Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

THE CONTROL AND TRANSFORMATION METRIC:
TOWARD THE MEASUREMENT OF SIMULATION MODEL
COMPLEXITY

Jack C. Wallace
Georgia Tech Research Institute
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.

ABSTRACT

Current complexity metrics based upon graphical
analysis or static program characteristics are not well suited
for discrete event simulation mode! representations, owing
to their inherent dynamics. This paper describes a
complexity metric suitable for model representations. A
study of existing metrics provides a basis for the
development of the desired metric, and a set of
characteristics for a simulation model complexity metric is
defined. A metric is described based on the two types of
complexity that are apparent in model representations.
Experimental data are presented to verify that this metric
possesses the desired characteristics. Based on evaluation
of this data and the desired characteristics, this metric
appears to offer an improvement over existing metrics.

1. INTRODUCTION
1.1 Background

Current complexity metrics based on graphical analysis
or static program characteristics (such as the number of
lines of code) are not well suited for simulation model
representations, due to the inherent dynamics of models.
A metric suitable for models represented by Condition
Specifications or World View Specifications (described
below) is developed in this paper. The use of these
representational forms is motivated by the desire to
introduce informative diagnosis early in the modeling
process. These forms “introduce an intermediate form
between a conceptual model (the model as it exists in the
mind of the modeler) and an implementation of that
conceptual model. A model implementation, even using a
simulation programming language, often includes many
factors ... which may obscure the conceptual model being
implemented”. {Overstreet 1985, p.200)

To present what follows, some preliminary definitions
are useful. The following definitions are taken from
Overstreet (1982).

1.2 Definitions

A condition specification (CS) consists of two
components; a description of the communication interface
for the model and a specification of the dynamics of the
model. The communication interface can be derived from
the description of internal dynamics for the mode! and is
assumed to be system generated. The internal dynamics of
the model are described (formed) by a set of ordered pairs
called condition action pairs (CAPs). Figure 1 shows an
example of a condition specification.

An Action Cluster (AC) is a collection of CAPs with the
same condition. An ACspecifies a model action.

597

Action Cluster Name: Action(s)
Condition
Initialization: READ (n,max__repairs, meanuptime,
initialization meanrepairtime);

CREATE (repairman);
FORiI=1(TONnDO
CREATE (facility(i));
failed(i) : = false;
SET ALARM (failure(i}), Neg-exp
{meanuptime)};
END for;
num repairs:=0;
location : = idle;
status: = avail;

Termination:
num repairs
> =max repairs

STOP;

Failure (i:1..n):
WHEN (failure(i))

faited(i) : = true;

Begin__ Repair (i:1..n):

ISET ALARM (endrepair, Neg exp
WHEN (arrfac) SN

{meanuptime));
status : = busy;
location : = fac(l);

End Repair(i:1..n):

| [SET ALARM ((failure, Neg exp
WHEN (endrepair) (m

(meanuptime));
failed (i) : = false;
status : = avail;
num__repairs : = num__repairs + 1

Travel to_Idle: SET ALARM (arrival, traveltime (location,
(FORALLTI< +i< +n, idle)):
failed(l)) & status : = travel;

status = avail &
location = idle

Arrive _Idle:
WHEN (arrival)

status : = avail;
location : = idle;

Travel to Facility:
status = avail &
(FORSOME 1< =i<

= n,failed(i))

ir= Closest_failed_fac (location);
SET ALARM (arrfac, traveltime{location,
fac(iny;

status : = travel;

Figure 1: Minimal Distance Repairman Condition
Specification

A control attribute of an AC is any attribute that
appears in the condition of the AC. A control attribute can
be either time-based or state-based.

An output attribute of an AC is any attribute that is
modified by the actions of the AC. (An attribute can be
both a control and output attribute for a given AC.)

An Action Cluster Incident Graph (ACIG) is a graph




J.C.Wallace

representing the relationships among ACs in the model.
For each AC X in the CS, a set of ACs can be identified that
can occur as a result of the actions of X. An ACIG can be
algorithmically constructed to represent the
interconnections among action clusters. This graph may
include connections (arcs) which could never occur. No
algorithm can exist to produce a completely simplified
ACIG (Overstreet 1982). However, extensive simplification
can be done and a reasonable graph is easily constructed.
Throughout this paper, all ACIGs are assumed to be
simplified. Figure 2 shows the ACIG corresponding to the
CSin figure 1.

