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ABSTRACT

This white paper suggests a PERT simulation
method applicable to critical~path project scheduling
networks subject to correlated negative-—exponential
delays. "Delay PERT" starts with a declared schedule,
in which each activity has an intended duration and an
intended start time. Durations are subject to delays
assumed to obey negative-exponential distributions;
fixed start times, whose primary purpose is to model
exogenous events such as procurements, are similarly
subject to negative—exponential delays. Correlations
among delays are expressed by partitioning delays into
classes, and as each delay 1s realized in a simulation
experiment the expected values are statistically
updated for all the unrealized delays of the same
class.

The need for "delay PERT" arose in beta testing
of GITPASE, an interactive project scheduling package.
This paper describes the background, shows the need
for "delay PERT", gives rationales for its assumptions
and statistical methodology, proposes a data
structure, proposes an organlzation of the simulation
experiments, and indicates outputs and how users might
utilize them.

1. BACKGROUND

GITPASE [8] is a resource~oriented project
management tool whose scheduling capabilities allow a
user interactively to derive a schedule that will keep
consumptions within availabilities for multiple
constrained resources. Such a schedule is normally a
longer one than the standard critical-path schedule
that would comnsider only durations and precedences,
because some activities may have to await resource
availabilities. One GITPASE data item (among others)
that facilitates expressing intentional or exogenous
postponements is the fixed start time. If a fixed
start time is assigned to an activity, that time
overrides the activity's early-start computation;
thus, for example, if the activity's predecessors
scheduled earlier or given shorter durations, the
activity would not automatically be scheduled earlier.
Because GITPASE is resource—oriented, the common use
of fixed start times is to convert resource
constraints into time constraints, i.e., to cause an
activity to be scheduled at the time when resources
will be available. However, a fixed start time can
also be used to represent an exogenous event not
represented via an explicit wmilestone or activity
within GITPASE; for example, if an activity could
begin only when a procurement was completed, the due
date for the procurement could become the fixed start
time for the activity, and the procurement itself
would not need to be modeled. See Table 1.
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A PERT simulation system for GITPASE is currently
under development [2]. Like GITPASE itself, the
simulation system is resource—oriented. Whereas
ordinary PERT methods examine the consequences of
probabilistic variation in activity duratioms, this
simulation system varies resource consumptions,
resource availabilities, timing of changes in
availability levels, and exogenous events as well.

Various versions of GITPASE have undergone beta
testing to manage R&D projects in automated
manufacturing, oil refinery maintenance turnarounds,
logistics software development projects, and now a
communications installation project in which many
contractors must coordinate to install various
subsystems in a large military communications center.
This project has pointed up the need for a PERT
simulation capability that would have an interesting
special structure and would not be simply a subset of
the PERT simulation system already under development.

In the communications installation project the
activities represent work by contractors to install
parts of the system. Contractors bring their own
resources. With the exception of an interesting
application of access as a resource (to avoid
scheduling too many people to work in a confined space
at the same time, access to a confined area can be
tracked as a resource that is "consumed” by
activities), resource contention is of little real
importance in this project. The schedule is
effectively "driven” by procurement actions. Now a
procurement cycle can be handled by GITPASE as a
separate network or as a group of activities in the
same network that represents construction activities,
but in reality little procurement modeling is
appropriate. Given existing management procedures, it
would be redundant to force GITPASE to output such
things as when bids need to be issued. Practically
the only effect of procurement on the construction
schedule is the effect of delivery delays. The due
date for a procurement is a given element in the
construction schedule, and anything the owner could
have done to affect it is past history. Early
deliveries are rare and unexploltable. Delays are
common and disastrous, yet the most often
encountered delay 1s zero, and it would be confusiag
for the schedule to be published and discussed if its
milestone dates included fixed delay allowances.

Delays are believed to be negative—exponentially
distributed, and are believed to be positively
correlated, some projects being riddled with them
while others remain relatively free of them. Each
procurement delay (and each construction delay as
well) is viewed as a harbinger of possible further
delays for events of the same type.
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Table 1: Deferments of Intended Activity Start Times in GITPASE

Deferment Effect on Data
Mechanism Schedule Level Typical Intent
define provide early Network express requirements
predecessor limit on intrinsic to work
activity start time breakdown
define provide early Plan spread out resource
serialization 1imit on consumptions
quasi-predecessor start time
define provide early File express requirements
predecessor limit on intrinsic to work
milestone start time breakdown, regarding
work modeled in a
different network
fix start or fix start Plan adjust to resource
finish time time avallabilities, or
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express requirements
regarding work not
modeled
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A need was recognized for a PERT simulation
system that would take an intended schedule as input
and would simulate in such a way that delays would
have some autocorrelation, and would output the usual
PERT simulation statistics -~ estimated distributions
of milestone times (especially final completion time)
and estimated probabilities that each procurement and
activity will be critical in terms of being on the
path that determines final completion time.

