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ABSTRACT

This paper describes a realization of DEVS
(Discrete Event System Specification) formalism in
an object-oriented programming environment, SCOOPS
of PC-Scheme. The realization, DEVS-Scheme, is a
powerful environment combining simulation modelling
with AL techniques, which supports hierarchical,
modular specification of discrete event models. We
will describe the taxonomical organization of
classes in DEVS-Scheme in which kernel-models
classes will be emphasized. As an example, we will
illustrate specification of kernel models including
broadcast models, hypercube models, and cellular
models. Finally, implementation of isomorphism
checks between pairs of models in DEVS-Scheme will
be discussed. Thus, DEVS-Scheme represents a sig—~
nificant step toward implementing system theoretic
based formalisms and operations.

1. Introduction

The compatibility between object—oriented
programming paradigms and discrete event world view
formalisms has been well noted (O'Keefe, 1986;
Zeigler, 1987). 1In such programming systems, an
object, an instance of class, is a package of data
structures and associated operations, usually
representing a real world counterpart. Naturally
these programming paradigms incorporate AL know-
ledge representation schemes within simulation
models, resulting in so-called knowledge based
simulation systems (Reddy et. al. 1986; Klar, 1986;
Kerkoffs et. al. 1986). Such schemes can be used not
only to organize information about the nature of
the objects involved in the simulation, but also to
model intelligent agents within components them-
selves(Davis, 1986; Robertson, 1986; Zeigler, 1987).

DEVS-Scheme is an environment for specification

of hierarchical, modular discrete event models and

simulation in LISP-based object-oriented framework
(Zeigler, 1986a; Kim, 1987). In contrast to
existing knowledge based simulation systems,
DEVS-Scheme is based on the DEVS formalism, a
theoretically well grounded means of expressing
hierarchical, modular discrete event models(Zeigler,
1976, 1984, 1986b; Concepcion & Zeigler, 1987).

This paper first describes the taxonomical
organganization of classes in DEVS-Scheme with an
emphasis on kernel-models, a generalized class whose
sub classes provide powerful means of defining
uniform networks of isomorphic models. Next we
discuss specification of both atomic and coupled
DEVS models based on such classes. This facilitates
the development of hierarchical, modular discrete
event systems. Finally, creation of derived classes
and isomorphism(Oren, 1984) in generation of new
models in DEVS-Scheme are presented.
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2. Organization of Classes in DEVS-SCHEME

DEVS-Scheme, an implementation of DEVS for-
malism, is principally coded in SCOOPS, the
object-oriented superset of PC Scheme. The taxon-
omical hierarchy of classes in DEVS-Scheme shown in
Figure 1 represents general classes and their
specialized classes with variables attached. In what
follows after a brief review, we shall focus on some
of the main class variables and methods of kernel~
models.

Entities is the universal class which provides
tools for manipulating objects not only in these
classes but also through inheritance,in any of their
subclasses, Details of the such general facilities
including mk-ent, show-class, name->entity are in
(Zeigler, 1986a). Models classes and processors
classes are the main subclasses of entities.

2.1 Class Models

As shown in Figure 1, models class is further
specialized into the major classes atomic—models
and coupled-models, which in turn is specialized
into digraph-models and kernel-models. Kernel-models
is also specialized into more specific classes,
broadcast-models, hypercube-models, and cellular—
models. Objects of such classes realize either
atomic DEVS or coupled DEVS specified by our for-
malism.

2.1.1 Class Atomic-models

Atomic-models realizes the atomic level of the
DEVS formalism by use of its variables and methods
which correspond to components of structure in the

formalism. Four instance variables of the atomic—
models, namely int-transfn, ext-transfn, outputfn,

and time-advancefn realize the intermal tramsition
function, external transition function, output
function, and time-advance function, respectively
when they are evaluated. We shall describe speci-
fication of atomic model in section 3.1. Methods of
atomic-models and their examples are described in
detail in (Zeigler, 1986a, 1987b).