Initialization

\ A4

Failure
Travel__to__Facility
v

Begin__Repair

v

End__Repair

Travel _to_Idle

v

Arrive__Idle

time-based
condition-based

Termination

Figure 2: Minimal Distance Repairman Action Cluster
Incidence Graph

A nodein an ACIG represents an AC.

World views are the different sets of representational
constructs that provide ways of describing model behavior.
A CSthat has been translated into one of the world views is
referred to as a World View Specification (WVS) described
in Overstreet and Nance (1986). Three world views are
widely recognized and used (Kiviat 1969). Each of the
world views provides a different type of locality. Weinberg
defines locality as "that property when all relevant parts of
a program are found in the same place" (Weinburg 1971,
p-229). The world views are described in the following
paragraphs. A CS can be algorithmically transformed into
the three world views as shown in Overstreet and Nance
(1986).

In an event scheduling world view, the modeler
specifies when actions are to occur in a model. This world

598

view is based upon the scheduling of actions at certain
points in time (locality of time).

In an activity scanning world view, the modeler specifies
why actions are to occur in a model. This world view is
based upon the reasons that cause model actions to occur
(locality of state).

In a process interaction world view, the modeler
specifies the components (or subsystems} of a model and
describes the actions of each component individually. This
world view is based upon the definition of system behavior
by the definition of the action sequences of each
component (locality of object).

2. IN'SEARCH OF A METRIC
2.1 Desired Characteristics

The following paragraphs describe some of the
characteristics required of a complexity metric. These
requirements are identified to meet the specific needs of a
modeler. Significant among these needs is the form of the
model representations to be used.

Psychological Complexity. The metric must measure
psychological complexity as opposed to computational
complexity. As defined by Curtis (1980, p.1147);
computational complexity "relies on the formal
mathematical analysis of such problems as algorithm
efficiency and use of machine resources,” while
psychological complexity "is concerned with the
characteristics of software which affect programmer
performance”.

Compared with psychological complexity, a
computational complexity metric is easier to develop and
validate. However, the life-cycle costs of a model are often
more dependent on factors influencing the difficulty in
modifying a model or establishing credibility.
Computational complexity is directly related to execution
efficiency {time and space), but may be unrelated ‘to
maintaining, modifying or understanding a model, all of
which are prominent in model life-cycle costs. A
programmed model should run as efficiently as possible,
but absolute measures vary from computer to computer
and translator to translator.

A psychological complexity metric cannot be proven
correct conclusively. Opinions of what constitutes
psychological complexity (complexity of understanding)
vary. A program (model) property that causes someone to
view the program (model) as being complex may actually
be perceived to introduce simplicity by others. Such
differences in opinion complicate the development and
validation of a metric. Despite the absence of a uniform
view of complexity, the factors contributing to it, and the
dependency on representational forms, measures of model
complexity, particularly psychological complexity, are
essential in guiding the model development task and
estimating the effort required.

Generality of Use. The metric must be usable not only
on a CS but also on WVSs. This generality aids a modeler in
the decision on which world view to use for
implementation in a simulation programming language.
The desired metric cannot be depended upon to give
absolute information on which world view (or language)
executes most efficiently, but should give information on



The Control and Transformation Metric:

how understandable a programmed representation of the
model may be.

Lower Measures for Condition Specification. The
metric should give lower values for a €S than for any
corresponding WVS, since the CS is the most primitive
representation. Each node in a WVS consists of one or
more nodes from the CS. Each of the CS nodes "retains” all
arcs when translated.

Dynamic Characteristics. Simulation models are
inherently dynamic; therefore, the metric must attempt to
assess dynamic characteristics and not be limited to static
properties of a model representation such as lines of code
or number of operators. Static characteristics must be
considered when they affect understandability. The metric
must measure in some way the temporal transitions
("flow") of the mode! from one state to another.

Simple and Understandable. The metric must be simple
and comprehensible. Confidence in a metric is reinforced
by intuitive appeal. A metric which is difficult to explain or
which depends on vague properties is unlikely to find
support. An objective of the Mode!l Development
Environment (MDE) Project at Virginia Tech (under which
this metric was developed) is to create modeling tools that
are powerful yet simple to comprehend and to provide a
modeler with as much support as possible (perhaps
described as maximum aid with minimum effort). An
overly complicated metric violates this idea. How helpful
can a metric be if the user does not understand the basis of
the metric?

