Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

A SIMULATION STUDY OF A PARALLEL PROCESSOR
WITH UNBALANCED LOADS

Wade H. Shaw,

Jr,

Timothy S. Moore
Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

ABSTRACT

It has been well established that the
performance of a parallel processor computer
system is affected by many design
alternatives and the underlying degree of
parallelism in the workload. We look at the
impact of workloads which load processors in
the network unevenly to observe the
performance degradation. We constrain the
parallel processor architecture to the family
of hypercube networks. Each node is loaded
with some portion of the workload composed of
CPU bursts and I/0, and allowed to run at its
on pace until it completes. Since message
transmission preempts node processing,
communication between nodes complicates the
concurrent operation of the network. We vary
the degree of load balance, the processing
node locality and the ratio of CPU burst time
to message transmission time across a generic
16 node hypercube and use total processing
time speedup as the performance criteria.
Regression models indicate strong nonlinear
correlation between the degree of load
imbalance and job speedup and a linear effect
due to CPU/IO intensity. The locality of
workload is shown to be a minor but
significant effect. The impact of the load
balance, CPU/IO intensity and locality
effects on algorithm decomposition is
discussged.

1. INTRODUCTION

The advent of multiprocessor computer
systems has resulted in evidence of decreased
processing time for jobs that can be
decomposed into parallel processes.,
phenomenon has been tested to reveal
significant but not perfect increases in
process speedup as additional processing
nodes are added. The realities of inter-node
communication do not allow an N node parallel
processor to achieve the theoretical linear
apeedup. That is, an N node machine actually
produces something less than an N times
speedup. We use a simple definition of
speedup to be the ratio of the single
processor execution time to the time measured
with additional processors.

This

One area of specific concern is the
effect of processor load balance on the
performance of a job. This factor is
important because processor load balance will
significantly affect the choice of
decomposition algorithms. The purpose of
this research is to determine the effect of
processor load balance on the execution time

759

of a process executed in parallel on a
loosely-coupled multiprocessor computer
system.

Multiprocessor computing systems are
divided into two general categories,
tightly-coupled systems and loosely-
coupled systems. Tightly-coupled systems
usually have a large, shared memory through
which the individual processors communicate.
In loosely-coupled systems, each processor
has its own local memory. An individual
processor and memory module form a processing
element, and the processing elements
are connected through an interconnection
network. The processors communicate with
each other via messages sent through the
interconnection network. An emerging
architecture showing promise is the hypercube
machine discussed at length by Wiley (1987).
A 16 node hypercube is depicted in Figure 1.

We specify a means of characterizing
processor load balance and locality, and use
a simulation experiment to investigate the
effect of the load imbalance on the speedup
of a job executed in parallel on a
loosely-coupled, hypercube system. Since the
relative impact of communication time between
nodes is known to dramatically affect
performance, we investigate the imbalance of
processor loads at two levels of CPU/IO
intensity to insure that the effects of
imbalance are isolated. We do not
consider how to choose a decomposition
algorithm; only the effects of choosing a
poor decomposition algorithm.

o2

L
\

()
I

Figure 1:

A 16 Node Hypercube

‘W.H.Shaw and T.S.Moore

1.1 Research to Date

There are many factors against which
multiprocessor performance can be evaluated.
Recent performance evaluations have studied
the effects of workload mix, program
behavior, processor interconnection networks,
redundant interconnection networks, memory
management, and decomposition strategies.
However, all of these studies were performed
with balanced processor loads.

Nestle and Inselberg (1985) have shown
that a tightly-coupled multiprocessor system
can be modularly expanded while providing
strictly linear increases in performance.
These increases, they claim, are independent
of the workload mix. They contrast their
results to loosely-coupled multiprocessor
systems which, they claim, cannot sustain
linear increases in performance when running
non-homogeneous workloads due to the
inter-processor communication overhead.
Although the claim is intuitive, no study was
cited to support their claim.