2. DELAY DISTRIBUTIONS

The negative—exponential distribution has a lower
limit and mode of zero and is strictly decreasing.

0 mean

cumulative distribution
function

Figure 1: The Negative—Exponential Distribution

density function

It is often associated with delays; for example, it is
the distribution most used to model delays in queueing
theory {1]. It is the maximum—entropy distribution
for delays, that is, it is the distribution of choice
if nothing is known about a delay except its expected
value [7]. It is the distribution (as the continuous
analog of the geometric distribution) that follows if
we model final completion of a process as a series of
stabs at closure, each stab having a probability of
success [6]. It is the distribution that approximates
the tall of most distributions. For example, if we
model a process as a serles of several tasks performed

due date
Figure 2: The Negative Exponential Distribution as
an approximation of the Tail of a Gamma
Distribution

in succession, each task having a negative—exponential
duration, we obtain the gamma (Erlang) distribution;
if the number of tasks is large (say 20 or more) this
distribution tends to the normal Gaussian distribution
[3]. In either case, the negative-exponential
distribution closely fits the right tail. Suppose the
process is a procurement, and suppose the vendor
agrees to a due date such that there is a small
probability the due date will be exceeded. Then the
delay, defined as exceeding the due date, will have a
distribution practically indistinguishable from the
negative—exponential distributionw.

Therefore we adopt this distribution as the
“delay PERT" distribution. Let the ith delay process
have an estimated average delay of d time units.
Then, for t » 0, the probability of a delay between ty
and t, time units is

t
Ple< £ <t} = [RE(oar (D)
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where

) = —— -t/di

1

e

(2)

Equation 2 gives the density function for the ith
delay process. Equation 3 gives its cumulative
distribution function:

F(t)= P{delay <t} = fs f(p dt

-t/d

e i

F(t) =1~ 3)
Hence the probability of a delay between t; and ty can
be computed as

-t,/d -t,/d
Plt) <t <t} = F(£))-F(t;) =e 1 i-e 271 (4)
For example, if the expected delay is 2.0 weeks, the
probability of a delay of up to 1.0 week is F(l) =
0.39347, the probability of a delay over 2.0 weeks is
1-F(2) = 0.36788, and the probability of a delay
between 1.0 and 2.0 weeks is F(2)-F(1) = 0.23865.

3. POSITIVE CORRELATIONS AMONG DELAYS

If N delays were known to come from the same
distribution, their average would be the estimator for
d 4» and a Bayesian sequential updating scheme giving a
sequence of inverted Beta-2 distributions is known to
generate the appropriate sequence of estimators [5].

To avoid notational complication, let us assume all
observations are from the same class and that all
delays in the same class are from the same population.
Since the parameter di is also the mean delay, we can
denote X, as the current estimate of d4, X, as the
current observation of ty, n—l as the previous

estimate, and X, -] as the previous observation. With
this notation the Beta-2 sequential updating scheme
gives successive estimates upon the n-l1 and nth
observations as follows (assuming no initial
estimate):

(5)

n
R _q =— Xx: and ¥ 1 X
=l 321 3 non j=21

By rearrangement we can express the nth estimate in
terms of the nth observation and the n-lst estimate:
G) %+ (52D %, (6)
It is usual in Bayesian updating sequences to start
with input parameters that are equivalent to an
initial estimate and a measure of confidence in it;
without loss of generality we can assume that the
initial parameters were equivalent to an initial
estimate QT and a weight m, such that the influence of
the initial estimate is the same as if there were m
observations of x , followed by actual observations
12 * e X, SO That Equation 6 still holds, with n
being the sum of the number of observations and m the
weight on the initial estimate.