Baseline. The metric should admit a potential baseline
measure. If the metric is used on just one model and not
used to compare two models (or versions of a model), can
some information still be gained by the modeler? Can a
modeler determine if the model is sufficiently complex to
justify modification or respecification? Or is the model
"simple" enough to justify continuing toward
implementation? The metric should be in a form such that,
given a model representation, a lower limit on the
complexity of the mode! can be determined. This limit
need not be the lower bound on the complexity. In fact, it
does not seem possible algorithmically to determine a
lower bound on the complexity of a model representation
for a given conceptual model.

2.2 Considerations in Metric Definition

Depending on the intended application, any metric is
likely to exhibit some inadequacy. The challenge is to
construct a metric that incorporates as many desirable
characteristics as possible while avoiding the undesirable.
In a sense, a metric often is a synthesis of tradeoffs, and the
objective is to achieve the best balance. The strategy
followed in this work is based on the recognition that
psychological complexity can neither be conclusively
defined nor precisely measured. What is measurable are
the properties of a model representation that are believed
to reflect psychological complexity, as defined by previous
research in program complexity.

3. EXISTING METRICS

Current complexity literature deals almost exclusively
with program complexity. What little exists on model
complexity deals with either graphical analysis or the use
of existing program metrics. However, a model

599

represented by a CS or any of the three WVS is not a
program or a graph. A program is an executable model
representation. As such, certain factors needed for
execution are included. These additions could constrain
the model in a way that increases (or decreases) the
complexity of the model. A model represented by a CS or
WVS is not executable and, in a sense, is a "purer”
representation of the model. Asdescribed in Zeigler (1976)
"the criterion for accepting ... a measure of complexity is
that it relates to the difficulty with which the behavior of a
model may be inferred..." . In a model represented by a
program, the behavior of the model is merged with details
of execution.

However, a study of some existing program metrics can
be useful. Examination of existing metrics provides a
starting point for development of the desired model
complexity metric.

Study of these metrics with respect to a CS reveals two
basic elements of complexity to be considered.
Transformation complexity measures the complexity of the
function (transformation) performed by a cluster. Control
complexity measures the complexity of the
interconnections among clusters. These interconnections
are represented by an ACIG.

Arc-to-node ratio (ANR), McCabe’s (1976) metric, Myer’s
(1977) metric and the knot metric (Woodward, et, al. 1979)
can be classified as control complexity metrics. Chapin’s
(1979) metric, the structure metric (Henry and Kafura 1981)
and Halstead's (1977) metric are transformation metrics.
Hansens’ (1978) metric, Mill's {1973) metric, Zolnowski and
Simmon’s (1977} metric and the chunks metric (Davis 1984)
combine control and transformation complexity in various
ways. Other metric definitions have been studied,
however the referenced metrics provide the most insight
into the problem of model complexity. A more detailed
discussion of these metrics and their applicability to models
can be found in Wallace (1985).

A model complexity metric must incorporate both
control and transformation complexity. A model is
inherently dynamic since control continually passes from
one model component to another. Consequently, a metric
that measures only transformation complexity is not
sufficient. However, the complexity of mode! actions also
contributes significantly to the overall complexity of a
model; thus a metric that only evaluates control
complexity is also not sufficient. Both control and
transformation complexity must be incorporated in the
model complexity metric.

4. THE CONTROL AND TRANSFORMATION METRIC

4.1 Definition of the Control and Transformation Metric

Considering the CS in its ACIG representation, where
each action is a node, the CAT metricis defined as:

n
MC = D(2*RW; + 1.5*W; + Rj) *A;
i=1 N

where
MC = model complexity
RWi = number of variables in node i read and written
Wi = number of variables in node i written only
Ri = numberofvariablesin nodeiread only
Ai = number of arcs entering or leaving node i
N = total number of nodes



J.C.Wallace

The parenthetical expression defines the transformation
complexity portion of the metric. The type dassification
RW, W and R are from Henry and Kafura's (1981) structure
metric. The weights are similar to those found in Chapin
(1979). Control complexity Ai/N is determined by counting
the number of arcs entering and leaving node |
(Fanin + FanOut). The complexity of each node is summed
to determine model complexity.