2.2.2 Class Coupled-models

Coupled-models is the major class which em—
bodies the hierarchical model composition of the
DEVS formalism. Digraph-models and kernel-models are
specializations which enable specialization of
coupled models in specific ways. In DEVS formalism,
we define coupled-models by specifying its component
models (also called children) and desired communica—
tion links among the children. Instance variables
corresponding to children and coupling relations,
and methods which manipulate the variables realize

the formalism. Methods, get-children, get-
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Figure 1. Class Inheritance Structure of DEVS-Scheme.
Capital letters : Classes
Low case : instance/class variables

influencees, get-receivers, and translate are
available for any specializations of coupled-models
(Zeigler, 1986a).

2.2.3 Class Digraph-models

Digraph-models, a specialized class of coupled-
models, is composed of a finite set of explicitly
specified children and an explicit coupling scheme
connecting them., Internal and external coupling
relations specify how output ports of children
couple to input ports of other children, and how
input/output ports of coupled-models couple to
input/output ports of its components respectively.
Methods, build-composition-tree, set—ext—out—coup,
and set-ext—inp-coup are available for specifying an
external coupling scheme. Set-inf-dig and set-int-
coup are methods for internal coupling specifica-
tion.

2.3.4 Class Kernel-models

In contrast to digraph-models, instances of
kernel-models are coupled models whose components
(children) are isomorphic models (we shall define
isomorphism in detail in section 4.). Method make-—
members creates the disomorphic children using an
instance variable of kernel-models called init-—
cell. The children are all members of the same class
called the kernel class of the kernel-models. The
modeller can specify the coupling scheme of a kernel
model either explicitly or implicitly depending on
the specialization of kernel-models. Whether
internal coupling scheme is implicit or explicit, it
is uniform for all children of a kernel model.

An instance variable, out-in-coup of .kernel-
models tells how to translate output ports to input
ports of the internally coupled children. Different
specialized classes of kernel-models realize differ-
ent internal and external coupling scheme. We have
defined three coupling schemes: broadcast coupling,
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hypercube coupling and cellular coupling realized by
the sub classes broadcast~models, hypercube-models,
and cellular-models, respectively. Three facilities,
make-broadcast, make-hypercube, and make-cellular
create a broadcast model, a hypercube model and a
cellular model, respectively.

2.3.5 Class Broadcast-models

Broadcast-models is a simple but important
subclass of kernel-models. All members (children)
of a broadcast coupled model communicate directly
with each other and with the outside world. Thus
methods, get—children, get—influencees and get—
receivers uniquely determine children, influencees,
and receivers of the coupled model, respectively.
For example, influencees of any child of a broad-
cast model are all children of the broadcast model
except itself. The receivers of a broadcast model
are all the children of the broadcast model. The
only additional information on the coupling scheme
of broadcast-models is how to translate output
ports to input ports. Method add-port-pair inherited
from kernel-models enables the modeller to specify
pairs of ports for internal coupling by inserting
the pairs in out-in-coup table which is an instance
variable of the class.

2.3.6 Class Hypercube-models

Hypercube-models is a specialization of
kernel-models whose children are 2%¥n instances of
the kernel class, where n is the dimension of the
hypercube. To specify positions of all the
children in the hypercube, each instance has
cell-position as an instance variable. Any n-—
dimensional hypercube configuration consists of 2
isomorphic (n-1) dimensional hypercube configura-
tions, representing a well known mutiprocessor
architecture.

In a hypercube model the modeller explicitly
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specifies both internal and external coupling
schemes. The external coupling can be either
broadcast or origin-only. In broadcast external
coupling, inputs and outputs of all the children in
a hypercube coupled model are coupled to input and
output of the hypercube coupled model, respective~
ly. On the other hand, only the cell at origin is
coupled to the hypercube coupled model in the
origin-only external coupling scheme. Method set-
ext—-coup selects ome of the coupling schemes.
Referring to internal coupling, the modeller should
specify the number of influencees for each child,
and corresponding pairs of ports. Like broadcast-
models, out-in-coup table holds the pairs of ports.

