Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

Performance Issues for Distributed
Battlefield Simulations

David M. Nicol
The College of William and Mary

and

Institute for Computer Applications in Science and Engineering

1 Introduction

This paper discusses three performance issues that arose in our im-
plementation of a time-driven battlefield simulation on a medium-
scale multiprocessor. The problems we identify are generic, so that
the observations we make and the conclusions we draw are appli-
cable to the general class of physical domain simulations which use
time-stepping to advance the simulation. The first issue we discuss is
that of mapping the simulation onto the multiprocessor. Under the
message-passing paradigm, the assignment of workload to processors
has the single most important influence on performance. The second
issue is that of performing redundant computation in order to avoid
a certain amount of communication. This issue is important when
the cost of communication is high. Finally, we discuss the possibility
of deadlock due to distributed contention for message buffers, and
outline a solution which insures that deadlock does not occur.

2 A Battlefield Simulation

The model problem for our study is a battlefield simulation based
on Zipscreen [2,4], written by John Gilmer of the BDM Corporation.
Zipscreen is a simplified version of the CORBAN 3] simulation for
the purposes of studying performance issues in mapping battlefield
simulations to parallel architectures. Zipscreen and CORBAN repre-
sent a battlefield as a two dimensional plane tessellated by hexagons
(in addition, CORBAN imposes a hierarchical scheme of hexagons
on this domain). Combat units move through the domain; units from
opposing sides engage in simulated combat when they are geograph-

ically close. Figure 1 illustrates the hexagonal plane and combat
units.

Both Zipscreen and CORBAN are time-driven, rather than dis-
crete event; simulations. There are strong reasons to suspect that the
discrete-event paradigm on battlefield simulations will severely limit
possible performance gains achievable by parallelism. The problem of
avoiding deadlock in distributed discrete-event simulations has been
well studied [1,6,14]. A formal treatment in (7] has proven that to
avoid deadlock without rolling back simulation clocks, it is neces-
sary for certain logical processes to be able to predict their future
message-passing behavior far enough into the future to allow some
other logical process to advance its clock (deadlock avoidance pro-
tocols that rely on prediction demonstrate only the sufficiency of
behavior prediction). The ability to predict future behavior is very

limited in battlefield simulations, implying that the synchronization
constraints and overhead of avoiding deadlock are likely to adversely
affect performance. The Time Warp [5] mechanism of rolling back
clocks avoids the behavior prediction problem, but does so at the
cost of extensive memory requirements, and the potential threat of
having rollback “thrashing”. While Time Warp is an aesthetically
pleasing idea, its utility on large real-world problems has yet to be
empirically demonstrated. Time-stepped simulations seem to offer
the best potential for battlefield simulations, since all computational
activity for a time-step can be performed concurrently. However, it
is important that the time-step be large enough to allow a significant
amount of computation.

Figure 1: Battlefield Simulation Board

“This research was supported in part by the National Aeronautics and Space
Administration under NASA Contract NAS1-18107 while the author was in res-
idence at ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,

VA 23665.

624



Performance Issues for Distributed Battlefield Simulations

3 The Mapping Problem

Zipscreen focuses on the perception, combat, and movement activities
found in CORBAN. At every time-step, a unit perceives others by
scanning its resident hex and all directly adjacent hexes for enemy
units. The unit then engages in combat with all of these enemy units,
and reports the losses it inflicts on those units. Following combat, the
unit changes its geographical position, possibly moving to a different
hex.

Zipscreen organizes its data by maintaining lists of hexagons on
which units reside; for every such hex it maintains a list of resident
units. The mapping of units to processors clearly has a significant
impact on performance. - The efficiency of perception is very much
affected by the mapping, since some units will have to perceive units
resident on different processors than their own. Combat is compu-
tationally intensive, and so the mapping has an important influence
on load balancing. Inter-unit (and hence potential inter-processor)
reporting of losses is affected by communication costs as well. The
efficiency of movement also depends on the cost of communication;
the fact that units dynamically move has a profound impact on load
balancing and load balancing strategies. Zipscreen’s concerns for
communication and computational costs in the face of uncertain and
changing workload are representative of similar concerns for any sim-
ulation of any irregular phenomenon in a physical domain.