One last adjustment is made to the metric. The
initialization and termination nodes are ignored by the
metric (in the WVS, actions that evolve from these two
nodes are ignored). This is to avoid undue influence by
nodes that are not representative of dynamic behavior.
Otherwise, a very large initialization and/or termination
node (each executed only once) can cause the measure to
be an inaccurate reflection of the complexity contributed
by nodes that are repeatedly executed; i.e. those action
clusters that represent the repetitive nature of model
behavior.

Skeptics can protest that the use of the number of
nodes as a divisor can make it possible for a "large” model
representation to have a lower complexity than a "small"
model. This formulation could also encourage
unwarranted decomposition of the model into smaller ACs
in order to minimize the resulting complexity measure.
However, each AC represents some action of the model
itself and not just anarbitrary action that only partially

represents some "happening” in the model. If an action of

a model requires extensive transformations then this
should be reflected in the representation.

The main purpose of including the division in the metric
is to incorporate the benefits of the ANR. The ANR
represents the uncertainty of the control path. Depending
upon what kind of arcs are counted, the ANR reflects the
uncertainty of where control came from, where control can
pass, or both. For example, a ratio of 5/8 means that of the
eight nodes in the model representation, five can pass
control to and/or from this node. A ratio of 9/10 shows
what might be referred to as a complexity bottleneck; this
node can affect almost all other nodes in the model. A
ratio of 9/100 is not as serious; even though this node
affects the same number of its counterparts, only a small
percentage are affected.

Fan-in represents the number of places from which the
node could receive erroneous data. If an error is detected
at the node, fan-in represents the number of immediate
predecessor nodes to be examined in order to find what
could have caused this error. If the node is modified, the
fan-in represents the number of additional nodes having
some effect on this change: what can cause this change to
be exercised (perhaps mistakenly). A high fan-in shows the
potential of the node to be called many times. For
example, a node with fan-in of one is not likely to be
activated as often as a node with fan-in of ten.

Fan-out, on the other hand, represents the number of
nodes to which control can pass after completion of the
current node’s actions. This is appealing since it represents
the potential for error propagation at the first level. A
modification to a node can have an immediate effect upon
all nodes that can be subsequently activated. When
examining a representation, the fan-out represents the
difficulty in determining which of the immediate
successors is actually given control.

600

4.2 Review of Requirements

Psychological Complexity: the CAT metric measures
usage of variables and flow of control among nodes. These
factors could affect computational efficiency, but are more
related to psychological complexity.

Generality of Use: CSs and WVSs are represented by
action clusters of similar construction. ACIGs can be
constructed from either form. Therefore, the CAT metric
applies equally well to CSs and WVSs.

Lower Measures of Condition Specification: since nodes
are either combined or unchanged during transformation
from a CS to a WVS, the average transformation
complexity of each node in a CS will be lower than for any
corresponding WVS. This also results in a larger number of
nodes for the CS than for any corresponding WVS (hence a
larger divisor). Consequently, the CS exhibits a lower
complexity than for any corresponding WVS.

Dynamic: the CAT metric incorporates flow of control
into the metric through use of the control complexity
factor.

Simple and Understandable: the CAT metric is very
simple and straightforward and uses reasonable weights
for the three types of data.

Baseline: There is a potential for a baseline. Since
nodes represent an action of the model, then each of these
actions would tend to occur in any version of the given
conceptual model. The minimum code’in a node involves
one variable being set to a constant (i.e. TCi = 1.5 for all i).
The difficulty is determining the minimum number of arcs
for the model. Since all nodes are assumed to exist, all arcs
are also assumed to exist. Since this assumption could very
easily be wrong, the baseline is not necessarily the lower
bound for the conceptual model. Conversely, it may be
impossible to even approach this baseline measure since it
is doubtful that all model actions can be accomplished by
setting only one variable to a constant.

5. EXPERIMENTAL RESULTS

This experimentation is to compare the CAT metric with
other metrics and to evaluate how the CAT metric reacts to
selected models (Nance 1971). The test set is devised to
evaluate the ability of a metric to react to specific
properties. Five CSs are used as a test set. These model
have implicit rankings among themselves. Some of these
rankings appear in the CS representations while others
appear after transformation into a WVS. The five models
are:

® Minimal distance machine repairman.
® First fail, first fix (4F) machine repairman.

® Patrolling machine repairman - in this model the
repairman patrols a circuit encompassing all
machines. If a machine has failed, he stops to fix it,
otherwise he continues his circuit.

® Infinite server machine repairman - two types of
machine failure can occur and there is always an
available repairman.