Du (1985) performed a study where system
structure and program behavior were the two
main factors. This study, Du claims, is set
apart from others by the fact that previous
studies have usually ignored progran
behavior. His study evaluated the
performance of a multiprocessor in which a
crossbar was employed to interconnect
processors to m commonly shared memory
modules. A set of non-uniformly
distributed probabilities, including a
probability which represents a processor not
generating any request, was used
to model the program behavior. However,
distinction was made between processors.
Several relations between the average
processor utilization, average request
completion time, and the effective memory
bandwidth were obtained.

no

Bhuyan (1984) evaluated two
loosely-coupled architectures, each having
three types of interconnection networks:
shared bus, crossbar, and a class of
multistage interconnection networks called
Omega networks. The probability that a
message is accepted was used as a measure of
the performance. The study showed that for a
high rate of internal requefsts, an Omega
network performed close to a crossbar, but at
a considerably reduced interconnection cost.

Padmanabahn and Lawrie (1985) conducted
an evaluation which focused on the effect of
redundant path interconnection networks on
performance. Their evaluation showed that
redundant path networks provide significant
fault tolerance at a minimal cost. 1In
addition, improvements in performance
and very graceful degradation were shown to
regsult from the availability of redundant
paths.

Jalby and Meier (1986) conducted a study
in which memory management was the primary
factor. They claim that as the memory
organizations of large multiprocessor
computers become more complex, data
management in the memories becomes a

760

crucial factor for achieving high
performance. An architecture which combines
vector and parallel capabilities

on a two-level shared memory structure was
studied via analyzing and optimizing matrix
multiplication algorithms. The optimized
algorithms yielded high efficiency kernals
which can be used for many numerical
logarithms such as LU and Cholesky
factorizations.

Vrsalovic, Gerhinger, Segal and Siework,
(1984,1985) present a model for predicting
multiprocessor performance on iterative
algorithms based on the decomposition
strategy used. Each iteration was agssumed to
require some amount of access to global data
and some amount of local processing. The
application cycles were allowed to be
synchronous or asynchronous, and the
processor may or may not have incurred
waiting time, depending on the relationship
between the access time and the processing
time.

The amount of global data accessed and
the processing time incurred by the parallel
processes were dependent upon characteristics
of the algorithm and its decomposition. The
decomposition of several algorithms was
studied and several decomposition groups were
identified. The Poisson partial differential
algorithm was used to determine how
decomposition affected the performance of the
algorithm. This study is more directly
related to the topic than the others
presented. However, the decompositions that
were evaluated resulted in balanced loads on
the individual processors and the systenm
evaluated was a tightly-coupled systenm.

Wiley (1987) claims that an evenly
distributed load is essential for efficient
parallel computing. In addition, factors
such as communication time between processors
are also important. While these claims are
intuitive, no references are cited to support
the statements.

Reed and Grunwald (1987) performed an
evaluation on the Intel iPSC which relates
directly to this research effort. They
determined the message processing times for
nearest neighbor nodes on the iPSC
Hypercube. They characterized the
transmission times in accordance with the
following model:

S L + Nt (1)
where S is the transmission time, L is the
communication startup time (latency), t is

the transmission time per byte, and N is the
number of bytes transferred. They performed

a least-squares fit of the data to the linear
model with the following results:

L

1.7 milliseconds, and

t 0.00283 milliseconds.

Az the research cited indicates, there
are many factors against which multiprocessor
performance can be evaluated. One such
factor is the effect of processor load

A Study of a Parallel Processor With Unbalanced Loads

balance on performance. The effect of
the load balance will be important in
determining which algorithm to use when
decomposing programs into parallel
processes. It is accepted that perfect
balancing results in more efficient program
execution. However, the effects of
unbalanced processor loads have not been
thoroughly researched and characterized.
Consequently, there is minimal literature
pertaining directly to the subject.

We feel that it is intuitive to suspect
that a parallel processor will exhibit
reduced speedup as the degree of load
imbalance is increased to the extent that the
execution time resembles the performance of a
smaller machine. The major issue is the
nature and severity of the load imbalance and
locality effect:; and, whether or not the
effect is consistent across different
processing to communication ratios.

1.2 Research Objectives

The objective of this research is to
establish whether or not load imbalance can
be used to characterize speedup of a process
executing on a hypercube machine. We also
wish to examine the impact of spatial
differences of a given degree of imbalance
and the impact of burst to IO time ratio.
Simply stated, the research hypothesis is
given as:

Ho: There is no variability in
process speedup explained by the
degree of load imbalance, the
locality of the load imbalance, the
processing to communication ratio
or any interaction on a hypercube
parallel processing machine.

