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Abstract

A computer simulation model has been developed for a
Local Area Network (LAN)-based newspaper production sys-
tem (NPS). The objective is to develop a inodel that serves as
a performance evaluation and design tool for the NPS opera-
tion in a Manufacturing Automation Protocol (MAP) environ-
ment. The approach taken involved developing three modules
that mimic the seven layers of the MAP/OSI (Open System
Interconnection) model from a performance evaluation per-
spective: (1) the medium access module that is based on the
ANSI/IEEE 802.4 Token Passing Bus, (2) a transport module
that implements the essential functions of the ISO Transport
Protocol, and (3) a user traffic module (representing the top
three layers) that uses a general and flexible model to create a
realistic message load based on the actual message interactions
in a processing plant. While a newspaper production process
is considered in this paper for specific application, the user
traffic module is capable of portraying any plant with ‘well-
defined process interactions in, terms of messages. Results are
presented from simulation runs with the NPS data.

I INTRODUCTION

This paper, describes a computer simulation model devel-
oped to aid in the performance evaluation and design of a lo-
cal area network (LAN) to meet the real time communication
and control needs of a newspaper production system (NPS).
The Manufacturing Automation Protocol (MAP) [1] is being
widely accepted as a suitable candidate for LAN-based factory
automation communications. In view of this, the communica-
tion system for the NPS is based on MAP and our simulation
model attempts to capture the prominent aspects of MAP’s
protocols that influence the real time performance of the LAN
for carrying NPS messages.

The NPS plant model entities consist of a network of
nodes and presses corresponding to the communicating ele-
ments and other necessary components in the newspaper pro-
duction facility subsystems as shown in Figure 1. A node is
a generic term denoting a particular point or location in the
Plant/Network which may communicate with other nodes. A
node may be ‘simple’ or ‘complex’ (consisting of a group of

simple Nodes). Simple nodes are connected by a station to
the bus while complex nodes, called presses, possess a partic-
ular configuration and contain multiple stations.
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Fig. 1. Plant sub-systems

The simulation attempts to represent actual plant com-
ponents which are specifiable as inputs using the NPS ter-
minology. Examples of press components are : Automated
Roll Loaders (ARL's), Bundle Entry Devices (BED’s), Fold-
ers, Printing Units, Press Totalizer Interfaces (PTI’s), Press
Consoles (PC), Streams, etc. Examples of other simple nodes
in the plant are: Inventory Monitors, Production Management
Systems (PMS’s), Material Handling Systems (MHS’s), Truck
Monitors (TM’s), Production Control Host (PCH), Central
Press Console (CPC), Information Management System
(IMS), Front End Processors (FEP’s), Docks, etc. Each of
these communicating entities are assumed to be attached to
the bus via a station using the MAP protocol as shown in
Figure 2.

MAP is based on the 7-layer Open System Interconnec-
tion (OSI) model [2],[3] of the International Standards Orga-
nization, displayed in Figure 3, and represents a collection of
standard protocols that are still evolving. The medium ac-
cess scheme of the LAN interconnecting the nodes and presses
uses the ANSI/IEEE 802.4 Token Passing Bus scheme [4]. The
model considered in this work is a single bus (broadcast) sys-
tem without any cells and bridges. The network layer is thus a
null layer. ISO class 4 Transport Protocol [5] is used for layer 4
and, in our model, the Application, Presentation and Session
Layers are represented together by a User module that sends
and receives messages to and from the transport layer. These
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messages are generated by a workload model in the User mod-
ule, in a time sequence based on the NPS plant operational
requirements. The workload model accomplishes a mapping
of the actual plant data into sequential message sources using
a novel approach that is general and flexible so that it per-
mits use of the model for many plant designs and for various
operational scenarios or phases of a given plant’s operation.
The simulator developed has essentially three modules repre-
senting (1) the token passing bus scheme, (2) the transport
protocol, and (3) the user workload protocol.
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Fig. 2. Press-Station configuration
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Section II describes briefly these three processes. Sec-
tion III gives detailed descriptions of their implementation as
modules in the simulation model. Section IV contains the
definitions of the data input parameters as they appear in the
input data file, the simulation output statistical variables, a
brief description of the usage of the program and its compo-
nent routines, and some sample outputs of a test simulation
runs. Section V gives concluding remarks and some observa-
tions.
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II. DESCRIPTION OF THE MODEL ELEMENTS