The Control and Transformation Metric:

e Manufacturing model - this model is described in
Henrikson (1981).

These five models provide a broad spectrum for
experimentation. The manufacturing model is constrained
almost exclusively by state-based conditions and as such fits
very well into an activity scan world view. The infinite
server machine repairman problem is almost exclusively
time dependent and as such fits very well into an event
scheduling world view. Therefore, there is an implicit
ranking between these two models after translation into
WVSs. The other three CSs are not as close to a particular
world view. However, they have a distinct ordering in
terms of complexity of CSs. The 4F version is a
simplification of the minimal distance problem, since the
functions to implement the queue are much simpler than
the functions determining the closest failed facility. The
action clusters of the patrolling model are simpler than the
AF model, yet the two AGIGs differ only slightly. (The CS,
WVSs)and ACIGs for this test set can be found in Wallace
1985.

Differences among metrics must be attributable to
distinguishable properties of the CAT metric. Differences
between the CAT metric and other metrics should be
attributable to desirable characteristics of the CAT metric.
These differences must be easily defended, i.e., a casual
examination of the model representation and/or the ACIG
should confirm the preference for the result given by the
CAT metric.

Experimental results are obtained by applying the
metrics to CS representations. The CS representations are
transformed into the three world views and the metrics are
reapplied. The metrics used are:

® The CAT metric.

e Number of lines.

Halstead's metric.

ANR. Arc-to-node ratio. Thisis determined using
the ACIG.

McCabe's metric (cyclomatic complexity). This is
determined using the ACIG (as opposed to using the
predicates in the model representation).

® Chunks metric.

5.1 Comparison of Condition Specification Results

Table 1 summarizes the results of applying the various
metrics to the CSs in the test set. All values for a particular
metric are normalized by dividing by the lowest value for
that metric. Normalization assists in relative comparisons,
which in some cases are more meaningful.

The ANR and McCabe metrics (control complexity
metrics) give comparable results. The lines of code and
Halstead metrics (transformation complexity metrics) also
give comparable results.
transformation metrics rank the models identically with
only one exception. However, the CAT and control metrics
different from the transformation metrics. Comparison of
the CAT and control metric values reveal differences
between them. Nevertheless, closer examination of the

In terms of ranking, the

601

Table 1: Complexity Measure Results by Condition
Specification

Shectcation | CAT| fnat | seva | ANR | i | chunks
min dist 2.49 1250 {2.02 |1.18 }1.33 | 6.14
4F 2.25 12.38 {1.95 {1.18 ]1.33 | 4.89
patrolling 1.21 |1 1 1.24 11.67 | 2.02
manufacturing | 2.14 [1.75 {1.57 }1.48 |2 4.34
infinite server |1 1.88 11.54 |1 1 1

CAT metric permits meaningful distinctions to be attached
to these differences.

The CAT and control metrics show the infinite server
model to be least complex, while the transformation
metrics rank it above the patrolling model. The difference
stems from the lower control complexity of the infinite
server CS that diminishes the overall effect of higher
transformation complexity. The difference between the
CAT and control metrics applied to the patrolling model
stems from higher control complexity, which offsets the
effect of a low transformation complexity.

The CAT metric determines the modified
manufacturing CS as (a distant) third, but all other metrics
choose it as fifth or sixth. This CS has 18 lines but only 2.25
lines per node. The manufacturing, minimal distance and
4F CSs each have more lines per node. The contro!
complexity for the manufacturing CS is not much higher
than for the other models. Consequently, the CAT metric
exhibits a lower value based on low complexity per node.

Another interesting result is the CAT metric selects the
4F CS as fifth, but the transformation metrics pick it fourth
and the ANR second. However, examination of both the CS
and the ACIG reveals that the nodes with the highest
control complexity also have the most actions (i.e., higher
transformation complexity). Therefore, the CAT metric
results in a higher value than any other metric. The CAT
metric chooses the minima!l distance CS as most complex
for the same reasons. Most importantly, the CAT metric
ranks the three repairman models in the correct order
based on prior examination and the experience in
development of analytical models.

5.2 Comparison of Results by Problem Type

Table 2 summarizes the results by problem type. In all
cases, the CS (or modified CS) exhibits less complexity than
any of its translated versions, which fulfills one of the
requirements. As expected, the manufacturing mode! fits
best into an activity scan world view according to the CAT
metric, since model transitions are based primarily on state
conditions.