We test this hypothesis using a carefully
controlled experiment where data is obtained
by simulation of a generic process which can
be characterized by CPU bursts and subsequent
I0.

1.3 Scope and Limitations

We direct our investigations to the
performance of a 16 node hypercube machine
with statistically controlled processor and
I0 loads. This allows carefully controlled
experiments to be performed. However, this
approach does not necessarily predict the
performance of any particular algorithm.
Rather, we intend to develop a fundamental
relationship between processor load imbalance
and job speedup. This relation provides
insight that explains the general nature of
workload partitions and locality.

We model the workload in terms of CPU
bursts of exponential length followed by
transmission of a random length message to a
randomly selected receiver node. The
workload imbalance is modeled by varying the
number of CPU bursts on each node. The
locality of the workload is varied by spatial
location of the node loads once a level of
imbalance is specified. We choose two

processing to communications ratios by
setting the CPU burst to be 10 and 2 times
the average time to transmit a message
between nearest neighbor nodes. Clearly,
use of a single destination node for a
megsage transmission is a conservative
approach. Nevertheless, we feel this design
serves as a good starting point.

the

2. RESEARCH METHOD

In order to investigate the effects of
load imbalance it is necessary to
characterize load imbalance and locality
metrics. Using these metrics, an
experimental design was set up so that the
metrics were varied over a sufficiently wide
range to observe the impact on process
apeedup. Since the metrics are quantitative,
we use regression techniques to determine the
nature and significance of the main and
interactive terms.

2.1 Imbalance Metrics
Two metrics are proposed. First, a raw
measure of unbalance (B) computed as the

coefficient of variation of individual
processor loads. This metric is computed as:

b

2)
Bb

where op is the standard deviation of

the processor loads over the nodes in the
hypercube and pp is the mean load. This
metric is dimensionless and allows direct
comparison of B for alternative processes,

We compute each statistic based on the number
of CPU bursts at each node. The mean is
therefore a constant across all experimental
units.

A secondary independent variable is
locality. The concept of locality is used to
characterize the node loadings with respect
to node location. For example, assume that
nodes 0 and 1 each have 45% of the load of a
given job, and the remaining 10% is
distributed evenly among the other nodes.
This loading scheme will be characterized by
a value for the degree of imbalance and a
value for the degree of locality. Now assume
the same case except that nodes 0 and 15 each
have 45% of the load. 1In this case, the
degree of imbalance will be the same, but the
degree of locality will be different because
nodes 0 and 15 are not directly connected as
is the case for nodes 0 and 1. Locality is

.characterized by calculating L(i) for each

761

node and calculating the coefficient of
variation of the L(i). L(i) is given by:

L(i)

n
2 1ifp(3dd, for all i, i#*j (3)

j=1

where 1(ij) is the number of hops required to
transfer a message from node i to node j,
p(j) is the percentage of the load computed
by node j and n is the number of nodes.

The coefficient of variation of locality

W.H.Shaw and T.S.Moore

is again used to compute a dimensionless
quantity and represents the degree to which a
load is ’‘clumped’ together. As in Equation
2, the locality metric (L) is given by:

c1

L = — ,

By

4)

where the standard deviation and mean of L(i)
over n nodes is used.

2.2 Experiment Design

A designed experiment was used to reduce
experimental error. The general linear model
is:

S =p+R+B+ L +RB + RL + BL +

+ RL + RBL + error (5)
where S represents the observed process
speedup calculated by dividing the observed
execution time into a uniprocessor time, p is
the experiment average, R is the ratio of
average processor burst time divided by
average message transmission time, B is the
load balance metric (Equation 2), L is the
locality metric (Equation 3) and RB, RL, BL,
and RBL are the interactions of these terms.

Table 1 shows the experimental design
where each case was simulated for R values of
10 and 2. Data was obtained by setting the
total number of CPU bursts for a generic
process to 256 where each burst was
distributed as a negative exponential with a
mean of 16.14 milliseconds for R=10 and 3.23
milliseconds for R=2. The IO time was set to
a random variable determined by the length of
a message digstributed uniformly between 100
and 1024 bytes and the timing equation
developed below. Each node processes its
load independently of the other nodes but
must suspend process execution if a message
is routed through it.