n-1
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Now if we believed that all the delays for some
class of events, say procuremeunt completions, came
from a single negative-exponential population, we
could use Equation 6 to express positive correlation
among delays. The simulation of the project would run
until the first delay was observed; this delay, Xo+1o
would be drawn from a population having as di the
initial estimate ¥ y from x_ .y and % , and the next
delay would be drawn from a population having as d
the revised estimate §£+ . The resulting series o%
delays would be positiveiy autocorrelated. A
particularly long or short delay would tend to induce
further delays to be somewhat longer or shorter than
otherwise. Control over the amount of autocorrelation
would be exercised by selection of m, the number of
observations to which the initial estimate is
equivalent. For very large m, observations would be
essentially independent; for very small m,
observations would be very dependent, and at the
extreme of m=0, each delay would be drawn from a
population having as d; the mean of the previous
delays.

For situations such as that of the communications
installation project that motivates this development,
Equation 6 is not satisfactory because it weighs all
past delays equally in estimating future delays. It
is felt that more recent delays should be weighed wmore
heavily, because it is felt that the population of
delays gradually drifts. The widely accepted
methodology for such a situation is exponential
smoothing. Given an estimate, a new observation and a
smoothing constant o, the new estimate is a weighted
average of the new observation and the estimate. Thus
for our situation, exponential smoothing would give:

X, = axy + (1-0) ¥ 0 <acx<l (7
Comparing Equations 7 and 6, we see that they differ
only in that the weight on the current observation is
constant for exponential smoothing, whereas it
declines for Bayesian updating so that all
observations have the same weight. For exponential
smoothing, older observations have smaller weights.

To make this clear we can rewrite Equations 6 and 7 to
express the estimate as a weighted average of
observations:

3.1. Bayesian Updating
X, = % x, + % KyqF eee % % (8)
3.2, Exponential Smoothing
’?n =ax, * a(l—a)xn_1+ a(l—a)zxn_z 4+ eee +
n-m
1-g)d 9
o J, -0 g (9

Control over the amount of autocorrelation given
by exponential smoothing is exercised by setting the
smoothing constant. For o=0 there is no
.autocorrelation; all delays are drawn from the
population having d.;= X the initial estimate. For
o=1 there is maximai autocorrelation; each delay is
drawn from a population having d, equal to the
previously observed delay. For intermediate o there
is intermediate autocorrelation; with o = 0.1, for
example, the new d; is one-tenth of the way between
the previous di an& the last observed delay.
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In "delay PERT" the user will be asked to imput a
smoothing constant and an initial delay estimate for
each class of events. The first delay for an event
class will be drawn from a negative—exponential
population with the initial delay estimate as its
mean; subsequent delays for the class will be drawn
from a negative—exponential population whose mean is
updated by Equation 7.

3.3. Statistical Scaling
According to the above development, each event in

a given class has the same expected delay, and
observations of delays affect only delays in the same

class. If a project is considered to have, for
example, delay classes of 1 = "heavy construction”, 2
= "minor procurement”, and 3 = "major procurement,”

then the expected delay for all major procurements
must be identical, and excessive delays in minor
procurements would not tend to predict greater delays
in major procurements.

Classes are partitioned, then, not only on the
basis of mutual predictive power (those influencing
each other are in the same class) but also on the
basis of scaling: for example, if one vendor had a
poor delivery record while another had a good one,
they would have to be in different classes, and if
some exogenous condition (e.g. a transportation strike
or scarcity of resources) were likely to affect both
of them the resulting correlation would be ignored
because of their being in different classes.

There is a natural scaling for negative-
exponential variables that could allow mutually
predictive events to be in the same class even if
their delay magnitudes were different. From Equation
3 we see that all delays having the same t/di(relative
delay) have the same probability. This raises the
possiblity of scaling all delays in a class and
applying smoothing to relative delays, which can be
done implicitly as follows:

We keep a separate current estimate for each
delay in the class. When an observation is made,
Equation 7 is solved for that particular delay. This
updates that particular estimate (which might appear
to be irrelevant since the same delay will not occur
again in the same simulation). Let r be the ratio of
the new estimate to the o0ld estimate. We update the
other estimates in the same class by multiplying them
by r.

For example, suppose the procurements of items 16
and 17 are in the same class, that the current
expected delay for item 16 is 2.00 weeks and for item
17 is 3.00 weeks. Let o=0.l. Now the procurement of
item 16 is observed (simulated) to have been delayed
2.2 weeks. Equatlon 7 for item 16 yields 2.02 weeks.
r=2.02/2.00 = 1.0l. The delay for item 17 is now
estimated as 3.00r=3.03 weeks.

