Proceedings of the 1987 Winter Simulation Conference
A, Thesen, H. Grant, W. David Kelton (eds.)

USING GRAPHS TO TRANSLATE BETWEEN WORLD VIEWS

C. Michael Overstreet
Computer Science Department
Old Dominion University
Norfolk, VA 23529-0162

ABSTRACT

The standard world views for discrete event simulation of
event scheduling, activity scanning, and process interaction are
each used for model implementation, each supported by one or
more simulation programming languages. We present transforma-
tions of a model representation in one form into model represen-
tations into each of these world views., This transformation pro-
cess is interesting in that 1) it requires a characterization of each
of these world views and 2) it demonstrates the potential of each
world view to simplify a model specification.

1. INTRODUCTION

The world views offered by different simulation program-
ming languages such as SIMULA (Dahl 1966), (Birtwistle 1973),
SIMSCRIPT (Markowitz, Hausner and Karr 1962), (C.A.CI
1983), GPSS (Schriber 1974), (IBM 1971), (Henriksen and Crain
1983), and ECSL (Buxton and Laski 1963), (Clementson 1966)
provide alternative approaches for creating an executable model,
that is, a program, which can be used to enhance understanding
about a real or imagined system. We present an informal charac-
terization of the three world views described by Lackner (1962,
1964) and Kiviat (1969) and then present transformations of a
model specification in the form of a condition specification (dis-
cussed below) into each of these world views. These world
views are usually called event scheduling, activity scanning, and
process interaction. See, for example, Fishman (1973, pp. 24-
25), Zeigler (1976, p. 144), Gordon (1978, pp. 289-290), and
Hooper (1986, p. 153). ‘

Section 2 provides an informal characterization of the three
discrete event simulation world views, and Section 3 gives an
overview of conditions specifications, the starting point for each
of the transformations, along with an example which is used to
illustrate the transformations. Section 4 presents transformations
from a condition specification into each world view. Section 5 is
a summary.

2. WORLD VIEW CHARACTERISATION

Our understanding and characterization of these world views
is most directly influenced by Fishman and Nance. What we
describe is an extension of their characterizations. Directly
relevant pieces of their work are quoted here.

Fishman gives the following definitions and brief discussion
of world views.

The concepts of event, process, and activity are especially
important when building a model of a system. As already
defined, an event signifies a change in state of an entity.
A process is a sequence of evénts ordered on time. An

582

activity is a collection of operations that transform the state
of an entity. (Fishman 1973, p. 24)

These three concepts give rise to three alternative
ways of building discrete event models [Fishman here
references (Kiviat 1967)). The event scheduling approach
emphasizes a detailed description of the steps that occur
when an individual event takes place. Each type of event
naturally has a distinct set of steps associated with it. The
activity scanning approach emphasizes a review of all
activities in a simulation to determine which can be begun
or terminated each time an event occurs. The process
interaction approach emphasizes the progress of an entity
through a system from its arrival event to its departure
event. The development of the three concepts is related to
the development of discrete event computer simulation pro-
gramming languages. In particular, SIMSCRIPT and
GASP use the event scheduling approach; GPSS and
SIMULA, the process interaction approach; and CSL, the
activity scanning approach (Fishman 1973, p. 25).
Nance provides a careful characterization of the concepts

underlying these world views. These definitions have influenced
the world view formulation presented below.

— An activity is the state of an object over an interval.

— An event is a change in object state, occurring at an
instant, that initiates an activity precluded prior to that
instant.

An event is determined if the only condition on
the event occurrence can be expressed strictly as
a function of system time. Otherwise, the event
is contingent.

— An object activity is the state of an object between
the events describing successive state changes for the
object.

— A process is the succession of states of an object
over a span (or the contiguous succession of one or
more object activities), (Nance 1981, p. 176)

The activity scanning approach is little used in the United
States. For example, while Fishman discusses three world views -
in his 1973 text (quoted above), his later 1978 text presents only
two: event scheduling and process interaction (Fishman 1978).
Likewise in their 1982 text, Law and Kelton only mention event
Scheduling and process interaction (Law and Kelton 1982).
While Banks and Carson describe three world views, they substi-
tute "continuous" for activity scanning. (Banks and Carson 1985,
p. 225). Activity scanning has wider acceptance in the United
Kingdom, providing the basis for languages such as SIMON
(Hills 1967), CAPS (Hutchinson 1975), and the various DRAFT
systems (Mathewson 1976, 1977a, 1977b, 1984, 1985).