Figure 4 gives an overview of the interaction among the
three modules; i.e. the token passing, transport, and user
modules. When a station on the LAN initiates transmission of
a message to another, the message is handed by the sender sta-
tion’s User protocol layer to its (sender’s) Transport protocol
layer. After fragmenting the message into smaller transport
data units, the transport protocol hands it over to the lower
medium access layer (token bus protocol), which in turn cre-
ates ‘frames’ (one for each transport data unit) and transmits
them onto the bus. The destination station’s medium access
protocol layer removes from each arrived frame the overhead
bit string corresponding to this layer and passes the remain-
ing transport unit to the Transport protocol layer. Transport
units from the same source and belonging to the same message
are then regrouped and rejoined in their proper sequence, to
form the original message, which is then passed on to the des-
tination station’s User protocol layer. The specific operations
in each of these modules are briefly described below.
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Fig. 4. Overview of the simulation model

A. The Token Passing Bus Mechanism

The TEEE 802.4 Standard token—passing bus scheme [4]
is a link level, medium access control procedure for local area
networks implemented on a broadcast bus. In this scheme,
stations connected to a bus form a ‘logical ring’ based on the
descending order of their addresses (unlike a ring network in
which stations would be physically connected serially). A sta-
tion is allowed to transmit data only after receiving a token
(control frame), which represents a right to access the bus.
After transmitting data, a station hands over the token to the
next active station in the logical ring. Thus, the communica-
tion on the bus has two phases; i.e., a token-passing phase and
a data transfer phase. Detailed procedures have been specified
in [4] on the data transfer mechanism and network control.

Each station’s protocol is made up of five components:
the Access Control Machine (ACM); the Receive Machine
(RXM); the Transmit Machine (TXM); the Interface Machine
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(IFM); and a station management unit. At each station, there
is provision for an optional four-level priority mechanism for
traffic handling, with each level having a separate queue. The
ability to transmit data frames from each queue is contin-
gent upon the residual value of a target token rotation timer
(TTRT) for that queue at the time of receiving the token. If
the timer expires, transmission of data from that queue is not
allowed. After its current value has been transferred to a token
holding timer (THT), the TTRT is reset with the initial value
before beginning transmission of data frames or before pass-
ing the token if no data frames are to be transmitted, as the
case may be. A guaranteed bandwidth facility is provided by
allowing the highest priority queue to transmit for a specified
period of time whenever the token arrives.

Timers at different queues may be assigned different ini-
tial values depending on the priorities desired. Thus, if a large
number of data frames are transmitted from one queue (using
up a long time) in a given token rotation, lower priority queues
in that station and queues at other stations get relatively
less time for transmissions in that rotation, depending on the
initial values assigned for the timers of those queues. This
interaction among the timers is incorporated in the scheme
to enforce fairness in bus access allocations. While consider-
able flexibility exists in tailoring the priority scheme to the
needs of specific applications, implementation of a given pri-
ority scheme through selection of appropriate initial values for
the timers is complex due to the interdependence among the
timers. The complexity grows with increase in the number of
stations. Other timing interrelationships determined by such
parameters as bus transmission rate, frame sizes, propagation
delay, and interface processing delay also become important
in determining the achievable throughput [6],[7]. Simulation
aids in understanding some of these issues that are difficult to
analyze.

B. The ISO Transport Protocol

The transport layer protocol [5] is concerned with provid-
ing end-to-end reliable data transfer between two correspond-
ing transport entities. The specific details involving the three
lower layers remain transparent to it, as for example, whether
it is a packet—switched or a circuit—switched network, whether
error control is employed or not at the second layer, and the
type of media involved in the communications. However, there
are five ‘classes’ of transport protocols included in the ISO
draft proposal on transport protocol specification {5]. For ex-
ample, class 2 transport protocol assumes the availability of a
highly reliable network specified by the lower three layers and
hence makes no provision to include automatic repeat request
(ARQ) schemes for error control. Class 4 transport protocol
does not depend on the degree of reliability offered by the
network (irrespective of whether ARQ is used at the second
layer at all nodes or not) and makes provision for ARQ error
control as part of its procedures.