Not all users of "delay PERT"
this feature. Therefore the input
such that the user normally inputs an initial delay
estimate only for the first member of each class and
the same estimate is assigned to all other members by
default, but the user may specifically revise the
initial delay estimate for any member or members.

are expected to use
protocol will be
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4 . DELAY-PERT DATA STRUCTURE

A delay-PERT simulation study consists of one or
more runs, each consisting of a user-specified number
of experiments. The results of each run, alone or in
combination with previous runs in the same study,
consist of summary statistics on network completion
delay, a completion~criticality list telling in what
proportion of experiments each event was critical,
summary statistics on delay of events: and/or classes
of events selected by the user individually and/or by
selection of a criticality threshhold, and a data
echo. Each study starts with a "declared Plan" (an
intended schedule) that is time—feasible, and the
results of a study can be interpreted as indicating
likely delays in implementation compared to the Plan.

There will be a new menu block DLY (for
"delay-PERT) in the auxiliary menus of appropriate
GITPASE screens. Touching it will bring
up a new screen —~ the Delay~PERT screen — for whatever
Plan is currently loaded. The Delay-PERT screen will
manage interactive specification of simulation
studies, interactive viewing of simulation results,
and user control of printed simulated results.

4.1. Simulation Curtain

The first period covered by a run of simulation
experiments is called the simulation start period, and
is user~specified. It can be any period later than
the latest firm status report period; that is, the
simulation curtain (boundary between the simulation
start and the preceding period) cannot be earlier than
the status curtain.

Everything before the simulation curtain is
assumed to have occurred exactly as scheduled and/or
reported. Everything after the simulation curtain is
subject to PERT delay. If an actlvity crosses the
curtain, its remaining duration is subject to PERT
delay but its continuation is immediate — there is no
"start” delay for the beginning of the after-curtain
part of an activity.

Recall that with offset precedences a precedence
point is defined as the boundary between a specified
period associated the predecessor's schedule (e.g. 80%
completion) and a specified period associated with the
successor's schedule. In the definitions of direct
and indirect delays to follow, the location of the
precedence point relative to the simulation curtain is
important.

4.2. Direct and Indirect Delays

A direct delay is one for which the user can

input a mean (X;) to cause simulated delays. For
example, if the user enters "3.5" the simulation
experiments will draw random variates for the delay
from a negative—exponential population with a mean of
3.5 periods. 4n indirect delay is one that follows,
through precedences and quasi-precedences in the Plan,
from direct or indirect delays. The direct delays
drive the simulation, while the indirect delays follow
along as consequences.
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Direct delays include activity durations and
fixed start times:

Direct Delays

duration delay for any activity, except a
dependent~duration activity (DDA).

start delay for any activity having a fixed

start time, except a DDA. A successor with no
predecence point after the simuldtion curtain,
or one with a fixed finish time, is considered
for PERT purposes to have a fixed start time.

milestone delay when the network is a
dependent network for that milestone, and a
milestone time exists, or when the milestone
is fixed in the network (necessarily the
milestone's determinant network).

Direct delays are those that are not an automatic
consequence of other delays in the same network; these
automatic consequences are called indirect delays.

Duration delays compare to ordinary PERT
durations as follows: whereas in ordimary PERT the
activity durations are considered to be PERT-beta
r%ndom variables characterized by a three-point
estimate (optimistic, most likely, and pessimistic
durations) and the ordinary PERT schedule is defined
in terms of a network having all durations at their
expected times, in delay PERT the activity durations
are considered to be negative—exponential random
variables characterized by a single expected-delay
estimate and the schedule is defined in terms of the
network having no delays.

Using duration delays only (not considering start
delays or wmilestone delays), we can carry out the
equivalent of a PERT simulation. Say for some
activity the PERT~beta estimates are a, m and b
(optimistic duration, most likely duration and
pessimistic duration). Let the same activity be
characterized in delay~PERT notation by an intended
duration x and an expected delay d. Then if we set
a=m=x and b=x+6d the correspondence is particularly
close; in both simulations the minimum and most likely
duration is x, the expectsd duration is x + d, and the
variance of duration is d“. (To derive these results,

-recall that the PERT-beta expected dgration is

(at4mtb)/6 and its variance is (b-a)“/36 [4].)