Each experimental unit composed of a
degree of imbalance, burst to message time
ratio and locality was simulated so that
batch means of 10 runs with 10 jobs each were
used to obtain an execution time average. In
all, 3200 jobs were gimulated. It is
noteworthy that an additional case exists not
shown in Table 1 which represents the single
processor cage where only one node is loaded
with all the CPU bursts. This case
corresponds to a single processor machine
with a known behavior of 256 * 16.14 = 4132
millisecond execution time for R=10 and 826.4
milliseconds for R=2. Case 1 represents the
perfectly balanced case where B and I are 0.

2.3 The Simulation Model

A crucial aspect of this research effort
was to model the time required transmit a
message between nodes. In the case of
nearest neighbor transmissions this problem
has been researched as shown in Equation 1.
However, Equation 1 was estimated based on
nearest neighbor transmissions and does not
account for intermediate processing time at
nodes along the sender/receiver path. The
hypercube architecture uses a fixed routing
algorithm which sets the intermediate nodes
given a sender and receiver node.

To estimate the message handling time a
linear relation was used and is given asg:

M =pn + ByHX + 8,1 + error, 6)
where M is the time to send a message of X
bytes in length over H hops via I
intermediate nodes. It is noted that I = H-1

since the number of intermediate nodes is
directly proportional to the hops required
for the message to arrive at its destination.

In order to estimate Equation 6, a
benchmark program was executed on an Intel
iPSC Hypercube. A hypercube with 32 nodes
was used to measure the time to transmit a

Table 1: Experiment Design Node Loading (CPU Bursts)
Node Number
Case] 1 2 3 4 5 6 7 8 S 10 11 12 13 14 15
1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
2 24 22 20 18 16 14 12 10 1 11 13 15 17 19 21 23
3 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
4 32 30 28 26 1 3 S5 7 17 8 6 4 2 27 29 31
5 1 2 3 4 5 6 7 8 32 31 30 29 28 27 26 17
6 38 6 6 6 6 38 6 6 38 6 6 38 6 6 6 38
7 38 38 38 6 38 6 6 6 38 6 6 6 6 6 6 6
8 72 8 8 8 8 8 8 8 8 8 8 8 8 8 8 72
9 72 72 8 8 8 8 8 8 8 8 8 8 8 8 8 8
10 79 7 7 7 7 7 7 7 7 7 7 7 7 7 7 79
11 79 79 7 7 7 7 7 7 7 7 7 7 7 7 7 7
12 100 4 4 4 4 4 4 4 4 4 4 4 4 4 4 100
13 100 100 4 4 4 4 4 4 4 4 4 4 4 4 4 4
14 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1121
15 121 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 241 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

762

A Study of a Parallel Processor With Unbalanced Loads

random length measure of between 5 and 1024
bytes from node 0 to every other node. For
each unigue receiver node, 20 data points
were collected where each data point was the
average of 100 transmissions from node 0 to
the receiver and 100 transmissions from the
intended receiver to node 0. In all, 124,000
trangmissions were generated. A data set
congsisting of 620 observations (20 for each
receiver node), the number of hops (H) and
the measured time was generated.

Equation 6 was estimated using linear
regression to yield the following relation:

M (ms)

= 1.23 + 0.0009XH + 0.4851I. (7>
The model’s R-square was 0.9939 and each
coefficient significant at the 99.9% level.
The latency of 1.23 milliseconds is lower
than the 1.7 reported by Reed and Grunwald
(19873 and the 0.9 microseconds per byte is
considerably higher than their estimate. We
suspect that the earlier work included
nearest neighbor transmissions only. The
485 millisec delay experienced at each
intermediate node represents the low level
protocol to hand-off the message to another
communications channel and is not dependent
on message length. This time is somewhat
lower than the latency time at the receiver
and sender ends of the path but represents a
major culprit in explaining the less than
theoretical speedup obtained in practice.