Our simulation model incorporates several features of a
class 4 transport protocol. The transport layer accepts mes-
sages from a user layer and fragments the message into one
or more smaller blocks. A fixed overhead bit string for con-
trol and error checking are added to each block resulting in
Transport Protocol Date Units (TPDU’s). The TPDU’s are
then passed (through the null layer 3) to the sender’s Link
protocol layer (Token passing bus) which then converts each
TPDU into a Frame by adding to each TPDU a bit string
corresponding to the protocol overhead of the Link layer. The
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Link layer then proceeds to transmit each frame on the bus.
The Transport protocol layer sends a new TPDU to the Link
layer only after getting an acknowledgment TPDU for the pre-
vious TPDU from its counterpart Transport protocol layer at
the destination. A window timer is set whenever a TPDU is
passed to the Link layer and will cause a TPDU retransmis-
sion if an acknowledgment is not received within the window
time. Thus, any ‘lost’ TPDU’s are retransmitted by the sender
and any duplicate transmissions are ignored. This is called a
stop-and-wait protocol.

C. The Traffic Model

A workload generation model has been developed for de-
scribing the message traffic on the NPS network. which can
produce traffic inputs for the local area network simulation
model of the NPS to determine the network performance char-
acteristics. The objectives of the workload module are to spec-
ify the communication requirements using the terminology of
the NPS environment and to allow for a diverse collection of
message types, parameter distributions, and production run
scenarios. The traffic model loads the network’s stations with
the various messages that aie transmitted during the course
of a typical newspaper production run. The communication
traffic is simulated using the concepts of jobs, phases, and
message scripts. Figure 5 illustrates this approach. A job is
a set of instructions or ‘marching orders’ assigned to a par-
ticular station or group of stations. In newspaper production
terminology a job is a production run. Each job has several
components, the most crucial being :

(a) A press configuration comprising one or more sta-

tions

(b) A press speed (rate)

(c¢) A number of newspapers to be produced
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Fig. 5. Workload generation model for the newspaper pro-
duction system

In addition, a job has three phases associated with it
where each phase is a particular state or milestone of the
Plant’s production run during which certain messages may
be transmitted to and from certain stations over the Network.
The phases are defined as follows:
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Phase 1: MAKE READY - represents the plant start-up pro-
cedure and is initiated at the input start time. A
zero input value for start time implies that Phase 1
is to commence immediately, while a nonzero input
value (in seconds) implies a certain delay period be-
fore the plant start-up. Phase 1 executes for a period
specified by the input value of the MAKE READY
duration.

Phase 2: RUN - represents the normal production run and is

initiated upon the expiration of the phase 1 (Start

Time + Make Ready) duration. Phase 2 may execute

for a duration specified by the input value for the

RUN duration.

END RUN - represents the shut down operations and

is scheduled upon the expiration of phase 2 (Start

Time + Make Ready + Run) duration. Phase 3 ex-

ecutes for a duration specified by an input value for

the END RUN duration.

Upon the expiration of Phase 3, the job is complete.

Each phase causes the execution of a corresponding mes-
sage script. The Message Script is a description of all the
messages to be generated during a particular Phase. The
Message Script details the message contents, the (variable)
time interval between successive messages, the (variable) mes-
sage length, message source station, destination station, mes-
sage type (i.e., whether the message has been initiated by the
source station, or is a response to a previously received mes-
sage), whether a response message is desired from the destina-
tion, the execution time for the message, and finally the total
number of such messages in case this message is not generated
with constant frequency. Several jobs may be directed by a
single script or each job may have its own unique script.

II1. DESCRIPTION OF THE SIMULATION MODEL

The following is a description of the SIMSCRIPT pro-
gramming language model of the simulation of the IEEE 802.4
Token Passing Bus Medium Access, Transport and User layers.
The User layer model consists of the Application, Presentation
and Session layers lumped together, the Transport protocol
layer mimics the MAP Transport protocol layer, and the Link
layer consists of a detailed model of the MAP Data Link layer
lumped with the Physical layer. The Transport and Data Link
layers have been modelled in detail as they have been deemed
significant for the network’s performance evaluations. Each
station on the LAN has associated with it one copy of each
of the above mentioned layers. Figure 6 represents the basic
workings of these layers and displays the functions provided
as messages travel from the source (user) layer, through the
transport and medium access protocol layers, and then over
to the destination station where they must travel up the lay-
ers to the receiving user layer. These functions will be further
explained in this section.