The current version SIMSCRIPT no longer emphasizes the
¢vent scheduling world view but has joined what seems to be, in

Using Graphs to Translate Between World Views

the United States at least, a process interaction band wagon.
Indeed, in Russell’s tutorial text published by CACI, the vendor
of the SIMSCRIPT IL5 compiler, event is defined as "a pending
(re)activation of a process" (Russell 1983, p. 2-6) and his exam-
ples all use PROCESS rather than EVENT routines (except one
example included explicitly to illustrate the syntax of EVENT
routines).

In spite of the influential work of Zeigler (1984), which pro-
vides formal definitions of these world views from a general sys-
tems theory perspective, no generally accepted definitions exist.
Instead, each provides an alternate approach to organizing a
specification of model behavior. This, rather than a formal,
mathematical formulation, is what is described below.

Based on what seems to be the essence of the model decom-
position approach encouraged by the different world views, we
present an informal characterization of each world view. We
characterize each world view as emphasizing a different type of
locality. Locality, as defined by Weinberg, is "that property when
all relevant parts of a program are found in the same place”
(Weinberg 1971, p. 229). This definition is appealing since it
emphasizes, perhaps unintentionally, that the property of locality
is problem dependent. Different pieces of a program are required
to understand different aspects of the program, that is, different
pieces are relevant to different problems.

Each world view emphasizes a different type of locality.

¢ Event scheduling emphasizes locality of time. Each event
routine in a model specification describes a collection of
actions which may normally all occur in one instant, ie.,
with no time advance.

e Activity scanning emphasizes locality of srate. Each
activity routine in a model specification describes a collec-
tion of actions which will occur once the model achieves a
specified state. These resulting actions may occur at
different values of time, but once the state is achieved, they
must all occur.

e Process interaction emphasizes locality of object. Each
process routine in a model specification describes all actions
taken by one model object (or, more properly, one class of
model objects). The description of each object may incor-
porate both event and activity orientations.

Each world view is illustrated below.

3. CONDITION SPECIFICATION AND AN EXAMPLE

To illustrate how each world view provides alternate organi-
zations of the same information, we will describe transformations
of a model specification into each of these world views. The
language used here for model specification is described in Over-
street -and Nance (1985) but we present a brief description and
example here.

A discrete event model specification in the form of a condi-
tion specification (CS) consists of three components:

1. An interface specification which identifies all model inputs
and outputs.

2. A specification of model dynamics, consisting of

a. a set of object specifications, defining the attributes
comprising each class of objects in the model.

b. a set of action clusters (ACs). These are discussed
below.

3. A report specification of the data that are to be produced,
including how results are to be computed.

583

In the object specification, one attribute may be associated
with several model objects. These are similar to Nance’s rela-
tional attributes (Nance 1981, p. 26). The object attribute associ-
ation must be provided by the modeler.

Each action cluster consists of a condition and a list of
model actions. The ACs have simple semantics. The actions
associated with each condition are to occur whenever, and as long
as, the condition is frue. Possible actions include the standard
things done in a simulation programming language such as com-
putation and assignment of new attribute values, input/output of
attribute values, generation and elimination of model objects.

Three constructs are included for time management: Ser
Alarm, When Alarm, and After Alarm. While modeled on
Dijkstra’s semaphores, they have different semantics. The Ser
Alarm operation causes a specified alarm (an attribute with type
“time-based signal") to signal at a specified time. When Alarm
and After Alarm are similar in their function. Each is a Boolean-
valued component of an AC and name a time-based signal as an
argument; each detects a specified alarm. The When Alarm will
fest true only at an instant the time-based signal is set to occur;
the After Alarm will test true at the instant the alarm is scheduled
and will continue to test true until the entire Boolean expression
of which it is a component tests true.

A sample specification is given below. We also include an
informal model description and a study objective. Since our
interest here is model transformation, we have omitted the report -
specification; examples of report specifications can be found in
Overstreet (1982).

Informal Model Description:

System Description: Parts arrive for processing by one of
three identical machines. A machine is selected at random
from the set of available machines. Processing is sometimes
interrupted due to machine failure. Parts that have their pro-
cessing interrupted will be finished once their machine resumes
operation. Interarrival times, machine processing times, and
inter-machine-failure times are negative exponential.