Using Equation 7 as the function which
maps message length to transmission time, a
simulation model described in Figure 2 was
constructed. We chose to model the parallel
processor using the SLAM (1987) simulation
language and executed the model on a VAX
11-785. The hypercube is modeled as a single
user system with 16 nodes declared in the
cube. The cube and the 16 nodes are unique
SLAM Resources while communication channels
are modeled as single server Activities
preceded by a Queue. Each channel uses a
unique activity and queue file number which
facilities routing of entities through the
network via a lookup table. Basically, the
simulation proceeds as follows:

a. A job enters the system and waits for the
hypercube.

b. When the cube becomes available,
allocated to the first waiting job.

it is

c. The time the hypercube is allocated is
recorded as the job start time.

d. The job is replicated into 16 processes.
e. Each process is assigned a processor
identification, a number of CPU bursts, and a

an average burst duration depending on the
selection of the case in Table 1.

f. Each process waits for the node to which
it is assigned.

g. When the node becomes available, the node
processes one burst of exponentially
distributed length and initiates a single IO
of random length (100-1024 bytes) to a

763

randomly selected receiver node (not
including itself). The number of bursts
remaining for that node is decremented.

h. The node that processed and initiated the
I0 is freed and available for the next CPU
burst.

i. The process entity is replicated as a
message entity with higher processing
priority. The process entity returns to the
originating node to wait for processing time.

Jj. Using the randomly selected receiver
assignment, a lookup table is used to
determine the next channel required by the
message to reach its intended receiver.

k. The message waits in the appropriate
channel queue.

1. When the channel becomes available, the
message is transmitted using Equation 7 to
determine the time of transmission. Note:
this level all transmissions are nearest
neighbor (one hop).

at

m. The receiving node is preempted.
n. If the receiving node is not the final
destination, it uses up 0.485 milliseconds of

hand-off time, computes the next intermediate
node, looks up the channel number and
retransmits the message as in step 1.
intermediate node is freed.

The

o. If the receiving node is the final
destination, it processes the message using
one~half the latency found in Equation 7 and
the entity is terminated.

¥hen all bursts have been completed and
megssages have been processed, the time
job has been in the system is recorded
and the hypercube is freed for the next job.
Ten jobs are simulated to form one of ten
data points in the experimental unit average.

P
all
the

The resulting simulated job execution
times were considered to be accurate
reflections of actual hypercube performance
for several reasons. First, the balanced
case measurements were reasonable and
corresponded to actual experience with the
hypercube. Second, when the degree of load
imbalance was maximized the execution time
did in fact move to the known uniprocessor
time. Third, the progression of execution
times as the load imbalance was increased was
reasonable and produced a speedup profile
which agrees with engineering judgment and
intuition. Finally, each component of the
simulation was tested and desk checked to
insure compliance with the design
specifications.

3. EXPERIMENT RESULTS

The raw execution times and the
calculated speedup statistics are shown in
Table 2. Figure 3 depicts the data with
respect to B, the load imbalance metric.
is evident that extreme variability is
present and that there is overwhelming

It

Job enters
the system

Job walts
the cube

fox

Cube assigned
to job

Job start time
recorded

‘W.H.Shaw and T.S.Moore

Job replicated into
sixteen process entitlies

Each process assigned
a node ID and 3 number
of burst to execute

Assign buzrst
duration

Wait for
assigned node

bursts ™
zemaining > O

Process burst and
1/0 sending overhead

]

Decrement number of
bursts remaining

)

Replicate process
entity to create one
message entity

Terminate
process entity

Asslgn random
destination node

Determine channel

Process Message
tit; tit
en Y en 34 [§:>
Figure 2:
Table 2: Simulation Results, 16 Node
Hypercube
Time (ms) Speedup

Case B L R=10 R=2 R=10 R=2
1 0.00 {0.00 429.2 | 110.2 9.6 7.5
2 0.37 J0.02 503.2 {127.8 8.2 6.5
3 0.37 | 0.09 496.3 | 129.4 8.3 6.4
4 0.78 [0.05 652.5 | 164.4 6.3 5.0
5 0.78 | 0.19 664.0 |1 167.9 6.2 4.9
6 0.96 | 0.06 779.8 | 188.7 5.3 4.4
7 0.96 | 0.19 780.9 | 194.8 5.3 4.2
8 1.37] 0,00 | 1306.0 | 303.7 3.2 2.7
9 1.37 |0.22] 1309.0 | 322,5 3.2 2.6
10 1.54 {0.00} 1417.0 | 331.5 2.9 2.5
11 1.54 {0.25 | 1442.0 | 350.2 2.9 2.4
12 2.05 {0.00} 1792.0 | 413.1 2.3 2.0
13 2.05 | 0.34}1818.0 | 438.8 2.3 1.9
14 2.56 [0.00 | 2162.0 | 493.5 1.9 1.7
15 2.56 | 0.42 | 2178.0 | 525.8 1.9 1.6
16 3.75 {0.48 | 4075.0 } 936.6 1.1 0.9
Uni {4.00 | 0.52] 4131.8 | 826.4 1.0 1.0

764

and next node to
get to destination

Wait for channel
Transmit message

Preempt receiving
nade

Receiving
node f£inal
destination

Perform intermediate
node processing overhead

Pexform destinatlon
node processing overhead

$

|Free recelving node]

L]

evidence of nonlinear effects.