A. SIMSCRIPT — A Discrete Event Simulation Language

The model is developed using SIMSCRIPT, a discrete-
event simulation language that is comparable in power to For-
tran, but with added st processing (queue handling) and
discrete-event simulation capabilities. It is English-like in ap-
pearance and contains semantics whose world-view assists the
modeller in making the correspondence necessary between the
elements of the model and the concepts in communications
network models. The ability to model the concurrent func-
tioning of the components and the traffic is provided by the

Phase 3:
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software mechanisms in SIMSCRIPT which manage the time
clock and switch from process to process without programmer
intervention.
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Fig. 6. Link and Transport layer protocols

Various network components (their activities) are mod-
elled as SIMSCRIPT processes such as those which control the
movement of the frames on the bus. Usually, several replica-
tions (instances) of these processes are necessary and the lan-
guage provides this capability while requiring the programmer
to specify only one prototype. Other components are modelled
as resources for which these processes can contend (eg. buses,
buffers), Because the number of some of the problem elements
is usually not known a prieri, dynamic storage allocation and
deallocation is provided so that elements of the traffic (mes-
sages, TPDU’s, frames) can be created and destroyed at will.
SIMSCRIPT provides software mechanisms for the collection
of statistics as the simulation proceeds over time, which in the
study of networks would include performance measures such
as throughputs and delays, Node and Link utilization, and
maximum and average queue sizes. A complete description of
the language is contained in [8].

B. The Link/Medium Access Control Layer

Figure 6 gives a representation of the simulation model
for the link and transport modules. The Link/Medium Access
Control Layer (MAC) uses token passing bus scheme which is
divided into four functional parts:

(1) The Interface Machine (modelled as process IFM)

(2) The Access Control Machine (process ACM),

(3) The Receiver Machine (RXM) and its monitor (RX-

MON), and
(4) The Transmitter machine (resource TXM).
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Each station’s Link layer in the model is made up of com-
binations of the four machines. The replication ability of SIM-
SCRIPT is used to produce instances of each at each station.
In general, when in transmitting mode, the lower protocol
layer is responsible for removing from the higher layer’s out-
going queues; and when receiving, the lower layer places into
the upper layer’s incoming queues.

A station has an IFM, which is responsible for withdraw-
ing TPDU’s from the corresponding Transport layer queue.
The IFM creates a frame from each TPDU by increasing the
total length by an extra header length and then inserting these
lengthened frames into their respective priority (one of four)
queues. Following this, the IFM will notify the ACM that
there are frames available.

The intelligence of a station resides in the Access Control
Machine (process ACM), which determines when and what
to transmit by following the token passing rules. This ma-
chine may be thought of as a finite state machine, that is,
it may be in any one of ten possible states at any instant.
The ten possible states are as follows : IDLE, DEMAND IN,
DEMAND DELAY, CLAIM TOKEN, USE TOKEN, AWAIT
IFM RESPONSE, CHECK ACCESS CLASS, PASS TOKEN,
CHECK TOKEN PASS, AWAIT RESPONSE. The present
model has implemented into it four of the ten states, namely
IDLE, CLAIM TOKEN, USE TOKEN, PASS TOKEN. The
conditions that cause the transition from one state to another
are formally presented in the IEEE 802.4 document [4].

The Receiver Machine (process RXM) receives frames
{data or token) broadcast on the bus and performs the ap-
propriate frame processing depending upon the frame type,
token or data. It also generates a report containing the per-
formance statistics of its bus.

The Transmitter Machine (TXM) is modelled as a SIM-
SCRIPT resource which is requested and then relinquished
by its station according to the station’s broadcasting needs.
The TXM is held for a time determined by the frame length
and the bus transmission rate. A separate process, FRAME,
is used to model a frame (data or token); where the appro-
priate type is parametrically specified. The bus is modelled
implicitly in the FRAME process which ‘consumes’ time as
the frame travels on the bus.