Model Objective: Estimate the amount of time required to
process a fixed number of parts.

CS Specification .
Interface and object specifications are presented in Tables
1 and 2 respectively, actions clusters in Table 3. The syntax
used for model actions is similar to that of Pascal. A comment
precedes each action cluster and includes a two letter identifier
which is used in the graphs presented below.

Condition specifications also can be used to provide a basis
for model analysis to assist in model formulation and model
implementation. See Nance and Overstreet (1987, 1986), Bauer,
Kochar and Talavage (1985), Moose and Nance (1983), and Over-
street (1982) for illustrations of the types of analysis which have
been developed.

4. WORLD VIEW TRANSFORMATIONS

We now describe transformations of conditions specifications into
a model specification in any of our three world views. Each
transformation involves a similar process of generating a collection
of specification components which describe sequences of model
actions and which demonstrate locality of time, state, or object.
This is achieved in a three step process. First valid sequences of
mode] actions are identified. These are then grouped into event,

C.M.Overstreet

Table 1: Interface Specification for Condition Specification

Table 2: Object Specification for Condition Specification

Name Description Type Object Attribute Type
Inputs: System Tnitialization Time-based signal
PartnterarrivalTime | Average time between | positive real SystemTime Nonnegative real
part arrivals NumPartsToProcess | Nonnegative integer
ProcessingTime Cycle time required for a | positive real Machine[1 .. 3] | Initialization | Time-based signal
machine to process a part Status { busy, idle, failed }
MachineRepairTime | Average time to repair a | positive real FailedStatus { busy, idle }
failed machine RemProcessingTime | Nonnegative integer
MachineUpTime Average time until a | positive real EndService Time-based signal
repaired machine fails EndRepair Time-based signal
again MachineFailure Time-based signal
NumPartsToProcess | Number of parts pro- | positive integer MachineUpTime Positive real
cessed before simulation MachineRepairTime | Positive real
terminates ProcessingTime Nonnegative real
Outputs: EndProcessingTime Nonnegative real
SystemTime The time at which the | positive real RemProcessingTime | Nonnegative real
last part completes pro- MachineFailureFlag Boolean
cessing EndRepairFlag Boolean
.. ’ Parts Initialization Time-based signal
activity, or process sequences (depending on world view). The PartArrival Time-based signal
individual event, activity or process descriptions are then PartInterarrivalTime | Positive real
simplified. Reliance on graphical representations is central to this NumParisToProcess | Nonnegative integer
process. NumPartsProcessed Nonnegative integer
: . . RemProcessingTime | Nonnegative real
‘We identify potential sequences of model actions by first con- EndService Time-based signal
structing an Action Cluster Incidence Graph (ACIG). The graph PartsWaiting[1..3] | Nonnegative integer
for the above example is presented in Figure 1. An algorithm to EndProcessingTime | Nonnegative real

construct this graph is presented in Nance and Overstreet (1986).
The ACIG captures is the ability of one action cluster to directly

Table 3: Action Clusters (ACs)

Conditlon

Action

{ Initialization (IN) }
Initialization

Create(Parts)

Sct Atarm(PartArival, 0)

NumPartsProcessed = 0

Read(PartInteramrivalTime,
ProcessingTime,
MachineRepairTime,
MachineUpTime,
NumPansToProcess }

Forim1to3
Create(Machine[i})
Set Alarm(MachincFailure(i), NegExp(MachineUpTime))
Status[i] = idle
PartsWaiting[i] = G
End For

{ Termination (TE) }

i NumPartsProcessed » NumPartsToProcess

Output(SystemTime)
Stop

T Part Amives (PA) 1.
' When Alarm(PartArrival)

Set Alarm(PartAmival, NegExp(PartInterarrivatTime))
TargetMachine = Rand(1, 3)
PantsWaiting[TargetMachine] =

PartsWaiting[TargetMachine | + 1

{ Begin Service (BS) }

Status[i] = idle)

For Some i (PartsWaiting[i1>0 &

PartsWaiting[i } = PartsWaiting [1]- 1
EndProcessingTime[i] = NegExp(ProcessingTime)
Set Alarm(EndService(i), EndProcessingTime[i])
Status] i] = busy

{ End Service (ES) }

For Some i { When Alarm(EndService(i)))

Status{ i } = idle .
NumPartsProcessed = NumPartsProcessed + 1

{ Machine Failure Flag (MP) }

For Some i (When Alarm(MachineFailure(i)))