The range of the number of influencees is from
zero to dimension of a hypercube. The Hamming
distance between cell positions of a model M and any
influencees of M is one. For example, in a 3-dimen-
sional hypercube model, 3 influencees of a cell at
(000) are (100), (010), and (0 0 1), and those
of acell at (111)are (01 1), (101), and (11
0) and so on.

2.3.7 Class Cellular-models

A specialization of kernel-models, cellular-
models provides for coupling of a finite or
infinite set of geometrically located cells, each of
which is connected to other cells in a uniform way.
The cellular-models described here realizes the
formalism for discrete event cell space models
(Zeigler, 1976, 1984),

Influencees of a cell in a cellular model can
be computed from the influencees pattern of the
origin cell, infl-origin, for both fixed structure
and variable structure cellular-models. For a fixed
structure cellular model, the influencees of a cell
C is set of existing cells in cell space whose cell
position is the member of influencees pattern of C.
Therefore a cell may have no influencees if no
existing cells in cell space have the cell positions
of the influencees. However, for a variable struc-
ture cellular model, non existing cells in the cell
space at the cell positions of the influencees will
be created in simulation time. Therefore, all cells
have the same number of influencees. An instance
variable, structure is used to specify one of these
structure types.

In a 3-dimensional fixed structure cellular
model, for example, if the influencees pattern of
origin is {(1 1 1) (2 2 2)}, then influencees of
the origin cell are all existing cells in the cell
space whose cell position are either at (1 1 1) or
at (2 2 2). Uniformity of influencees pattern then
requires that influencees of a cell at (0 1 1) in
the cellular model are a cell at (1 2 2), and a
cell at (2 3 3) if they exist. Both internal and
external coupling scheme of cellular-models can be
specified in similar way to those of hypercube—
models. Details are in (Kim, 1987).

2.2 Class Processors

Simulation of DEVS models are based on the
abstract simulator principles developed as the part
of theory (Zeigler, 1984; Concepcion, 1984). The
principles are implemented by three specialized
classes of processors namely simulators, co-or-
dinators, and root-co-ordinators as shown in Figure
1 . A root-co-ordinator manages the overall
simulation and is linked to co-ordinator of the
outmost coupled model. On the other hand, simu-
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lators and co-ordinators handle atomic-models and
coupled-models, respectively. A facility make-pair
creates both an atomic model(a coupled model) as
well as a simulator(a co-ordinator) assigned to it.
Simulation proceeds by means of messages passed
among above three specialized processors which
carry information concerning internal events (*=
message) and external events (x-message), as well
as data needed for synchronization. Details of
simulation process for DEVS models can be found in
(Zeigler, 1986a)

3. Model Specification in DEVS-Scheme
3.1 Atomic Model Specification in DEVS-Scheme

Discrete event models specification is based on
set—theoretic formalism and has been implemented by
DEVS-Scheme in LISP-based programming environment
(Zeigler, 1986a; Kim, 1987). The environment imple-
ments components of the structure of an atomic DEVS
in the formalism. To specify atomic DEVS, the model-
ler are to specify the components accordingly in
term of Scheme functions. Details of atomic model
specification in DEVS-Scheme along with examples are
in (Zeigler, 1986a, 1987b; Kim, 1987).

3.2 Coupled Model Specification in DEVS-Scheme

A Coupled model can be characterized by spe—
cifying its component models as well as its
coupling scheme consisting of internal and external
coupling schemes,

3.2.1 Digraph Model Specification in DEVS-Scheme

Specification of a digraph model starts with
specifications of components followed by coupling
scheme. Recursively, components can be specified by
their components specification and coupling scheme.
Recursive specification of coupled models in DEVS-
Scheme is based on a closure property of formalism
under coupling(Zeigler, 1984), Examples of spec—

ification of digraph models are in (Zeigler, 1986a,
1987b).