Because of the relatively high cost of message passing on cur-
rent parallel architectures, it is not efficient to employ the type of
fully dynamic workload assignment (e.g. idle processors access a cen-
tral work queue) so effective on shared memory machines. Instead,
the workload assignment needs to be semi-static, changing only in-
frequently. An apparentiy natural static workload assignment is to
simply assign each processor an equal number of units, an approach
discussed by Gilmer and Hong, in [4]. Since one unit can conceivably
interact with any other unit from an opposing side, this approach re-
quires that every processor communicate (directly or indirectly) with
every other processor, if only to say that it has nothing to commu-
nicate. In addition to the high communication needs, Gilmer and
Hong noted that the approach suffered from load imbalance. This
problem arises because serious computation occurs only when units
are geographically close, so that at any given time step a unit may or
may not demand substantial computation. A simple analytic model
derived in [9] demonstrates why significant load imbalance can be ex-
pected using their method. The fundamental cause for performance
declines due to load imbalance is the extreme sensitivity that glob-

ally synchronous algorithms have to load distribution. The execution
time of a time-step is determined by the processor having the most
to do during that time step. For instance, if the most heavily loaded
processor has just 15% of the workload in a simulation using sixteen
processors, the efficiency (speedup/#processors) is just 41%—on av-
erage, a processor is idle 59% of the time simply waiting for the most
heavily loaded processor to finish. Because a battlefield simulation’s
workload is so unpredictable and variable, a static workload mapping
is not likely to give high efficiencies for every time step.

Our approach is to map regions of the domaein to processors,
rather than directly assigning units. A processor is responsible for
simulating units on its assigned subset of the domain. A two dimen-
sional domain tessellated by hexagons can be viewed as a “rectangu-
lar” array of hexagons. This is seen in Figure 2 where the “rows” are
clearly defined while the hexes in a “column” zig-zag vertically. For
the purposes of partitioning, we assume that the domain consists of a
rectangular array of hexes, where each hex can be uniquely identified
by its row and column indices. Partitioning consists of covering the
domain with rectangles each w hexes wide and k hexes tall (with the
possibility of some deviation from these dimensions at the edges of
the domain). These rectangles themselves form a rectangular array
that we index by “rectangle row” and “rectangle column”. We cover
the domain by assigning hex (4, 7) to rectangle (i mod k, 5 mod w).
In a similar fashion, we view the N processors as forming a r by
¢ rectangular array of processors. Then, rectangle (k,m) and all
the hexes it contains are assigned to processor (k mod r,m mod ¢).
This scheme is called wrapping, and has been studied on a variety
of problems [13] . Figure 2 shows a wrapped assignment of blocks
with w = 2 and A = 3 to the four processors Py, Py, P;, Py (with
the obvious mapping between two dimensional and one dimensional
indices).

The communication requirements of this approach are very local.
The vast bulk of communication is between processors holding ad-
jacent regions—every processor is logically adjacent to at most six
others. Our mapping scheme requires that a processor hold copies
of all units in hexes adjacent to those assigned to the processor. The
number of these “boundary hexes” (and hence the number of addi-
tional units a processor must hold copies of) is strongly dependent
on the size (and hence number) of the subregions. Communication is
required every time-step between processors to insure that the status
of border units is properly maintained. Qur strategy of partitioning
a domain and exchanging boundary information during run-time is

Figure 2: Rectangular Partitioning of Domain

625



D.M.Nicol

similar to strategies employed by parallel scientific programs [8,15].
In both scientific codes and our battlefield simulation, partitioning
the domain into large subregions leads to lower communication costs
than does partitioning into small subregions. However, large subre-
gions lead to higher risks of load imbalance. Some degree of load
balancing could be achieved simply by assigning adjacent hexes to
different processors. This balance comes at the price of increased
communication overhead. The values w and h allow a parameterized
partitioning of the domain. Smaller values create a finer granularity
of workload, and tend to yield a better balance of load. By using a
parameterized approach to partitioning, we can control the trade-off
between load imbalance and overhead, and find the best granular-
ity for the problem and architecture. The principles underlying this
tradeoff are discussed further in [13].