MachineFailureFlag[i] = true

{ Busy Machine Failure (BPF) }

Status[i] = busy)

For Some i { MachineFailureFlagli] &

MachineFailureFlag[i] = false

RemProcessingTime[i] = EndProcessingTime[i] - SystemTime
FailedStatus[i } = busy

Status{ i] = failed

Cancel(EndService(i))

Set Alavm(EndRepair(i), NegExp{ MachineRepairTime))

{ Idle Machine Failure (IF) }

Status[i] = idle)

For Some i (MachincFailureFlag[i] &

MachineFailureFlag[i] = false

FailedStatus[i] = idle

Status i } = failed

Set Alarm(EndRepair(i), NegExp(MachineRepairTime))

1 { End Repair Flag (ER) }

For Some i (When Alarm(EndRepair(i)))

EndRepairFlag[i] = true

‘| { Busy Machine Repair (BR) }

FailedStatus[i] = busy)

For Some i (EndRepairFlag{i] &

‘Status[i] = busy

EndRepairFlag(i] = false

Set Alarm(MachineFailure(i), NegExp(MachineUpTime))
Set Alarm(EndService(i), RemProcessingTime[i])

{ Idle Machine Repair (IR) }

FailedStatus{ i] = idle)

For Some i (EndRepairFlag[i] &

EndRepaitFlagl i] = false
Status[i] = idle
Sct Alarm(MachineFailure(i), NegExp({ MachineUpTime))

584

Using Graphs to Translate Between World Views

cause the occurrence of other action clusters either in the same
instant of time or at a future instant of time. The nodes in the
graph represent the Action Clusters of Table 3. Two notations for
edges are used: "..." denotes the ability of one Action Cluster to
cause the occurrence of another at a future instant; "---" denotes
the ability of one Action Cluster to cause the occurmrence of
another without a time delay (i.e., at the same instant). Overstreet
and Nance (1986) describe simplification procedures for this and
related graphs.

<1-I ‘ :
g<——— -m<- .
. Smm—— =P <

Figure 1. Action Cluster Incidence Graph

The transformation into each of the three world views is

based on the above graph and the world view characterizations of
Section 4.

e To create an event scheduling representation, the ACIG is
used to identify all model actions which are directly linked
and which can occur in a single instant of time.

The sequences of Action Clusters are represented by the Event
Subgraphs of Figure 2.

e To create an activity scanning representation, the ACIG is
used to identify all model actions which will occur once a
specified condition has been met, though the actions may
occur at different instants.

The sequences of Action Clusters are represented by the Activity

Subgraphs of Figure 3.

o To create a process interaction representation, the object
specification is used to associate attributes with objects, and
the ACIG is again used to describe sequences of actions asso-
ciated with each object. Sequences of noncurrent, sequential
behavior form the basis for each process description.

The sequences of Action Clusters are represented by the Process
Subgraphs of Figure 4.

IN

§<.. e

ES MF ER
| J I N I i
I 1 | I 1 | |
v v v v v v v
BS TE BS BF IF BR IR
Figure 2: Event Subgraphs
IN BS TE BF IF IR
v v v v v v v
PA MF ES ER ER MF ES
Figure 3: Activity Subgraphs
System Parts Machine
IN IN | [IN
ee 3 | v Ll Toeeea.
T] BS R :
Vv | : vVVV
PA | : MF
Ll } v I
{ ES i | 1 !
I 11 | v v v
v | BS BF iF :
TE | : FP
| : HEH
| v : vV
| ES : ER
| 11 : R
1 [i
v A v
TE .2

Figure 4: Process Subgraphs

Unsimplified Event

Simplified Event

Event End Repair (EndRepair(i))
EndRepairFiag[i] = true
{ Busy Machine Repair }
‘While ForSome i (EndRepairFlag[i] &
FailedStatus{ i] = busy)
EndRepairFlag[i] = false
Status{ i] = busy
Set Alarm(MachineFailure(i),
NegExp(MachineUpTime })
Set Alarm(EndService(i),
RemProcessingTime[i])
End While
{ Idle Machine Repair }
‘While ForSome i (EndRepairFlag[i] &
FailedStatus{ i] = idle)
EndRepairFlag{ i] = false
Status{ i] = idle
Set Alarm(MachineFailure(i),
NegExp(MachineUpTime))
End While
End Event

Event End Repair (i)