3.2.2 Kernel Model Specification in DEVS-Scheme

As indicated before, make~broadcast, make-
hypercube, and make-cellular create instances of the
respective classes. When created, each of above
coupled models has a init-cell from which its
children will be created. After creating any of
the above coupled models, the modeller may specify
coupling schemes and other information needed using
various methods provided by kernel-models and the
specialization class.

The details are illustrated in the following
examples.

1. (make-broadcast MS) creats br-MS, a coupled
model of class broadcast-models, and also creates
init-cell, an instance of class MS. The init-cell is
an instance variable of br-MS and will be used to
create members of br-MS. At the same time class MS
is attached to br-MS as an instance variables. Note
that class MS can be any specialized class of models
including broadcast-models itself. Figure 2 shows
this facility.

2. (send br-MS make-members 'M 3) creates three
children MO, M1, and M2 of br-MS. (Figure 3)
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3. (send br-MS add-port—pair 'out 'in) adds the port
pair ('out 'in) to out—in-coup ,an instance variable
of br-MS. Henceforth, when a component places an
output on port 'out, it will be sent to all the 'in
ports of its brothers.

4. (make-hypercube MS) is similar to (make-broadcast
MS) and creates hc-MS and init-cell.

5. (send hc-MS make-members 'M 3) creates 4 members
in 3-dimensional hypercube, namely MO at (0 0 0), Ml
at (0 0 1), M2 at (0 1 0), M3 at (011), Mbat (10
0), M5at (101), M6 at (1 1 0), M7 at (1 1 1).

6. (send hc-MS set-ext-coup 'broadcast) couples he—
MS to each of its components.

7. (send hc-MS set-hum-infl 3) set influencees of
each members. In this case, each component has three
influencees which are the three closest neighbors in
the hypercube.

8. (send hc-MS add-port-pair 'out 'in) is analogous
to step 3. Step 4 to 8 result in Figure 4.

9. (make-cellular MS) creates ce-MS as in step 4.

10. (send ce-MS make-init-active-cells 'M '( (-1 1)
(0 1))) creates 6 components in 2-dimensional cell
space, namely MO at (-1 0), M1 (-1 1), M2 at (O 0),
M3 at (0 1), M4 at (1 0), and M5 at (1 1).

11. (send ce-MS set—structure 'variable) sets the
structure type of ce-MS to variable where new cells
can be created in simulation time as needed.

12. (send cd-MS set-infl-origin '((2 2) (3 5))) sets
influencees pattern of origin cell to cell-position
of (2 2) and (3 5). Influencees of a cell at (a b)
are the cells located at (a+2 b+2) and (a+3 b+5) if
they exist.

4. Creation of New Classes in DEVS-Scheme

A class from which instances are created may
provide a kernel class for more than one instance
of kernel models. Such classes cannot be identical
but must be isomorphic copies of each other. To
facilitate this copying, a method make-class

provides sub classes of a class and copies the class
structure of the parent class as shown in Figure 5.

Figure 4. An Illustrating Hypercube Coupled Models.
Class MS can be Any Class Under Models

Class in Figure 1 Including Hypercube
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Method make-class of a atomic model A creates
a class AS which is a subclass of atomic-models. As
shown in Figure 5 (a), the method copies structure
of AS from that of atomic-models by copying four
instance variables ind-vars, int-transfn, ext-
transfn, and outputfn from atomic models. Similar—
ly, Figure 5 (b) shows make-class of a digraph model
. where four instance variables of digraph-models,
composition-tree, influence-digraph, children, and
selectfn are copied from D into its subclass DS.
Figure 5 (c¢), (d) and (e) show make-class of a
broadcast model, 2 hypercube model, and a cellular
model, respectively. Again, make-class of each class
in the figure copies instance variables of their
sub classes from their parent class. Note that an
instance of a class C can create any number of sub
classes of C such that structure of each sub
classes inherits the class structure from its
parent C. Each such sub class so created can be a
kernel class of instances of a kernel model.

5. Creation of New Models and Isomorphism

A  method, make-class, provides a means of
creating an isomorphic copy of a model for any
specialized model of models class.