Whereas In ordinary PERT the schedule used for
discussion is that with expected activity durations,
in delay-PERT the schedule used for discussion is the
intended (no-delay) schedule. (We could define the
expected~delay schedules as in ordinary PERT; this
schedule would be a rough approximation to the
expected shedule, biased to underestimate it - because
of the PERT-bias phenomenon [4] - while the simulation
results would give an unbiased expected schedule.)

In delay-PERT the fixed activities also have
start delays. GITPASE has, for scheduling
convenience, fixed-finish activities, but for
delay-PERT purposes these are considered to be
fixed-start activities (the user is considered to have
derived the intended schedule such that if an activity
had its intended duration it would finish at its
fixed-finish time).
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4.3. Delay Classes
Each potential delay has an expected value ¥ » 0.

All potential delays having ¥ = 0 (no delay) belong
to the no-delay class. Each potential delay having ¥
> 0 belongs to one delay class. Each delay class i
has an autocorrelation smoothing constant Two
distinct classes i and j can have the same value
a3, but all delay classes having = 0 are collapsed
into the single independent—delay class having no
autocorrelation.

4 o4« PERT Plan Data

With delay-PERT there are two major classes of
variables added to Plan—-specific data: PERT input
variables and PERT output variables.

PERT input variables consist of expected-delay
parameters and simulation-control parameters, both of
which are user-provided and user-modified either by
batch data entry or interactively on the delay~PERT
screen.

The expected—-delay parameters are of two types,
start—delay parameters and duration delay parameters.

Upon delay-PERT screen entry, the Plan is loaded,
and each activity or milestone with a fixed finish
time has its data changed (or implicitly treated) to
have the equivalent fixed start time. Similarly, each
activity that has no predecessors has its data changed
(or implicitly treated) to have its start time fixed
as the network start time. A milestone determined in
a different network and lacking a fixed time is also
treated as fixed, although it may represent ignorance
rather than intent.

There is a single start—delay parameter for each
fixed-start activity or milestone (including those
that are represented in the Plan as fixed finish) that
can constitute a direct delay (DDAs are excluded;
all milestones are included). The data structure must
allow for this single start—delay parameter to be
expanded to three to five parameters per fixed
activity in a future implementation of standard PERT
simulation. The start-delay parameter is a real
number that represents the mean delay, with the delay
considered to be a negative-—exponential random
variable (with standard PERT, the 3-point PERT-beta
estimates and perhaps the resulting mean and variance
will be expressed here). Delay-PERT simulation will
use this mean delay for the initial estimate di in
each simulation experiment (d; may change during the
experiment if autocorrelation is in effect).

There is a single duration-delay parameter for
each activity, whether or not its duration or start
time is fixed, excluding milestones and DDAs. The
parameter will be expanded to three or five per
activity in a future implementation of standard PERT
simulation. The parameter is the initial di for the
duration delay in each simulation experiment for the
activity.
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Simulation control parameters include, separately
for each run, its run name and run text block, its
simulation start period, the random number seed, the
number of experiments, the combined—experiment
parameter, the delay-class membership lists, and the
autocorrelation smoothing constants for each delay
class. By default, all simulation control parameters
except run name, run text block and random number seed
are assumed equal to those of the previus run unless
the user changes them.

The random number seed is an integer in the range
999 to 9999 that affects the starting point in the
simulation run's random generator. Its default value
is itself random. For successive experiments in the
same run the next number in the generator is used.
the seed is set to a given integer before N
experiments are performed, and if the seed 1is again
set to the same integer, then the first N experiments’
of the next run will use the same random number.

Iif

The run name, run text block, number of
experiments and combined experiment parameter are set
by the user in response to prompts given when the RUN
command 1s executed. From 1 to 1000 experiments can
be in a single run. If the combined-experiment
parameter is YES, and experimental conditions remain
constant (all delay parameters, delay-class memership
lists and status—curtain parameters unchanged since
the previous run), the simulation results will be
combined with those of the previus run. Up to two
delays — a start delay and a duration delay - can be
assoclated with a given activity, and the activity can
have each of its delays belong to a delay class. An
activity's start delay can be declared as correlated
with other delays, and its duration delay can be
declared as correlated with different delays. For
each class i there is an autocorrelation smoothing
constant oy .