The stations on the bus form a logical ring, that is, nor-
mally the token is passed from station to station in descend-
ing order of logical station addresses. At Initialization, all
processes representing the station’s components are activated
after all their associated resources have been created and exist
in the ‘idle’ state. The TUSER, RUSER, TRANSPORT, the
IFM, the ACM, the RXM and TXM associated with each sta-
tion are defined and logically connected. It should be pointed
out that upon completion of the initialization phase all the
processes proceed to perform their individual tasks
asynchronously with respect to each other. A more detailed
discussion of Figure 6 follows.

The IFM:

When the IFM is set to the ‘start transmitting’ mode,
START-T, by its associated TRANSPORT process, process
IFM checks the outgoing TDPU queue, TRANSPORT.TQUE
and if it is empty, the IFM sets its mode to IDLE and sus-
pends. Otherwise, process IFM removes the first outgoing
TPDU, called TRAFRAME, converting it into a data FRAME
process with the same characteristics as the TRAFRAME by

increasing the information length of the FRAME by a fixed
overhead along with some synchronization bits. IFM then
places FRAME into its the transmitting queue IFM.TQUE
corresponding to the priority specified in the TDPU and noti-
fies the ACM. In this manner, the IFM processes each TPDU
in the TRANSPORT.TQUE until it is emptied.

When set to the ‘start receiving’ mode , START-R, by its
associated RXM process, IFM checks its queue IFM.RQUE
and removes the first FRAME from IFM.RQUE converts it
into an incoming TPDU, TRRFRAME, by removing the frame
overhead bits. IFM places TRRFRAME into the receiving
queue TRANSPORT.RQUE of its associated TRANSPORT
process, and notifies TRANSPORT by setting its status to
START-R.

The ACM:

It is the function of the ACM, when it obtains the to-
ken, to control the removal of frames from its station’s IFM
queues and to transmit them onto the bus and then to activate
the FRAME process. When an ACM obtains the token it en-
ters the USE TOKEN state where the ACM services (extracts
dataframes one at a time from) each of the four IFM queues in
the order of their priority: (4,3,2,1). The ACM cannot extract
a new frame until the previous one has been transmitted to
the destination RXM.

Each of these queues has associated with it a token hold
timer variable, THT. This timer is assigned a value represent-
ing the residual value of a target token rotation timer, TTRT.
Before commencing transmission, the value of TTRT is trans-
ferred to THT as soon as the token is received by the station
and the TTRT is then reset to the specified initial value. The
highest priority queue is always allowed to transmit for a spec-
ified period of time independent of the THT. Each queue holds
the token (transmits dataframes) until either its THT counts
down to 0, or until the queue is empty, whichever comes first.
If all four queues of a particular station are completely ser-
viced, it passes the token to its successor station. When a to-
ken has visited all the stations and returns to a given station,
a rotation is said to occur with respect to the given station.
The station then copies the contents-of TTRT (which was also
counting down during the previous rotation) to THT, resets
TTRT to the initial value, and proceeds with transmission,
as before, commencing a new rotation. When the ACM has
completed use of the token it enters the PASS TOKEN state
and transmits the token to the RXM of its successor station.

Utilization of the transmitter (TXM) is done during the
ACM’s data FRAME transmission and when the token is
passed to the successor station. The TXM is a resource seized
for an amount of time equal to the frame transmission time
plus the propagation time of the bus. Upon activation by the
ACM, The FRAME process simulates time spent on the bus
and then reactivates the destination station receiver RXM.

The RXM:

Upon receiving a frame, the RXM checks the frame’s fi-
nal destination address and if the frame is not at its station
destination, then the frame is destroyed and the RXM goes to
the idle state. If the frame is addressed to it, then the frame
is further checked for its type (data or token). If the frame
is a data frame, it is delivered to the IFM incoming queue
IFM.TQUE, and the IFM is notified. If the frame is a token
frame, the ACM 1s notified that the token has arrived.

940



Local Area Network for a Newspaper Production System

Simulation Speed-up

It was found that removing the token passing events when
there was nothing to transmit greatly increases the efficiency
of the simulation. After the Token has completed each ro-
tation several conditions are checked and statistics collected.
The routine CHECK.STATE is used to identify the ‘Idie Ro-
tations’, defined as those rotations during which there was no
data frame transmission by any station.