If FailedStatus[i] = busy)
Status{ i] = busy
Schedule(EndService(i),

RemProcessingTime[1])

Else
Status[i] = idle
End Else

EndRepairFlag[i] = false

Schedule(MachineFailure(1),
NegExp(MachineUpTime)

End Event

Figure 5: Simplification of End Repair Event Routine

585

BR

C.M.Overstreet

For each transformation, the subgraphs guide the creation of
event, activity, and process routines. After the sequence of actions
for each routine have been created, simplification of each routine,
at least in terms of reducing the number of statements and the type
of control structures used, is usually possible. Unfortunately,
space limitations prohibit full discussion of this topic. See Over-
street and Nance (1986) for a more complete discussion. Exami-
nation of the simplification possibilities for various models result-
ing from using alternative world views illustrates that each world
view allows simplier model specifications for some models; no one
is generally superior to the others.

The results of a typical simplification process are illustrated
in Figure 5 which presents the End Repair event before and after
simplification. Note that both the total number of statements have
been reduced and the control flow simplified.

Simplified specifications for each of the world views for the
example model are presented in their entirety in figures 6, 7, and
8. The keywords of timing and sequencing constructs have been

altered to conform to those commonly associated with each world
view.

Event Initialization

Create(Parts }

Schedule(PartArrival, 0)

NumPartsProcessed = 0

Read(PartInteramivalTime,
ProcessingTime,
MachineRepairTime,
MachineUpTime,
NumPartsToProcess)

Forimite3
Create(Machine[i ')
Schedule{ MachineFailure(i), NegExp(MachineUpTime))
Statusf i } = idle
PantsWaiting[i] = 0
End For

End Event

Event Part Arives

Schedule(PartArrival, NegExp(PartnterarrivalTime))

TargetMachine = Rand(1, 3)

I Status[TargetMachine] = idie
EndProcessingTime[TargetMachine] = NegExp(ProcessingTime)
Schedule(EndService(TargetMachine.), EndProcessingTime[TasgetMachine])
Statusf TargetMachine] = busy

Else
PartsWaiting[TargetMachine] = PartsWaiting[TargetMachine] + 1
End Else

End Event

Event End Service(i)
NumPartsProcessed = NumPartsProcessed + I
It NumPartsProcessed = NumPartsToProcess
Output(SystemTime)
Stop
End If
If PartsWaiting[i] > 0
PartsWaiting[i } = ParttsWaiting [1] - 1
EndProcessingTimel i] = NegExp(ProcessingTime)
Schedule(EndService(i), EndProcessingTime[i])
Else
Status(i] = idle .
End Else
End Event

Event Machine Failure(i)
It Status[i] = busy
RemProcessingTime{ i } = EndProcessingTimef i] - SystemTime
FailedStatus] i] = busy
Cancel(EndService(i))
Else
FailedStatus[i] = idle
End Else
Status[i] = failed
Schedule(EndRepair(i), NegExp(MachincRepairTime) }
End Event

Event End Repair (i)
It FailedStatus[i] = busy }
Status[i] = busy

586

Schedule{ EndService(i), RemProcessingTime[i])
Else

Status[i} = idle

End Eise
EndRepairFlag{ i] = false
Schedule(MachineFailure(i), NegExp(MachincUpTime)
End Event

Figure 6: Event Representation

Activity Initialization(Initialization)

Create(Parts)
NumPartsProcessed = 0
Read(PartlnterarrivalTime,
ProcessingTime,
MachineRepairTime,
MachineUpTime,
NumPartsToProcess)
TargetMachine = Rand(1, 3)
PartsWaiting[TargetMachine] = PartsWaiting{ TargetMachine 1 + 1
Fori:=1to3
Create(Machine[i])
Status[i } = idle
PartsWaiting[i] = 0
ConcurrentWalt(NegExp(MachineUpTime))
MachineFailureFlag[i] = true
End For
End Activity

Activity Begin Service{ ForSome i (PartsWaiting{ i } > 0 & Status[i] = idle)
PartsWaiting[i] = PartsWaiting [i]- 1
EndProcessingTime[i } = NegExp(ProcessingTime)
Status] i] = busy
Wait(EndProcessingTime[i1)
Status[i] = idle
NumPartsProcessed = NumPartsProcessed + 1 !