Free destinatlon
node

Terminate
message entity

Free destinpation
node

Collect job time
in the cube
Terminate
message entlty

Free the

cube

Simulation Model Flow Diagram

Based on the

evidence a 16 processor hypercube with a
coefficient of variation of load (B) around
1.5 and a CPU/I0 intensity of 10 performs
like the theoretical 4 node machine.

Clearly,

the penalty for load imbalance is

severe!

.0.00
9.00 4
8.00 +
7.00 —-

6.00

Speedup

4.00 -
3.00

2.00 —

0.00 . Y .

Figure 3:

5.00 £

1.00 | ?

+#+0
+#a

T T T T
2.00 3.00

Degree of Load Imbolance
Ratio=10 + Ratio=2

4.00

a

Average Speedup Measurements
versus Degree of Imbalance (B)

A Study of a Parallel Processor With Unbalanced Loads

.Figure 4 displays the data with respect
to the load locality metric (L). Again, the
effect is evident and nonlinear. At this
point we argue that the inclusion of a
nonlinear term in Equation 5 is necessary.
Therefore, we introduce the square of B and L
into the model as a simplw way to estimate
nonlinear effects and restate the
hypothesized relationship to be a polynomial
fit of degree 2. Other transformations could
be used; however, the curvature of the line
appears to obey a power law which is
straightforward in its estimation.

10.00
9.00 -
a
8004 ¢
7.00 4
+ o +
6.00 - e
S
3 s.00- 40 2
@
(7] +
4.00 *
3.00 % q
+ +
q +
2.00 4 N 5
r -+
1.00 g o=
0.00 T T T T T
0.00 0.20 0.40 0.50
Degree of Load Localit:
o Ratio210 ¥ Ratie=2
Figure 4: Average Speedup Measurements

versus Degree of Locality (L)

We estimated Equation 5 with the
additional squared B and L terms using least
squares and refer to this model as Model 1.
We then removed each term not significant at
the 99% level and re-estimated the relation
to yield Model 2., Again, deleting
non-gignificant terms, we estimate the
simplest model referred to as Model 3. Table
3 shows the estimated coefficients. Figure S
compares the observed data with predictions
based on Model 1, the full featured model.
The model predicts speedup quite well as
evidenced by an R-square of 98.4%.

Table 3: Model Coefficients
Least Squares Estimates

Term Model 1 Model 2 Model 3
Constant 7.46%* 8.16+* 8.13**
R 0.25%* 0.10** 0.10%*
B -4.89%* -4,91%% -4 .,84%%
L 1.54«
RxB -0,11*
RxL -0.25
BxL ~5,93%* -0.30
RxBxL 0.15
B2 1.05%% 0.80+% 0.74++
L2 29.57+
Model R2 0.984 0.961 0.960

* Significant at 0.05 level
** Significant at 0.01 level

10.00

9.00

8.00

7.00 ~f

8.00

5.00 —

Speedup

4.00 ~

3.00 <

2.00

1.00 ~

0.00 T T T T T T
0.00 1.00 2.00 3.00 4.00
Degree of Load Imbalance

O Actual w/R=10 + Actual w/R=2
¢ Model] w/R=10 A Model | w/R=2

Figure 5: Actual versus Model 1 Predictions

Model 1 establishes that the ratio of
CPU burst time to message time is highly
gignificant but not really involved in any
interaction. That is, the ratio’s effect is
a scaler which tends to adjust the curve up
or down by a factor of .25 milliseconds per
unit of R. The balance metric and the
locality metric both enter the model as
linear and nonlinear operators. The impact
of locality appears minimal and involved in a
balance interaction. Apparently, locality by
itself does not influence speedup to any
great extent. We tested this question
further by varying the locality over four
settings for a high and low level of the
balance metric for both values of R. Figure
6 indicates confirmation of the regression
analysis: locality does not affect speedup
very much!