Wrapping exploits the observation that for many problems aris-
ing from physical domains, workload tends to be positively corre-
lated in space. Use of wrapping increases the likelihood of breaking
up regions of high computational activity for execution by several
processors. In a battlefield simulation this is true for two reasons.
Tke first follows from the rule requiring engaged units to lie on the
same or adjacent hexes. If there is combat activity on a hex, there is
a significant chance that the opposing units lie on different hexes, so
that simulated combat occurs on at least two adjacent hexes which
might be separated by wrapping. The second reason follows from the
observation that baptles (and hence battlefield simulations) tend to
be localized in space. The knowledge that a particular hex contains
an engaged unit makes it likely that the hex lies in a region where
the main battle-lines are drawn. Wrapping increases the chance of
giving each processor a section of the battle-line.

Our version of Zipscreen currently runs on the Flex/32 Multi-
computer at the NASA Langley Research Center. The Flex has
twenty processors, two of which serve as hosts; the remaining eigh-
teen are used for parallel processing. Each processor is NS32032
based, and has approximately 1M bytes of local memory. There is
a global memory with approximately 2.25M bytes. Zipscreen uses
the global memory only to implement message passing between pro-
cessors. Since the bulk of inter-processor communication costs are
related to costs of message handling and not to actual transmission,
the Flex/32 implementation should fairly well represent performance
achieved by message-passing architectures with fast communication
channels but not necessarily fast access protocols.

Our experiments used data sets which simulate a battlefront in
32 X 32 and 64 X 64 hex domains. An imaginary line intersecting
both the top and bottom rows of the domain is drawn; this line sep-
arates units from opposing sides. Each side has 500 units, distributed
randomly within a corridor several hexes wide abutting the dividing
line. The units’ directions are set so that the opposing sides be-

come closer. The simulation is run for fifty time-steps, during which
time the two sides largely pass through each other. Early time steps
tend to require a heavy amount of battle simulation, while later time
steps require substantially less. This mixture of activity is intended
to measure the “average” performance of the distribution scheme.

Figure 3 plots the measured performance of a representative run
using sixteen processors on a 32 X 32 domain, as a function of the
degree of granularity. The value n of the horizontal axis is the num-
ber of hexes arranged in a square) in a logical block. The timings
exclude the time required to load the simulation on the processors,
but do include I/O required during the run. A typical speedup for
this type of problems is 8.5; the average speedup when using eight
processors is 5. These speedups are actually quite reasonable, con-
sidering the dynamic nature of the simulation and the static nature
of the mapping. The performance does leave significant room for
improvement; dynamic remapping schemes such as those discussed
in [10,11,12] offer promise of even better speedups.

Our implementation of Zipscreen divides a time-step into a com-
putation phase, followed by a communication phase. During the
computation phase every processor is engaged in the perception and
combat activities. At the beginning of the computation phase every
processor has an updated local copy of any unit which may engage
with some unit owned by the processor. The computation phase gen-
erates damage reports, which are then exchanged among processors
during the communication phases, along with reports of movement
of units between processors. This structure allows us to measure the
processor efficiency during just the computation phase, and hence
measure the effects of our mapping scheme on computation costs
in near-isolation from its effects on communication costs. Figure 4
plots average processor efficiency during the computation phase as a
function of the size of the {square) hex blocks assigned to processors.
This data was taken from a run using sixteen processors on a 64 X 64
hex domain. It is clear that our intuition behind the mapping of
domain to processors is borne out in practice.

4 Trading Redundant Computation for Com-
munication

It is sometimes possible to reduce communication by performing re-
dundant computation. Consider the case where opposing units u
and v are on adjacent hexes which happen to be assigned to different
processors. If u resides on a hex assigned to processor P(u), then
P(u) is responsible for computing the losses that v inflicts on v. But
processor P(v) also holds a copy of 4, and could do the computation
itself, relieving P(u) from the task of communicating the damages u
inflicts on v. P(u) will still simulate u attacking v, in order to keep

4 r 3
Execution 3
Time
(minutes) 2r
1 ]

L 1. 1 1

1

4 9 16 64

Hexes in Square Block

Figure 3: Performance as Function of Granularity

626




Performance Issues for Distributed Battlefield Simulations

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

Average
Utilization

.
3
1 1 1 I

1 4

9 16 64 256

Hexes in Square Block

Figure 4: Effects of Granularity on Load Balance

v’s state up to date. Thusredundant computation (simulating u’s at-
tack on v) can avoid some communication. This tactic may prove to
be especially important if communication is very expensive relative
to computation. In our experiments we found that performance suf-
fered using this technique, largely because a combat’s computation is
more expensive than the communication of its results. However, we
also allowed redundant computation of a unit’s new position during
the movement activity—the processor owning the unit computes the
new position, as does any processor holding a hex adjacent to u’s.
In this case, the computational cost of movement was dominated
by its communication cost, so that redundant computation improves
performance.