End Activity
Activity Terminafion(NumPartsP; d = NumPantsToProcess)
Output(SystemTime)
Stop
End Activity
Actlvity Busy Machine Failure(ForS i (MachineFailurcFlag[i) & Status{ i] = busy)

MachincFailureFlagf i] = false

RemProcessingTimef i] = EndProcessingTime[i } - SystemTime
FailedStatus[i } = busy

Status[i] = failed

Cancel(EndService(i))

Wait(NegExp(MachineRepairTime))

EndRepairFlag{i] = true

End Activity

Activity Idle Machine Failure(ForSome i (MachincFailureFlag[i] & Statusf i] = idle)

MachineFailoreFlag[i] = false
FailedStatus[i] = idle

"Status i] = failed

Walt(NegExp(MachineRepairTime))
EndRepairFlagf i] = true

End Activity

Activity Idle Machine Repair{ ForSome i (EndRepairFlag[i] & FailedStatus[i J = idle)

EndRepairFlag{ i] = false

Status[i } = idle

ConcurrentWalt(NegExp(MachineUpTime })
MachineFailureFlagl i] = true
End Wait

ConcurrentWait RemProcessingTime[i])
Status| i] =idle
NumPartsProcessed = NumPartsProcessed + 1
End Walt

End Activity

Actlvity Busy Machine Repair(ForSome i (EndRepairFlag[i] & FailedStatus{ i] = busy)

EndRepairFlagl i] = false

Status{ §] = busy

‘Walt(NegExp(MachineUpTime))
MachineFailureFlag[i] = true

End Activity

Figure 7: Activity Representation

Using Graphs to Translate Between World Views

Process System
{ Initialization }

Create(Parts)

Read(PastinterarrivalTime,
ProcessingTime,
MachineRepairTime,
MachineUpTime,
NumPartsToProcess)

Fori=1t03
Create(Machine[i])
End For

End Process System

Process Parts
{ Initialization }
NumPartsProcessed = O
Loop
{ Part Arrives }
TargetMachine = Rand(1,3)
PartsWanting[TargetMachine] = PartsWaiting(TargetMachine] + 1
Hold(NegExp(PartInteramrivalTime))
End Loop
End Process Parts

Process Machinel(i)
{ Initialization }
Status{ i | = idle
PartsWaiting[i] = 0
Hold(NegExp(MachineUpTime))
Loop
{ Busy Machine Failure }

If Status i] = busy
RemProcessingTime[i] « EndProcessingTime[i] - SystemTime
FailedStatus[} = busy
Passivate(Machine2(i))

{ Idle Machine Failure }

Else
FailedStatus[i] = idle
End Else

Status[i] = failed

Hold(NegExp(MachineRepairTime))

{ Busy Machine Repair }

If FailedStatus[i] » busy
Status] i] = busy
Activate(Machine2(i))

Else

{ Tdle Machine Repair }
Status[i] = idle
End Else

Hold(NegExp(MachineUpTime))

End Loop

End Process Machinel

Process Machine2(i)
{ Begin Service }
Loop
Wait Until(PartsWaiting[i] > 0 & Status] i] = idle)
PartsWaiting(i] = PartsWarting [§] - 1
EndProcessingTime[i] = NegExp(ProcessingTime)
Status{ i] = busy
Hold(EndProcessingTime[i])
If Passivated
Hold(RemProcessingTime[i])
End If
{ End Service }
Status{ i] = idle
NumParisProcessed = NumPartsProcessed + 1
{ Termination }
If NumPartsProcessed = NumPartsToProcess
Output(SystemTime)
Stop
End If
End Loop
End Process Machine2
Figure 8: Process Representation

5. Summary and Conclusions

Transformations into the event scheduling and activity scanning
world views are straightforward, at least into the unsimplified
forms, The symmetry of these two representational forms is
appealing. Part of the simplification process, which allows the
representations to take advantage of the target world view, can be
automated, though we have not demonstrated that here. Complete
simplification, which takes full advantage of the target world view,
is, however, impossible to automate. This is proven in Overstreet

(1982). We also observe that use of activity scanning need not
result in inefficient execution.

Transformation into process interaction requires more infor-
mation than is available in the Action Cluster Incidence Graph
though the ACIG is sufficient for event scheduling and activity
scanning. Our experience with a variety of models demonstrates
that the results the process interaction transformations are very
dependent on the Action-Cluster Object association provided by
the specifier. We know no clear rules for forming these associa-
tions. For the examples with which we have dealt, we find that
we provide an initial Action-Cluster Object association, perform
the transformation using the Action Cluster Incidence Graph
(which is a simple process), evaluate the results of this transforma-
tion, and often revise the initial Action-Cluster Object association
until a "more satisfactory" result is obtained.