In the infinite server model, the event scheduling world
view gives a lower result than the other world views, again
as expected, since the infinite server model is primarily
time dependent. The transformation metrics evaluate the
process interaction world view as least complex, but the
CAT metric evaluates it as a distant third because the event
version has many nodes and few transformations per node.



J.C. Wallace

Table 2: Results by Problem Type

i !;_ryopbelem CAT #nce’z stH:e:-d ANR c“g;; Chunks
Min dist
cs 1 1 1 1 1 1
event 1.95 {2.15 |1.84 |1.13 |1 1.56
activity 2.03 11.10 [1.09 |1.13 |1 1.27
process 3.39 {2.05 |1.50 {1.50 {1.25 {2.29
4F ‘
cs 1 1 1.10 |1 1 1
event 192 {1.79 {1.58 [1.13 |1 1.16
activity 2.09 {111 |1 1.13 |1 1.43
process 3.34 {1.79 [1.39 [1.50 [1.25 [2.29
Patrolling ‘
cs 1 1 1.19 |1 1.25 |1
event ~ [3.34 [2.00 [1.70 {1.19 [1.25 {1.16
activity 2.83 {1.25 |1 1.07 {1 1.43
process 4.65 12.63 [1.99 [1.43 [1.25 [3.43
Manufacturing
cs 112 |1 1 111 }1.20 |1
event 7.71 13.86 {2.66 |{1.78 |1.40 [4.22
activity 1.49 11.64 {1.18 |1.07 |1 1.59
process 2.94 11.86 |1.26 |1.55 [1.20 |2.08
Infinite Server ‘
cs 1 1 1.35 |1.13 |1.50 |1
event 1.35 11.73 |1.58 {1.17 |1.50 |3.53
activity 5.07 |1.45 {1.55 }2.00 |2.50 }|5.28
process 3.38 11.18 |1 1 1 3.64

In the remaining machine repairman problems,
relatively equal emphasis is placed on time-based and
state-based conditions. Consequently, little difference is
observed between the results for the event scheduling and
activity scan world views.

In the single-repairman models, the process interaction
world view is easily the most complex WVS. This outcome
is at least intuitive, and an explanation can be
substantiated somewhat from the literature (Nance 1971).

Essentially, extra information is involved in separating a
model into processes. While this view may be the most
natural for some models and modelers, this extra
information is necessary either in an explicit or implicit
form. Extra information must impose a cost, which is
reflected in the results of the single-repairman models.
Much of the extra cost appears in the form of high control
complexity, resulting from the interaction among objects.

602

The manufacturing model is skewed towards an activity
scan world view. The extra cost for separating the model
into processes results in the process interaction WVS
exhibiting more complexity than the activity scan WVS.
However, this extra cost is not so great as to result in
process interaction displaying greater complexity than
event scheduling, since the manufacturing model is so
poorly suited to eventscheduling.

The infinite server mode! is skewed towards an event
scheduling world view. The extra cost of using a process
interaction world view results in process interaction
displaying more complexity than event scheduling, but not
so great as to allow activity scan to produce a lower result.

6. SUMMARY

A measure of model complexity is essential for
estimation of project resource requirements, comparison
and implementation decision, and assessment of
alternative representational forms. While program
complexity is a recognized area of research, little work is
evident in model complexity. A review of the program
complexity literature shows that current metrics, which are
based on graphical analysis or static program
characteristics, fail to capture the influences on complexity
stemming from the inherent dynamics of a model. These
metrics deal almost exclusively with program complexity.
However, a model represented by a CS or WVS is not
executable and cannot be considered to be a program. A
CS or WVS is, in a sense, a “purer” representation of.a
model since details needed for execution are not included.
The use of a CS of WVS also allows informative diagnosis
early in the model development process.

The CAT metric evolves from the recognition of two
types of complexity: transformation and control, both of
which are prominent in model representations. The metric
is designed to fulfill the defined set of requirements.

The CAT metric incorporates the inherent dynamics of
models through the use of control complexity. The metric
is designed to give a modeler information on the difficulty
in implementing and maintaining a model. The metric uses
reasonable weights for the three types of data defined and
uses a very simple function. The metric is applicable to
models represented by a CS or WVS. The CAT metric has a
potential for a baseline, therefore a modeler can gain
additional information even if there is only one version of
amodel.