5 Deadlock Avoidance

Much of the early work in distributed simulations was devoted to
the development of synchronization protocols which avoided dead-
lock [1,8,14]. This work considered the possibility of deadlock oc-
curring in discrete-event simulations, due to the inter-process syn-
chronization necessary to insure the simulation’s correctness. This
type of synchronization problem does not exist in time-driven simu-
lations. Nevertheless, deadlock can occur when there is distributed
contention for message buffers.

Consider the following scenario. A message to processor P; ap-
pears in P;’s incoming message queue; the message reports that dam-
ages have been inflicted on a unit u in one of Py’s subregions by units
in P;’s subregions. As illustrated in Figure 5, when P; consumes this
message it can frigger messages to processors P, and P; advising
them of u’s new status. For P, to due so, P and P, must both
have available space to store incoming messages—if not, the mes-
sages from P; cannot be sent until space is free, and so P; must block
itself. However, either processor Py or P; may be blocked for similar
reasons, permitting the insidious deadlock cycle to form.

One “solution” to this problem is to simply have an overabun-
dance of message buffer space available. This will not guarantee that
deadlock cannot not occur, but can make the probability of deadlock
low. On the other hand, it is not difficul to insure that deadlock
does not occur in our implementation of Zipscreen. Every message in
Zipscreen is either an original or a propagated message. In the exam-
ple above, the message from P; to P; was original, while the messages
to P and P, were propagations of that original message. The prob-
lem arose because consumption of the original damages message re-
quired the use of buffer space elsewhere (even freeing the buffer space
occupied by the original message does not solve the problem since
the freed space can be filled while the processor is blocked). Every
original message has the potential to do this. However, propagated
messages do not further propagate; the consumption of a propagated
message will never cause a processor to block.

Figure 5: Original Message Causes Propagating Messages

627



D.M.Nicol

Because of the regularity of our mapping, we know that one
processor never communicates with more than six others. 1 It is
therefore practical for a processor to reserve message buffer space for
every communicating neighbor in order to store incoming original
messages, and to reserve space for every processor who might cause
a propagation message to be sent (this processor need not be a neigh-
bor, e.g. P; and P in Figure 5). In the unlikely event that the hex
blocks are single hexes, space for at most eighteen processors must
be reserved. The reservation requirements decrease rapidly as the
size of the blocks increase—space for only eight processors is needed
using 2 X 2 hex blocks. Whenever processor P; sends a message to
P; it includes the status of P;’s original message buffer space, and it
includes the status of all propagation buffers reserved for neighbors
of P;. P; may pick off the buffer status information without actually
consuming the message which carried it. The status of P;’s reserved
buffers may also be queried (through a reserved query buffer) at any
time. Note that the “status” of a buffer may be the number of free
bytes, allowing several unconsumed messages to concurrently exist
there.

A number of actions may cause a processor to generate an origi-
nal message to a neighbor. For example, the damage message in the
example above is caused by P;’s action of reporting the accumulated
damages it has inflicted on unit u. Freedom from deadlock is insured
if (i) a processor never takes an action until there is space avail-
able to receive all original and propagated messages the action may
cause, and (ii) an original message is never consumed until there is
space available to receive all propagated messages that the consump-
tion may cause. A processor may consume a propagated message at
any time. To show that deadlock cannot occur, note first that if
a deadlock cycle forms, then eventually all propagation messages
will be consumed. This allows every processor in the deadlock cycle
to consume an original message (possibly generating more propaga-
tion messages, but these can always be consumed); the consumption
of original messages frees the processors to take actions, because
the necessary original and propagated message buffer space becomes
available. Consequently deadlock never occurs.