If there is a status curtain resulting from the
reporting of firm status data, then events up through
the curtain period represent history and cannot be
simulated. Upoun delay-PERT screen entry, the data
will be changed (or implicitly treated) so that the
period after the curtain is the simulation start
period. Thus, for an activity that had been
automatically rescheduled to start at this period
because it was not reported as having been started,
the Plan shows 1t starting as early as possible;
presumably thié was the intent of the user (who
otherwise could have rescheduled the Plan before
entering the delay-PERT screen, whose entry presumes
that the Plan represents the intended schedule).

After schedule preparation upon screen entry,
every non-DDA activity will have a potential duration
delay, some activities could have a potential start
delay, and some mlilestones could have a potential
milestone delay.

A class of delays 1s a set of delays having
correlation among their delay parameters. We exclude
the no-delay class (X = 0) from consideration.
Positive delays (X > 0) each belong to some class i,
and each class has an autocorrelation smoothing
constant > 0. All classes having = 0 are merged
into the independent class. Other classes, having
> 0, can remain separate even if two classes 1 and j
have equal coustants oy = oy
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For specification convergence, one of the
classes, called the great class, initially includes
all positive delays and initially is the independent
class. The great class can have any o, however, and
is defined for the purpose of reducing user effort in
specifying class memberships when one class is large.

Interactive specification of delay-class data
begins with the user's giving the expected delay
parameter X for every potential delay. First the
system prompts for a single initial ¥ (by default, ¥
0) that is initially the parameter for all delays.
Then there is a protocol by which the user can change
% for each delay. At the end of this, all £ =0
delays are collected into the no-delay class and
removed from display and further consideration; the
positive delays from the fnitial population of the

great class.

Next the system prompts for a single o« (by
default, o = ¢) for the great class.

Then there is a protocol by which the user can
form specific delay classes. Classes are identified
by the numbers 0,1,2,..., with O représenting the
independent class (q) = 0), and with an underscsore

marking the identification number of the great class.
Two displays are maintained: the delay display and

the class display.

The delay display is a Gantt chart without
resource information, having class identifiers written
4in timescaled places that indicate the approximate
value of the delay parameters. For example, in Figure
3 we see that the start delay for Activity 1 and the
duration delays for activities 2 and 3 all are
independent delays (0), that the independent class is
the great class (underscore 0), that the duration
delay for Activity 1 belongs to class 32 and has a
rather large expected value, that the duration delay
for Activity 2 is small and independent, and that
Activity 3 either has no start-delay or has a very
large independent start delay with no duration delay
(color and sort order will distinguish which).

Activity 1 (o) : 1 32
Activity 2 =3
Activity 3 | A=——— 0

[

Milestone 1 6

Figure 3: Delay Display

Activities in the delay display appear in a special
sorted order: activities having both direct start and
duration delays, activities having duration delays but
no direct start delays, wilestones having direct
delays, milestones having no direct delays, other
non~DDA activities, and DDA's.

o

When a delay is activated (by user touch), its &

is displayed and can be changed.

The class display lists the class identifier, all
the direct activity start delays, duration delays, and
milestone delays currently in the class, and o4 which
can be changed.
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To collect and rearrange positive direct delays
into classes, the user employs two—touch sequences on
the delay display. The first delay whose identifier
is touched joins or leaves the class of the second one
touched, and the great class is implicit. The touch
sequences for Create, Join, Leave, Leave & Create, and
Leave & Join actions are exemplified in Figure 4.

It would not be necessarily inappropriate for a
class to have a mixed membership of start delays,
duration delays and milestone delays. If some
processes are represented explicitly by an activity
while similar processes are represented via a fix or a
milestone, such a mixture might be appropriate.

4.5. Schedule Preparation
Upon entry of the delay-PERT screen, the loaded

Plan is processed to accept PERT data. This
preparation processing includes:

o checking time feasibility of the Plan

o replacing fixed finish times by fixed start
times

e replacing curtain-crossing activities by their
continuations

o establishing fixed start times for activities

having no non-historical predecessor point.

A Plan must be time-feasible before delay-~PERT
simulation, because it is assumed to represent an
intended schedule. It is felt that a time—infeasible
schedule may not represent the user's intent, so the
user is asked to make the schedule feasible before
simulating. (Since the user is not required to save
the feasible version, the infeasible Plan may still be
the one stored on the disk.)

