
uals unfamiliar with mathematical statistics. However, any
analyst should be aware of the possibility of stochastic vari-

ation in simulation output giving misleading information.
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