6 Summary

An effective parallel execution of domain-oriented time-driven simu-
lations requires the solution to a number of performance problems.
First, the simulation workload must be well mapped to keep the
load balanced and the communication needs low. We illustrate an
effective solution to this problem using a battlefield simulation as
a model problem. In the face of significant communication costs it
may be advantageous to perform redundant computation to forestall
communicating the results of that computation. ‘This point was also
illustrated in the model problem. Finally, even though a time-driven
simulation does not suffer from the synchronization problems that
plague distributed discrete-event simulations, deadlock can still oc-
cur. We showed how déadlock can occur in the model problem, and
outlined an efficient method of deadlock avoidance.

Acknowledgements: Thanks are due to John Gilmer who provided
us with his Zipscreen source code, and to Frank Willard who did
most of the early coding. This project has benefited greatly from
discussions with Joel Saltz and Paul Reynolds.

IThis observation assumes that a unit cannot “skip” over a hex from one
time-step to the next.

References

[1] K. M. Chandy and J. Misra. Distributed simulation: a case
study in design and verification of distributed programs. IEEE
Trans. on Software Engineering, 5(5):440—452, September 1979,

628

{2] 3.B. Gilmer. Documentation, State-Space Reconciliation Ver-
sion of the Zipscreen Prototype Simulation. Technical Report,
BDM Corporation, 1986.

[3] J.B. Gilmer. Statistical Measurements of the CORBAN
Simulation to Support Parallel Processing. Technical Re-
port BDM/ROS-86-0326, BDM Corporation, 1986.

{4] J.B. Gilmer and J.P. Hong. Replicated state-space approach for
parallel simulation. In Proceedings of the 1986 Winter Simula-
tion Conference, Washington, D.C., 1986.

[5] D. R. Jefferson. Virtual time. ACM Trans. on Programming
Languages and Systems, 7(3):404-425, 1985,

[6] P. F. Reynolds Jr. A shared resource algorithm for distributed
simulation. In Proceedings of the Ninth Annual International
Computer Computer Architecture Conference, pages 259-266,
Austin, Texas, April 1982.

[7] D. M. Nicol. The Performance of Synchronizing Networks. Mas~
ter’s thesis, Department of Computer Science, University of Vir-
ginia, January 1984.

[8] D. M. Nicol and F. H. Willard. Problem size, parallel architec-
ture, and optimal speedup. In Proceedings of the 1987 Inter-
national Conference on Parallel Processing, pages 347-354, St.
Charles, Ilnois, 1987.

[9] D.M. Nicol. Mepping Domaein-Oriented Time-Driven Simula-
tions onto Message-Passing Parallel Architectures. Technical
Report 87-51, ICASE, September 1987. submitted to the 1988
SCS Conference on Distributed Simulation, San Diego.

{10] D.M. Nicol and P.F. Reynolds Jr. Optimal Dynamic Remapping
of Parallel Computations. Technical Report 87-49, ICASE, July
1987. Submitted for publication.

[11] D.M. Nicol and J.H. Saltz. Dyrnamic Remapping of Parallel
Computations with Varying Resource Demands. Technical Re-
port 86-45, ICASE, July 1986. to appear in JEEE Transactions
on Compulers.

[12] D.M. Nicol and J.H. Saltz. Optimal Pre-scheduling of Problem

Remappings. Technical Report 87-52, ICASE, September 1987.
submitted for publication.

(18] D.M. Nicol and J.H. Saltz. Principles for Problem Aggregation
and Assignment in Medium Scale Multiprocessors. Technical
Report 87-89, ICASE, July 1987. submitted for publication.

[14] J. K. Peacock, E. Manning, and J. W. Wong. Synchronization
of distributed simulation using broadcast algorithms. Computer
Networks, 4:3~10, 1980.

{15] D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils and prob-
lem partitionings: their influence on the performance of multiple
processor systems. IEEE Trans. on Computers, C-36(7):845~
858, July 1987.

Btography: David Nicol received the B.A. in mathematics from
Carleton College in 1979, and the M.S. and Ph.D. degrees in Com-
puter Science from the University of Virginia in 1983 and 1985. He
was a programmer/analyst with Control Data from 1979 to 1982,
and a staff scientist with ICASE from 1985-1987. Currently he is
an assistant professor of Computer Science at the College of William
and Mary. His mailing address is

Department of Computer Science
College of William and Mary
Williamsburg, VA 23185