Fixed finish times are replaced by fixed start
times for non—~DDA activities. The new fixed start
time is the fixed finish time, winus the intended
duration, plus one period. For example, if the user
intended an activity to have a duration of 4 and to
finish in period 10, that is considered to be
equivalent to the intent to have a duratiom of 4 and
to start in period 7. The duration and the start time
are each delayable.

When a non-DDA activity crosses the curtain, the
portion to the right of the curtain is a partial
activity whose start is not delayable, but whose
remaining duration is delayable. It is simulated as
such.

When a non-DDA activity starts in the next period
after the curtain, this start time may not reflect the
user's intent, because a firm status report may have
automatically moved it there if the Plan had
previously called for it to start earlier but it was
not reported to have started. However, no check will
be made of this. Any non-DDA activity that is
scheduled to start in the next period after the
curtain is considered to be delayable, that is, to
have a fixed start for simulation purposes.

Offset precedences could cause an activity to be
scheduled to start earlier than its predecessor starts
(because a proportion of it does not depend on the
predecessor) . If the resulting period is the next
period after the curtain, the activity has a delayable
start.
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Initial memberships:

1 2 3|4 5] 6 7 8

Class 1 Class 2 Great class

Action

Create

Join

Leave*

Leave & Create

Leave & Join*

Leave

Leave & Create

Leave & Join

Touch Sequence

Result from imitial memberships

6-7

6-5 or 6-4

4-4 or 4=5

5-6

4-3

3-3 or 3-1 or 3-2

1-6

*Singleton class joins great class

Figure 4: Interactive Class Membership Specification
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In the future, when GITPASE allows positive
offset precedences where the sucessor cannot start as
early as the next period after its predecessor
finishes, it will be start—-delayable 4if its precedence
point is after the curtain. For example, an activity
could be scheduled to start three periods after the
curtain because of a precedence that was completed
before the curtain. Thus, it is necessary to have a
“consistent method of identifying as start~delayable
every start time that is not a result of precedences
or quasi-precedences having the precedence point after
the curtain.

5. SIMULATION RUNS IN DELAY-PERT

With an intended schedule that has been processed
for delay-PERT simulation, a fixed start time exists
for each delayable start time.

Let us review the definition in GITPASE of a
fixed start or fixed finish time for an activity.
GITPASE a Plan (schedule) is defined by the
interaction of network data with Plan-specific data.
The Plan-specific data include fixed durations, fixed
starts and finishes, and serialization
quasi-precedences. Whenever schedule computatlions are
performed, a precedence/quasi-precedence table is
computed and then forward-pass and backward-pass
schedule computations are done using the combined
precedences, with the fixed start times overriding
early-start times. The durations used are the
scheduled durations, which are the nominal durations
overridden by fixed durations.

In

A fixed duration is simply one where the user (by
direct scheduling operations or by accepting a
heuristic schedule) has set the duration to some
value. The effect of a fixed duration, besides
setting a scheduled duration that can be other than
the nominal, is to prevent the heuristic from
considering alternative durations. The effect of a
fixed start time is not only to prevent the heuristic
from considering alternative start times, but also to
set the start time at a fixed value regardless of
early start time — that is, regardless of precedences
and serializations.

This definition of start fixing is an artifact of
the GITPASE focus on resources. The GITPASE-typical
use of a start fix is to achieve resource feasibility
(by forcing the activity to span a time interval when
resources are available). In such a case the fixed
start might represent a process subject to delay-PERT,
or not: yes if the fix purpose was to await an
expected increase in resource availability where the
time of the increase is delayable, no if the fix
purpose was to put the activity at am arbitrary time
span.

The fix definition for GITPASE can be
characterized as a "strong” fix definition in contrast
to a "weak" one that would simply specify an
early-start candidate time. (A weak fix definition,
which would give a not—earlier~than point, is not used
in GITPASE.) When a start fix puts an activity later
than its early start, positive slack occurs; when a
start fix puts an activity earlier than its early
start, negative slack (infeasibility) occurs, and
there is a conflict between precedences and fixing - a
conflict that leaves the scheduler's intentions
unclear and whose avoidance is a reason for doing
delay~PERT simulation only on time-feasible Plans.

912

whereupon the duration delay is of topological and
chronological order zero.