By examining the contents of the simulation Event set,
specifically for the message arrivals, phase changes, and mes-
sage responses, CHECK.STATE determines the ‘Idle’ dura-
tion from present simulation time till the next scheduled mes-
sage transmission event. The magnitude of this duration is
divided by the time taken by the token to make an Idle ro-
tation, to compute the the truncated integral value of the
number of idle rotations. The simulation program execution
is made more efficient by advancing the simulation clock by
this corresponding time interval. The statistics are appropri-
ately adjusted which match the simulation results without the
speed-up.

C. The Transport Layer

The messages created by the workload traffic model inter-
act with the transmitting user protocol process called TUSER.
When the station receives a message, USTMSQ, from the
workload model, process TUSER. places the USTMSG into its
outgoing queue, USER.TQUE, and then activates its Trans-
port layer process, TRANSPORT. The TRANSPORT process
can be activated by either the arrival of messages from the
User layer or upon receiving an acknowledgment TPDU from
another station in the IFM’s incoming queue (IFM.RQUE).
Upon activation, TRANSPORT removes the next USTMSG
from USER.TQUE fragments the USTMSG into one or more
blocks whose lengths are the maximum length allowable
(specifiable by input data), except for the last which may have
a variable length. An overhead length is added to these blocks,
creating the TPDU’s, which are referred to as transmitting
TRAFRAME processes. Each TRAFRAME is assigned a se-
quence number to enable the reordering, and also the various
source and destination characteristics of its parent USTMSG.
These TRAFRAMES’s are then placed into the intermediate,
ready to transmit queue, TRANSPORT.PREP. This queue
will be used to hold the TRAFRAME’s that are blocked by
the stop-and-wait protocol, as the IFM will only remove from
the outgoing queue, TRANSPORT.TQUE.

In the transmission mode, TRANSPORT gives priority
to acknowledgment TPDU’s by placing all acknowledgment
TRAFRAMES at the front of the TRANSPORT.TQUE, set-
ting the high priority field so that the IFM will place them in
its high priority queue. This effectively gives a transport level
priority to the acknowledgments. Following this, TRANS-
PORT will remove one data TRAFRAME from
TRANSPORT.PREP and place the TRAFRAME in TRANS-
PORT.TQUE for service by the IFM. When the IFM removes
a data TRAFRAME from the queue, the TRANSPORT places
a copy of the TRAFRAME in the retransmission queue,
TRANSPORT.RTQ, and initiates the Transport Window
Timer. If no acknowledgment frame is received within this
duration the TRAFRAME’s copy is retransmitted (the copy
resides in another queue called TRANSPORT.RTQ). TRANS-
PORT attempts two retransmissions before abandoning the
transmission of this TRAFRAME.
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In the receiving mode, START-R, TRANSPORT checks
for received frames, TRRFRAMES, by examining the received
frame queue, TRANSPORT.RQUE. If TRANSPORT.RQUE
is not empty, TRANSPORT removes the first TRRFRAME
and checks whether this is an acknowledgment correspond-
ing to a transmitted TRAFRAME. When an acknowledgment
is received, the corresponding TRAFRAME copy is removed
from the TRANSPORT.RTQ, the Window timer is disabled to
suppress retransmission, and the TRANSPORT is enabled to
remove the next TRAFRAME from the TRANSPORT.PREP.
If the arrived TRRFRAME is a data TRRFRAME, TRANS-
PORT generates an ‘acknowledgment TRAFRAME which is
immediately placed into the TRANSPORT.TQUE. The TR-
RFRAME is then checked to determine whether it is a dupli-
cate of a previously arrived TRRFRAME stored in the hold-
ing buffer, TRANSPORT.RPRQ, and if so, it is discarded.
For nonduplicates, the TRRFRAME is placed in TRANS-
PORT.RPRQ and the message reassembly procedure is
started. Attributes such as source station address, ‘parent’ ad-
dress, sequence number, and number of ‘sibling’
TRRFRAMES are all checked against the corresponding iden-
tification  characteristics of other previously arrived
TRRFRAMES. If this TRRFRAME completes a message,
then all the TRRFRAMES are removed and reassembled in
their proper sequence to form a reconstructed message, called
process USRMSG, which is passed on to the User layer receiv-
ing process, RUSER, through the USER.RQUE.