The CAT metric responds well to the test set of models.
The metric discerns the implicit ranking in both the CS and
WVS representations. Differences in values among the CAT
metric and other metrics are attributable to desirable
characteristics of the CAT metric. Based on the
experiments described in this report, the CAT metric
represents an improvement over extant software metrics
for measuring the complexity of model representations.

ACKNOWLEDGMENTS

The author wishes to thank Dr. Richard Nance for his aid
in defining the scope of this paper. The author also thanks
Barbara Call of the Georgia Tech Research Institute for her
yeoman work on the typing, formatting and graphics
which were done under serious time constraints.



The Control and Transformation Metric:

REFERENCES

Chapin, N. (1979). A Measure of Program Complexity.
Proceedings 1979 AFIPS National Computer Conference,
995-1002.

Curtis, B. (1980). Measurement and Experimentation in
Software Engineering. Proceedings of the |EEE 68,
1144-1157.

Davis, J.S. (1984). Chunks: A Basis for Complexity
Measurement. Information Processing and
Management 20, 119-127.

Halstead, M.H. (1977). Elements of Software Science, P.J.
Denning, ed., Elsevier North-Holland, Inc., New York,
NY.

Hansen, W.J. (1978). Measurement of Program Complexity
by the Pair {(Cyclomatic Number, Operator Count).
SIGPLAN Notices 13, 29-33.

Henriksen, 1.0. (1981). GPSS - Finding the Appropriate
World View. 1981 Winter Simulation Conference
Proceedings, 505-516.

Henry, S. and D. Kafura (1981). Software Metrics Based on
information Flow. |EEE Transactions on Software
Engineering SE-7, 510-518.

McCabe, T.J. (1976). A Complexity Measure," |[EEE

Transactions on Software Engineering SE-2, 308-320.

Milis, H.S. (1973). The Complexity of Programs. Program
Test Methods, W.C. Hetzel, ed., Prentice-Hall, Inc.
Englewoaod Cliffs, NJ, 225-238.

Myers, G.J. (1977). An Extension to the Cyclomatic Measure
of Program Complexity. SIGPLAN Notices 12, 61-64.

Nance, R.E. (1981). The Time and State Relationshipsin
Simulation Modeling, Communications of the ACM, 24,
173-179.

Nance, R.E. {(1971). On Time Flow Mechanisms for Discrete
System Simulation. Management Science 18, 59-73.

Overstreet, C. M. and R. E. Nance (1986). World View Based
Discrete Event Model Simplification. Modelling and
Simulation Methodology in the Artificial Intelligence
Era, M. S. Elzas, T.I. Oren and B. P. Zeigler, ed., Elsevier
North-Holland, Inc., New York, NY.

Overstreet, C.M. and R.E. Nance (1984). Graph-based
Diagnosis of Discrete Event Model Specifications.
Technical Report CS83028-R, Department of Computer
Science, Virginia Tech.

Overstreet, C.M. (1982). Model Specification and Analysis
for Discrete Event Simulation. Ph.D. Dissertation,
Computer Science Department, Virginia Tech.

Wallace, 1.C. (1985). The Control and Transformation
Metric: A Basis for Measuring Model Complexity.
Technical Report TR-85-15, Systems Research Center,
Virginia Tech, Blackburg, Virginia.

603

Weinberg, G.W. (1971). The Psychology of Computer
Programming Van Nostrand Reinhold Co., New York,
NY.

Woodward, M.R., M.A. Hennell and D. Hedley (1979). A
Measure of Control Flow Complexity in Program Text.
IEEE Transactions on Software Engineering, SE-5, 45-
50.

Zeigler, B.P.(1976). Theory of Modeling and Simulation,
John Wiley and Sons, New York, N.Y.

Zolnowski, J.M. and D.B. Simmons (1977). Measuring
Program Complexity. Proceedings of the 1977 Fall
COMPCON, IEEE, 336-340.

AUTHOR'S BIOGRAPHY

JACK C. WALLACE is a Research Scientist for the
Computer Systems and Technology Division, Electronics
and Computer Systems Laboratory, Georgia Tech Research
Institute. He received a B.S. in Computer Science from the
University of Dayton in 1982, and an M.S. in Computer
Science and Applications from Virginia Tech in 1985. His
current research interests include modeling and
simulation, software metrics, computer graphics and
human-computer interfaces.

Jack C. Wallace

GTRIECSL/CSTD

Georgia Institute of Technology
Atlanta, GA 30332, US.A.

(404) 894-3523