Recall that each delay belongs to a unique class

In arbitrary sequence, a delay having topologilcal
/chronological orxder 0/0 is selected. Its value is
generated as follows:

1. Generate D = =X ¢n R, where X 1s the current
expected value of this delay and gn R is the
natural logarithm of the next uniform (0,1)
variate in the computer's random—number
generator.

Compute S = int(D+0.5), the integer closest to
D. S is the value of this delay in this
experiment.

Then the estimates for all delays in the class are
updated as follows:

3. Exponentially smooth this expected delay using
the smoothing constant o for its class:

ﬁhew + oD + (l_a)ﬁbld

4. Compute r = & /x g» the ratio of the new
expected delay to t e old.

5., For each delay in the class (excluding this
one if ¥ ; already replaced 4 »1d in Step 3),
multiply each delay by r:

~ ~

*new * T %514

If the class has o = 0, Step 3 will leave ¥
unchanged for this delay, and Steps 4 and 5 will leave
¥ unchanged for other delays in the same class.
Optionally, Steps 3, 4 and 5 may be suppressed for
class 1 if oy =

A delay having ¥ = 0 will have D = 0.
Optionally, Steps 1 through 5 can be omitted.
and 5 should be null when-a delay is in the

independent class.

Steps &

When the user touches the RUN menu block, the
simulation run begins with the first experiment. Each
experiment represents one simulated implementation of
the network of activities, with delays, under the
assumption that no replanning would be done during
implementation.

5.1, Structure of an Experiment

Each delay~PERT experiment in a run consists of
three phases: random generation, scheduling, and

result capture.

Random generation of delays proceeds in
topological/chronological order. Every start delay is
of topological order zero. Every start delay that
occurs at the earliest time - initially the next
period after the curtain, or the netework desired
start time if there is no curtain - is of
chronological order zero. FEach duration delay for an
activity that has no start delay (e.g. for a partial
activity starting at the curtain) is of topological
order zero; each duration is of topological order
greater than zero until that start delay is generated,
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As an example of generation and updating of
delays, let us return to the example given the
Statistical Scaling subsection of the Positive
Correlations Among Delays section: Items 16 and 17
are in the same class, the autocorrelation smoothing
constant for the class is 0.1, and the current
expected delays for items 16 and 17 are 2.000 weeks
and 3.000 weeks, respectively. We generate a delay
for item 16, and update the expected delays for items
16 and 17:

Step 1. A (0,1) variate is generated, and its
value turns out to be 0.33287. For item
16, D = =2.000 g 0.33287 = 2.2000.

Step 2. The delay to be used in the simulation
for item 16 is 8 = 2, which is the
integer nearest to 2.200.

Step 3. The new expected delay for item 16 is
2.0200.

Step 4. r = 2.0200/2.0000 = 1.0100.

Step 5. The new expected delay for item 17 is

(1.0100) x(3.0000) = 3.0300.

Now if the delay just generated was a start
delay for an activity, the duration delay for the same
activity becomes of topologlcal order zero. If the
delay just generated was a milestone delay or a
duration delay, a succeeding delay may now become of
topological order zero. A free start time (ome that
is not fixed but depend on precedences or quasi-
precedences) becomes of topological order zero when
the random genreation phase is complete for all of its
predecessors .

All zero delays and secondary delays go through a
null version of Steps 1 through 5. Thus every delay -
every start time and every druation in the entire
network — is in due course marked as having completed

the randowm-generation phase of the experiment. The
final steps are:
6. Update the topological-sort list. If this

delay is an activity start, a duration delay
may become of topological order zero. If it
is a duration delay, a free-start (secondary)
delay may become of order zero.

7. Select a next delay to generate.

The second phase in an experiment is the
scheduling phase. We add the start delay to each
duration. Then we call the GITPASE scheduling routine

and pass to it the delayed fixed starts and delayed
durations. The result is an experimental schedule.

The final phase in an experiment is the result
capture phase. There are two possible approaches to
this: one can write the data for the experiment to
core or to mass storage, using either much memory or
much time (a disk operation for each experiment) but
allowing maximal £lexibility for rum reporting, or ome
can follow the traditional method of capturing cell
populations and updating moments.
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6. CONCLUSION

Delay PERT provides a statistical methodology for
modeling, scaling and updating correlated delay
statistics, and for using correlated delay statistics
in PERT simulation experiments in such a way that the
need for a simulation "clock" is bypassed by
performing random generatioun in topological order.
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