D. Workload (Traffic) Model

The workload generation module for creating the message
traffic follows the control flow shown in Figure 7. The work-
load generation program (user module) has several data struc-
tures which provide the necessary information for the simula-
tion. The system description consists of the press, the job,
and the script definitions. The system is divided into two
types of resources: simple nodes (e.g., inventory monitor) and
press-component nodes (e.g., press console). Both types of
system nodes may depend on the specific job definitions (e.g..
streams, docks, beds, and trucks). A job specifies a particular
configuration of resources, defines the phase duration times,
and gives the number of copies to be printed. The simple
nodes, the press definitions, and the job definitions are used
together to compute the set of active stations on the communi-
cation network. As shown in Figure 8, the structure of a press
contains job information (PJOB.ID, NCOPIES), job phase in-
formation (PRPHASE, START.T, MAKEREADY.T, RUN.T,
END.T), statistical variables for interval reports, (MSG.CNT,
BYT.CNT, MSG.DEL, BYTE.DEL), and pointers to the asso-
ciated press component nodes. Some of the component nodes
are stored as sets to allow the user to specify a variable number
of components as with UNIT’s, BED’s, ARL’s, and DOCK’s.

Each job will execute the message descriptors defined in
the Script Table shown in Figure 9. Each entry of this table
consists of a high level description of the message (MNAME,
MTYPE, PAGEID), message sources (SNAME) and destina-
tions (DNAME), (e.g., conmsole to units), the phase
(PHASE.ID), and the message generation parameters. In ad-
dition, a separate response entry in the Script Table,
RESP.PTR, is identified and associated with the message.
Other parameters of the message specify probability distribu-
tions and include the initial message delay (INIT.DELAY), the
intergeneration time (IGT), the processing delay
(PROC.DELAY), and the message length (LENGTH). These
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are specified by choosing a distribution and appropriate pa-
rameters. The distributions currently implemented include
constant (with parameter .P1), uniform (between .P1 and
.P2), and exponential (with mean .P1). The MAXNUM vari-
able gives the number of messages to be generated each time
the script is executed. i MAXNUM is zero, the message is
repeatedly generated throughout the phase.
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Fig. 7. Flowchart of the workload model
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Fig. 8. Data Structures

The workload generation model is integrated with the
other simulation modules by interacting only with the user
layer protocol routines, TUSER and RUSER. As shown by
Figure 7, the workload is initially specified by a user input
routine called WORKLOAD.INP which sets up the necessary
tables and data structures. The job phase changes for each
press, PHASE.EV, drive the simulation events which in turn
generate messages. At each phase change, all message de-
scriptors that match the script of the current phase are used

to generate the appropriate messages by the script manager,
SCRIPT.MNGR. These messages are given to the source sta-
tion user queues for transmission. When a station has re-
ceived a message from the user process, the RESPOND.MSG
routine examines the script to determine the response and, if
a response is required, generates the response message using
the script descriptor of the response message, which is then
given to the station user process for transmission. Before the
response is generated, a user specified processing delay distri-
bution is introduced which represents the time needed by a
process to formulate the response message.

“(PERMANENT ENTITY)"
——» SCRIPT.ENT(X)
PHASE.ID

{SET) SCRIT.TAB
SCRIPT.ENT{1)

PAGE.ID
SCRIPT.ENT{2) MTYPE

: MNAME
SCRIPT.ENT{X) SNAME
T DNAME
INIT.DELAY
INIT.P1
INIT.P2
1GT
IGT.P1
IGT.P2
LENGTH
LEN.P1
LEN.P2
PROC,DELAY
PROC.P1
PROC.P2
MAXNUM
RESP.PTR

CONTENTS

SCRIPT.ENT(S)

I ATTRIBUTES

Fig. 9. Data Structures (contd.)

IV. INPUT/OUTPUT PARAMETERS AND
SIMULATION RUN RESULTS

In order to allow the modeling of many plant configura-
tions and scenarios, the simulation program inputs supplied
by the analyst describe the entire system. There are four
classes of inputs: communication hardware, protocol, work-
load, and simulation control. The communication hardware
inputs define the bus properties, such as transmission rate
and propagation time. Inputs concerned with protocols in-
volve maximum frame and TPDU length, overhead lengths,
and initial TTRT values per station queue. Description of the
workload requires definition of the simple nodes and press con-
figurations, the jobs and their phases, and all of the message
entries of the script table. Lastly, the simulation control in-
puts specify the run length, reporting intervals, and the levels
of statistical output desired.