In addition, if the model of what a process should look like is
based on Simula, and we restrict ourselves to control constructs
similar to those of Simula, then the description of each object gen-
erated as subgraphs of the Action Cluster Incidence Graph may
require addition decomposition. This is because Simula provides
no facilities for concurrency (even simulated concurrency) within a
single process; concurrency is represented by the use of separate
processes. The Process Subgraphs generated from the Action-
Cluster Incidence Graph may require further decomposition into
nonconcurrent components. This was the case in the example
presented in this paper. The automation of this decomposition
requires further study.

We have demonstrated that much of the model transformation
process can be automated. The transformation process enhances -
our understanding of the relationship and relative advantages of
each of the world views. The graphs which support these transfor-
mation are useful in a variety of contexts.

Acknowledgements
Many discussions with Richard E. Nance and Osman Balci of Vir-
ginia Tech have contributed to and refined the ideas presented
here.

REFERENCES

Banks, Jerry and Carson II, John S. (1985). Process-interaction
Simulation Languages. Simulation 44, 5, May, 225-235.

Bauer, Kenneth W., Kochar, Bipin, and Talavage, Joseph I.
(1985). Simulation Model Decomposition by Factor
Analysis. In: Proceedings of the 1985 Winter Simulation
Conference (E D. Gantz, E G. Blais, and E §S. Solomon,
eds.), (Dec. 11-13), 185-188.

Birtwistle, Graham, Dahl, Ole-Johan, Myhrhaug, Bjorn, and
Nygaard, Kristen (1973). SIMULA Begin. Studentlitteratur,
Anuerbach.

Buxton, John N. and Laski, John G. (1963). Control and Simula-
tion Language. The Computer Journal V, 194-199,

CACI (1983), SIMSCRIPT IL.5 Programming Language, C.A.ClJ,
Los Angeles, CA 90049.

Clementson, Alan T. (1966). Extended Control and Simulation
Language. The Computer Journal 9, 3, Nov., 215-220.

Dahl, O.-J. and Nygaard, Kristen (1966).
ALGOL-Based Simulation Language.

SIMULA - An
Communications of

587

C.M.Overstreet

the ACM 9, Sept., 349-395.

Fishman, George S. (1973). Concepts and Methods in Discrete
Event Digital Simulation. John Wiley & Sons, New York.

Fishman, George S. (1978). Principles of Discrete Event Simula-
tion. John Wiley & Sons, New York.

Gordon, Geoffrey (1978). System Simulation, Second Edition.
Prentice-Hall, Inc., Erglewood Cliffs, NJ.

Henriksen, James O. and Robert C. Crain (1983). GPSS/H User's
Manual. Wolverine Software Corporation, Annadale, VA
22003-2653.

Hills, P. R. (1967). SIMON -- A Computer Simulation Language
in ALGOL. In: Digital Simulation in Operations Research
(S. H. Hollingdale, ed.). American Elsevier Publishing Co.,
New York, NY, 105-115.

Hooper, James W. (1986). Strategy-Related Characteristics of
Discrete-Event Languages and Models. Simulation 46, 153-
159. (See O’Keefe’s technical comment and author’s
response, Simulation 47, 5, Nov. 1986, 208-211).

Hutchinson, G. K. (1975). In Introduction to CAPS -- Computer-
Aided Programming for Simulation. ACM Simuletter 7, 1,
Oct, 35-51.

IBM (1971), General Purpose Simulation System V User's
Manual. SH20-0851, IBM, White Plains, NY.

Kiviat, Philip J. (1967). Digital Computer Simulation: Modeling
Concepts. RAND Report RM-5378-PR. RAND Corp.,
Santa Monica, CA, (Aug).

Kiviat, Philip J. (1969). Digital Computer Simulation: Computer
Programming Languages. RAND Report RM-5993-PR,
RAND Corp., Santa Monica, CA.

Lackner, Michael R. (1962). Toward a General Simulation Capa-
bility. In: Proceedings of the SICC. AFIPS Press, (May
1-2), 1-14.

Lackner, Michael R. (1964), Digital Simulation and System
Theory. Systems Development Corporation SP-1612, (Apr.
6).