3.50

3.00

2.50 4

2,00

Speedup

1.50

1.00 -

0.50

0.00 4—y—7——T T T T T T T T T 7 T T
0.00 0.04 008 012 016 020 024 0.28 0.32

Degroe of Load Locolity
0 B=2.05, R=10 + B=1.37, R=10
¢ B=2.05, R=2 A B=1.37, R=2

Figure 6: Effects of Load Locality (L)

Using the results of Model 1, the
non-significant terms were removed to yield
simple Models 2 and 3. The Models’ R-square
remain high (96.1 and 96%) indicating little
loss of explanatory power as terms are

W.H.Shaw and T.S.Moore

removed. Figure 7 depicts the actual
observations versus predictions using the
simplest model, Model 3. Interpretation of
Model 3 is straightforward: the ratio of CPU
time to transmission time contributes 0.1
milliseconds per unit acrogg all levels of
imbalance; the imbalance metric (B) basically
governs the shape of the speedup degradation
by subtracting out 4.84 millisecs for every
unit increase in B adjusted by adding the
square of B times 0.74 milliseconds. The
penalty for imbalance is severe initially but
tapers off as the square term adds back
speedup to terminate in the uniprocessor
performance.

10.00

9.00 -4
8.00 ~
7.00
8.00 ~
a
2
v 5,00~
&
@
4.00 ~
3.00
2.00 +
1.00 . 7
0.00 T T T T T T
©0.00 1.00 2.00 3.00 4.00
Dogree of Loud imbalance
o Actual w/R=10 + Actual w/R=2
x Predicted, R=10 V Predicted, R=2
Figure 7: Actual versus Model 3 Predictions

is
to

Recalling that the imbalance metric
the ratio of the load standard deviation
the load average; it appears that as the
standard deviation reaches the hypercube
average, performance suffers dramatically.
Furthermore, as the IO locad becomes more
dominant, the speedup is initially worse and
subject to the same imbalance phenomenon.
Locality appears to be of minimal impact and
involved in statistically significant
interactions which are difficult to explain
from an engineering point of view. In short,
the null hypothesis is resoundly rejected.
There is definitely a relationship between
balance, locality and I0 intensity which
characterizes speedup phenomenon very well.

4. CONCLUSIONS

It is apparent that load imbalance
severely impacts a parallel processor’'s
performance. The adverse effects are acute
when even minor aberrations from a balanced
load are allowed. The effect of load
locality is minor and enters the speedup
model primarily as an interactive term. This
would suggest that locality effects, though
minor, influence speedup behavior in ways
that depend on the degree of imbalance. The
intensity of IO is significant and affects
the speedup across all levels of locality and
imbalance.

766

The more IO involved in a process
compared to CPU processing, the worse the
speedup characteristics. This is intuitive
gince IO preempts node processing and
introduces overhead which a single processor
would not experience. What is not intuitive
is that the I0 load does not interact with
other terms. Apparently, higher IO loads
cause a consistent worsening of performance
regardless of the locality or imbalance of
the load.

The findings of this research have
gserious impact on algorithm decomposition
strategies. Given a known CPU to IO load,
the balanced case speedup can be determined
by simulation or benchmarking. As soon as
processor imbalance is allowed, dramatic
performance degradation can result. This
regearch indicates that imbalance could not
be overcome by locality. However, we did not
model the affinity one node might have for
another in terms of its I0. If such an
affinity were known, we predict that
intelligent spatial loading, even if
unbalanced, would be useful. We suspect
though, that simple relocation of unbalanced
loads may never recover the inherent loss of
speedup caused by the unbalanced condition.

The use of the balance metric (B) and
the locality metric (L) are simple statistics
which can be used to model any process which
can be monitored during execution. The
simulation approach allows a statistical
approach to predicting process performance
which we feel provides a convenient framework
for analysis. Sensitivity analysis is
possible with multiple simulation runs.