Two atomic models are said to be isomorphic if four
components of structures of two models are such that
(1) sets of state variables are identical
(2) internal transition functions are identical

(3) external transition functions are identical
(4) output functions are identical.
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Methods are provided to check isomorphism
between two models. Each specialized model has its
own methods to check isomorphism in its level, For
the simplest case, method isomorphic? of a atomic-
model checks isomorphism between two atomic models,
say a and al by sending a message (send a isomor-—
phic? al) to a or a message (send al isomorphic? a)
to al as shown in Figure 6 (a).

We can define isomorphism between two coupled
models as follows:

Two coupled models are said to be isomorphic if
there exists one-to-one correspondence between
components of the coupled models such that
(1) coupling schemes of two coupled models are
isomorphic
(2) corresponding component models are isomorphic

The coupling schemes(sets of pairs of ports) of two
coupled models with correspondence between their
components are said to be isomorphic if there is
one-to—-one correspondence between two sets such that
(1) the coupled models have identical ports
(2) corresponding components have corresponding
ports
(3) relations of corresponding ports are identi-
cal :

More specifically, a method, isomorphic-coupling? of
digraph-models contains following Scheme code:

method isomorphic—coupling?
for digraph-models ml and m2

coupl : list representing coupling scheme of ml
coup2 : list representing coupling scheme of m2
each element of the above lists is a list of :

name of source model (src)

name of destination model (dest)

list of pairs of ports (ports—pairs)

cor-name-tab is a table containing pairs of
names of corresponding models
where src-)> corresponds to src

e ue ws e ws ws ws we ws we we ws ue we we
et e ce we we ws me we ws e e e we we wo we

et rep (
(coupl (send ml get~coupling))
(coup2 (send m2 get—coupling))

(cond
((not (equal? (length coupl) (length coup2)))
#1false)
((and (null? coupl) (null? coupl))
#ltrue)
(else
(let* (
(next—coupl (car coupl))
(next-coup2 ())
(src (car next-coupl))
(dest (cadr next-coupl))
(ports-pairs (caddr next-coupl))
(src-> ;; corresponding src
(table-look-up cor-name-tab src))
(dest—> ;; corresponding dest
(table-look-up cor-name~tab dest))
(set! next-~coup2
(list src-> dest—> ports-pairs))
(rep (cdr coupl) (remove next—coup2 coup2))
)
)
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To check isomorphism between two coupled models
requires to know correspondence between their com—
ponents. In DEVS-Scheme, we know the correspondence
of the components of two models if they were created
from a common ancestor using method make-new. For
example, make-new of a digraph model M creates a new
digraph model M' in such a way that M visits each
component and creates corresponding new components
recursively. Therefore, the order in which M visits
its components is identical to the order in which
new components of M' are created. Hence, the list of
components obtained by visiting children of M'
corresponds to the list of those obtained by
visiting children of M in the same order as M'. 1In
DEVS-Scheme, method make-new visits components of M
in preorder and creates corresponding components in
such order.

Members of a kernel model are created by init-
cell by use of method make-new, which ensures that
all members are isomorphic to init-cell. Thus, to
check isomorphism between two kernel models, we
check isomorphism between init-cells of the models
and check the coupling schemes of the two. Figure 6
(c) show method make-new for kernel-models.

6. Summary

We have described realization of Discrete Event
System Specification(DEVS) formalism in a LISP-
based programming environment. DEVS-Scheme supports
hierarchical, modular models specification of
discrete event models. Class organization of DEVS-
Scheme has been presented and kernel-models classes
has been discussed in detail. We have presented
creation of new classes in DEVS-Scheme, and isomor—
phism checking between pairs of models in DEVS-
Scheme. These operations demonstrate the power of
object~oriented paradigms such as SCOOPS to realize
powerful concepts of systems theory as envisioned by
(Oren, 1984). Conversely, they suggest new structur—
ing concepts requiring systems theoretic formaliza-
tion.
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