The simulation outputs are designed to provide statistics
on user-oriented performance measures, protocol-layer options
or variables, and LAN operation. Most values are captured
per priority queue, per station, per bus and for the overall
network. For each protocol layer, an appropriate set of the
simulation statistics are collected. The job phase changes also
provide statistical dumps at the end of each phase. In addi-

. tion, the program user has been provided with the capability
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of setting a DELTA time interval such that it is possible to
obtain accounting statistics, such as the number of messages,
data bytes, and overhead bytes generated at regular intervals
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of DELTA during the entire simulation. It is possible to ob-
tain a lengthy, step by step printed record of each station’s
transactions at each of its protocol layers, for each message
sent by the station, by the setting of appropriate input flags
before a simulation run.

A simulation output, called total message delay is defined
to be the time beginning from the instant when a message
leaves the sending station’s User protocol layer, until the final
instant just before the message enters its destination station’s
User protocol Layer, and is the primary user performance
measure. This is divided into queueing delay and transmis-
sion time. Similar measures are provided for TPDU’s at the
transport level and frames at the data link level. The statis-
tics used to assess the bus performance are the bus utilizations
and throughputs per station and per bus in terms of the actual
and useful (only data) bytes. In addition, average token rota-
tion time is measured as well as the average residual TTRT
values. The number of idle token rotations and the number
of consecutive idle rotations are also acquired as additional
measures of the idle periods.

Figures 10-12 show the corresponding traffic generated
and some LAN performance outputs for a sample production
run. This example uses a nine press configuration running a
staggered, three job scenario on a single 10 Mb/s bus requiring
159 stations. Figure 10 shows the phase durations for each job
and the usage of the nine presses. Through the input data for
the workload layer, this type of scenario can be easily speci-
fied. The message traffic generated by the specified scripts is
plotted in Figure 11 where the highly transient nature of the
workload is apparent. It is possible to identify the heavy traffic
periods for more detailed simulation analysis using this type
of graph. In Figure 12, some of the performance values are
plotted for various initial TTRT values. As the low values of
data throughput indicate, the loading of the bus is very light,
indicating a tremendous amount of spare capacity on the bus.
In addition, the statistics are not very sensitive to TTRT val-
ues at these light loads. In Figure 12, the active traffic period
is a measure of the token rotations that contained at least one
busy station. The difference between the throughput and this
value is an indication of the token passing overhead, which
in this case is substantial due to the large number of stations
(159). It is possible to have a very large variance in the token
rotation times caused by the arrival pattern of the messages.
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Fig. 12. Simulation results

V. CONCLUDING REMARKS

A simulation program which models the performance of
a MAP-based local area network with a realistic workload
of a newspaper production system has been developed. The
program is flexible in its ability to specify the transient be-
havior of message generation in terms of the newspaper pro-
duction environment through an underlying workload model.
The characteristics of the MAP environment which are sim-
ulated are the transport layer mechanisms and the medium
access layer. Statistics which show user, system, and protocol
performance are measired and reported.

The simulation model can be used to demonstrate the
feasibility of interconnecting the various communicating com-
ponents of the production systems. This is an important step
in eliminating the myriad point-to-point connections typically’
employed. A production system where all components are
connected to a number of common buses would allow for a
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high degree of factory integration and optimized control. For
most of the communicating components there are real-time
command messages that must be delivered within a maximum
allowable delay. The current simulation will report on the av-
erage delays, but more specific information may be needed to
assure correct operation. It is planned to extend the model
to measure the number of times a message of a given type
experiences a delay greater than a specified value.

Once a system has been implemented, it is possible to use
the model to test various strategies for assigning initial values

to the target token rotation timers (TTRT’s). As the loading
of the network increases, the proper selection of timers can

yield lower delay values. The timers can be adjusted based on
requirements for real-time constraints. Currently, the prob-
lem of how to assign timer values and to develop automatic,
adaptive timer assignment algorithms is under investigation
using the simulation model.
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