Law, Averill M. and Kelton, W. David (1982). Simulation Model-
ing and Analysis. McGraw-Hill, New York.

Markowitz, H. M., Hausner, B., and Karr, H. W. (1962). SIM-
SCRIPT: A Simulation Programming Language. Rept.
RM-3310-PR, RAND Corp., Santa Monica, CA.

Mathewson, S. C. and Beasley, J. E. (1976). DRAFT/SIMULA.
In: Proceedings of the Fourth Simula Users Conference.
National Computer Conference.

Mathewson, S. C. (1977). DRAFT. Department of Management
Science, Imperial College of Science and Technology, Lon-
don, England.

Mathewson, S. C. and J, H. Allen (1977). DRAFT/GASP -- A
Program Generator for GASP. In: Proceedings of the Tenth

Annual Simulation Symposium. Tampa, FL, 211-225.

Mathewson, S. C. (1984). The Application of Program Generator
Software and Its Extensions to Discrete Event Simulation
Modelling. IIE Transactions 16, 3-18.

Mathewson, 8. C. (1985). Simulation Program Generators: Code
and Animation on a PC. Jowrnal of the Operational
Research Society 36, 583-589.

Moose, Robert L. and Nance, Richard E. (1983). Model Analysis
in a Model Development Environment. Department of Com-
puter Science, Virginia Tech, Blacksburg, VA. Preliminary
Draft, (May 20).

Nance, Richard E. (1981a). The Time and State Relationships in
Simulation Modeling. Communications of the ACM 24, 4,
Apr., 173-179.

Nance, Richard E. (1981b). Model Representation in Discrete
Event Simulation: The Conical Methodology. Technical
Report CS81003-R. Department of Computer Science, Vir-
ginia Tech, Blacksburg, VA 24061, (Mar. 15).

Nance, Richard E. and Overstreet, C. Michael (1986), Diagnostics
Assistance Using Digraph Representations of Discrete Event
Simulation Model Specifications. Technical Report TR-86-
007. Computer Science Department, Old Dominion Univer-
sity, Norfolk, VA 23508-8508, (March 26).

Nance, Richard E. Overstreet, C. Michael (1987). Exploring the
Forms of Model Diagnosis in a Simulation Support Environ-
ment. In: Proceedings of the 1987 Winter Simulation
Conference. Atlanta, GA, (Dec. 14-16). -

Overstreet, C. Michael (1982). Model Specification and Analysis
for Discrete Event Simulation. PhD Dissertation. Depart-
ment of Computer Science, Virginia Tech, Blacksburg, VA
24061, (Dec.).

Overstreet, C. Michael and Nance, Richard E. (1985). A
Specification Language to Assist in Analysis of Discrete
Event Simulation Models. Communications of the ACM 28,
190-201.

Overstreet, C. Michael and Nance, Richard E. (1986). World
View Based Discrete Event Model Simplification. In:
Modelling and Simulation Methodology in the Artificial
Intelligence Era (Bernard P. Zeigler, ed.). North-Holland
Publishing Co., Amsterdam, The Netherlands, 165-179.

Rugsell, Edward C. (1983). Building Simulation Models with SIM-
SCRIPT I1.5. C.A.CI, Los Angeles, CA 90049,

Schriber, Thomas JI. (1974). Simulation Using GPSS. John Wiley
& Sons, New York, NY.

Weinberg, Gerald M. (1971). The Psychology of Computer Pro-
gramming. Van Nostrand Reinhold, New York.

Zeigler, Bernard P. (1976). Theory of Modelling and Simulation.
John Wiley & Sons, New York.

588

Using Graphs to Translate Between World Views

Zeigler, Bernard P. (1984). Multifacetted Modelling and Discrete
Event Simulation. Academic Press, Orlando, Florida.

AUTHOR’S BIOGRAPHY

C. MICHAEL OVERSTREET is an Assistant Professor of
Computer Science at Old Dominion University. He received his
Ph.D. in 1982 at Virginia Polytechnic Institute and State Univer-
sity. He is currently Principal Investigator for a Navy-funded pro-
ject in the development of software analysis tools and vice-chair of
the ACM Special Interest Group on Simulation (SIGSIM). Dr.
Overstreet is a member of ACM, IEEE CS, and SCS.

C. Michael Overstreet

Computer Science Department
Old Dominion University
Norfolk, VA 23529-0162, U.S.A.
(804) 440-4545

589