Several issues remain to be
investigated. Firat, what happens when the
messages generated by a node must be sent to
all other nodes? Clearly, this situation
will worsen the I0 load and may change the
interpretation of the analysis. Second, does
the dimension of the hypercube affect the
performance as the load becomes unbalanced?
That is, would load imbalance on an 8 node or
a 64 node machine be similar to the 16 node
case. We suspect that the initial cube
dimension will have an effect so that lower
dimensioned cubes are more adversely
affected. However, we make these comments
with caution since experience has indicated
counter-intuitive results! These issues are
the subject of current research and the
findings are forthcoming.

we suggest the use of animated
simulation models to "watch" the dynamic
nature of load imbalance, locality, IO
intensity and message passing affinity. We
propose to develop an animated model of the
present simulation and demonstrate its
effectiveness.

Finally,

ACKNOWLEDGMENTS

We wish to thank Captain Cathy Lamanna
for her assistance in benchmarking the Intel
iPSC Hypercube and the Department of
Electrical Engineering at AFIT for their
support and use of computing resources.

A Study of a Paralle] Processor With Unbalanced Loads

REFERENCES

Bhuyan, L.N. (1984) "On the Performance of
Loosely-Coupled Multiprocessors,"
Proceedings of the 11th Annual IEEE
Computer Architecture Symposium.
256-262. IEEE Press, New York.

H. (1985) "On the Performance of
Synchronous Multiprocessors," 1EEE

Du,

Transactions on Computers, 34 (5):
462-466.
Jalby, W. and Meier, U. (1986) "Optimizing

Matrix Operations on a Parallel
Multiprocessor with a Hierarchical Memory
System, " Proceedings of the 1986
International Conference on Parallel

Processing. 429-432. IEEE Press, New
York.

Nestle, E. and Inselberg, A. (1985) "The
Synapse N+1 System: Architectural

Characteristics and Performance Data of a
Tightly-Coupled Multiprocessor System,"
Proceedings of the 12th Annual IEEE
Computer Architecture Symposium.
233-239, IEEE Press, Silver Spring, Md.
Padmanabahn, K. and Lawrie, D. (1985)
"Performance Analysis of Redundant-Path
Networks for Multiprocessor Systems," ACM
Transactions on Computing Systems, 3
(2): 117-144.

Pritsker, A. (1986) Introduction
Simulation and SLAM II, John
York.

to
Wiley,

New

Reed, D. and Grunwald, D. (1987)
Performance of Multicomputer
Interconnection Networks,"
Computer, June 1987, 63-73.

"The

Vrsalovic, D. and others. (1985) "The
Influence of Parallel Decomposition
Strategies on the Performance of
Multiprocessor Systems,” Proceedings of
the 12th Annual IEEE Computer

Architecture Symposium. 396-405. IEEE
Press, New York.
Vrsalovic, D. and others. (1984) "Performance

Prediction for Multiprocessor Systems,"
Proceedings of the 13th International
Conference on Parallel Processing.
139-146. IEEE Press, New York.

Wiley, P. (1987) "A Parallel Architecture
Comes of Age at Last," IEEE
Spectrum, June 1987, 46-50.

767

AUTHORS' BIOGRAPHIES

WADE H. SHAW, JR. is an Assistant Professor
of Electrical and Computer Engineering at the
Air Force Institute of Technology in Dayton,
Ohio. He completed his Ph.D. in Engineering
Management at Clemson University. He holds a
B.S. in Electrical Engineering and a M.S. in
Systems Engineering. Dr. Shaw has published
numerous research papers on a variety of
subjects including Computer Performance,
Simulation, Decision Support Systenms,
Software Engineering and Project Management.
He actively pursues teaching, research and
consulting in simulation, computer
performance evaluation and management
information systems. Dr. Shaw is a member of
several professional organizations including
the IEEE, IIE, DSI, TIMS, ORSA and SCS. He
is a Captain is the US Army and a registered
professional engineer.

Department of Electrical Engineering
AFIT/ENG

WPAFB, OH 45433

(513) 255~3576

TIMOTHY S. MOORE is a Masters degree
candidate in Information and Computer Systems
at the Air Force Institute of Technology. He
holds a B.S. in Computer Science from the
University of Alabama and is a Captain in the
US Air Force. Captain Moore previously
served as a Warning Systems Analyst for the
Command Center Processing and Display System
at Offutt AFB in Nebraska.

Bldg 640, Box 4079

Air Force Institute of Technonolgy
WPAFB, OH 45433

(513) 255-3576

