- ~
Proceedings of the 1987 Winter Simulation Conference
A, Thesen, H. Grant, W. David Kelton (eds.)

The Role of Simulation in Planning

David P. Miller
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

ABSTRACT

Theoretical work in automated planning research has shown that
the popular methods used for doing automated planning either
cannot be extended into real world domains, or are computationally
intractable. This paper discusses the paradigm of simulation-based
planning which attempts to overcome these difficulties.
Simulation-based planning uses some simulation techniques to
gather information for guiding the planner. The resulting system can
handle more complex domains with much improved performance
over previous systems, while making only a small compromise in
comipleteness. Implemented systems are described.

1. INTRODUCTION: THE NEED FOR SIMULATION

There are two major techniques used in current Al planning
systems. These techniques are situation-based planning, typified by
the GPS [Emnst69] and STRIPS planners [Fikes71], and hierarchical
least-commitment planning, such as that done by the NOAH
[Sacerdoti77] and NONLIN [Tate77] planners.

Situation-based planning is usually intricately linked to a
first-order predicate logic (fopl) representation of the state of the
world. In other words, the world situation and the actions being
planned are represented as conjunctions of first-order statements.
The planning system has available to it a list of the primitive.actions
which may be undertaken. These actions, usually referred to as
operators, contain fopl statements specifying the preconditions
needed to exist before this operator may enacted, the positive effects
the operator will have on the world (fopl statements to be added to
the conjunction representing the state of the world) and the negative
effects (fopl statements to be deleted from the state of the world).
The planner then runs a trivial simulation involving stringing
together a list of operators that successfully transforms the initial
state of the world into the goal state.

Using a graph theory-based form of analysis called region
analysis, it has been shown [Joslin86] that the search involved in
deriving a successful plan (string of operators) is intractable. In
addition, plans that must satisfy a conjunction of two or more goals
may be insolvable by situation-based planners, even in cases where
a legal string of operators to satisfy all the goals does exist. These
problems have been classified as nonlinear. By using
macro-operators, [Korf85] it is possible to reduce the number of
nonlinear problems that are unsolvable by situation-based
techniques. However, the rhacro-operator technique is only feasible
in domains that contain a high amount of symmetry (where an
operator's effects may be removed by repeating an operator
sequence). Finally, in cases where the planner cannot find a
solution, it often will not terminate.

The problems above were largely eliminated by the advent of
hierarchical least-commitment planning. Planners based on this
paradigm used pieces of pre-compiled plans at different levels of
abstraction as their building blocks for creating a new plan. Given a
certain problem, the planner would search its library for a top-level
plan that addressed the problem. This top-level plan would include
subtasks; the planner would search the library for suitable plans for
each of the subtasks, and then their subtasks, and so on. At each
level the plans would be instantiated with information specific to the

530

problem at hand. This information was sometimes used, under
special conditions, to enforce an ordering between subtasks. But
whenever possible the subtasks remained unordered.

Hierarchical planning provides significant guidance in the search
for a feasible plan. The partial ordering of the plan steps (through
least-commitment) allows a high-level plan to be flexible enough to
accept the constraints of the low-level details. Unfortunately,
planning of this sort still has several major problems. First off,
while the search is greatly reduced, compared to situation-based
planning, it is still intractable [Chapman87]. Second, planners based
on the NOAH and NONLIN systems still rely on fopl as their
representation. It has been shown that these representations can lead
to incorrect conclusions when handling temporal and resource
relationships [Hanks86]. Finally, the least-commitment strategy can
mislead the planner into thinking it is solving a problem, when in
fact the problem is either insolvable, or the planner has already made
a fatal decision.

A simple example of this Jast problem occurs if there are several
unordered tasks, each to be carried out at its own workstation, and
having a deadline over the entire group of tasks. Least-commitment
makes it impossible to estimate the amount of travel time needed to
get to the individual workstations because there is no ordering
between the tasks. If the distance between workstations is
significant, the route taken between them can decide the success or
failure of meeting the overall deadline. A least-commitment planner
would develop the plans for each of the tasks and then search
through the factorial number of possible ordering trying to find one
that meets the deadlines.

One way to get around the problems mentioned above is to
perform planning via task scheduling. In the most general sense,
task scheduling involves using some mechanism to generate the
low-level tasks that must be performed and then use some other
algorithm to assign them the proper order — generating any
transition tasks (such as moving from one workstation to another)
that come about as a result of that order.

The DEVISER planner [Vere83] did a very simple version of
task scheduling. It used the NONLIN planner to generate the tasks,
and also did some bookkeeping-on the time windows in which the
tasks had to be performed. It then did a total ordering based on the
propagation of the time windows, and added the transition tasks.
Because DEVISER did all of its planning before any scheduling was
done, the plans that were developed often could not be successfully
scheduled if the tasks were tightly constrained. DEVISER's
performance was therefore exponential because of the backtracking.

The remainder of this paper describes a different paradigm for
doing task scheduling: simulation-based planning. In this paradigm
task scheduling is fully integrated with the generation of subtasks
and transition tasks. Simulations are performed on the partially
developed plan, and that information is used to further gnide the
successive refinement and scheduling of the remainder of the plan.

2. AN EXAMPLE DOMAIN

A typical domain that requires simulation-based planning is one
where resources, independent processes, and temporal constraints

The Role of Simulation in Planning

exist. These factors occur in most real world domains such as
planning production runs for a manufacturer, travel planning, and
the day to day running of one's life.

The domain that will be used for illustration throughout the
remainder of this paper consists of the semi-automated factory
shown in Figure ??. This factory has two employees, three
production machines, storage facilities, and a loading area. The
factory can produce two different products: widgets and gizmos, that
require particular production procedures and raw materials. The
production machines consist of a lathe, a high speed lathe, and a
recycler. Widgets are made out of plastic, while gizmos are metal.
The lathes produce lots of shavings, which normally fall into the
lathe's shavings bin. The recycler takes shavings as input and
produces new blanks. Either lathe may be used for creating either
product; the product depends on the raw material used.

plastic widget plastic metal
blanks storage shavings recycler shavings
storage storage storage
loading dock
high
d
metal . lathe spec
blanks gizmo lathe
storage

storage

Figure 1: The Factory Domain

It takes time to move from one place in the factory to another. If
a lathe is being used for gizmos, then it is producing metal shavings.
The shavings bin for that lathe must be emptied at least every ten
gizmos or it will fill up and the lathe will shut down. The shavings
bin must be emptied every time the raw material is switched
otherwise it will fill with a mixture of metal and plastic shavings
which cannot be recycled. If widgets are being produced, then the
bin must be emptied at least every 15 widgets. It takes the shavings
from 20 gizmos or widgets to make a new blank of metal or plastic.
The recycler can handle the shavings from upto 60 gizmos or 100
widgets, at one time.

To produce a product, an employee takes an appropriate blank
(up to 20 blanks of any combination may be carried at a time) inserts
the blank into the lathe (the high speed lathe can take fifteen at a
time, the normal lathe five) and start the lathe running. The lathe will
then grind out the products until it runs out of blanks, fills its
shavings bin, or fills its output hopper (which can hold twice as
many finished products as the input hopper may hold blanks). The
finished products are then moved to the appropriate storage area.
Shavings to be recycled are moved to the appropriate storage bin.
The bins are periodically emptied into the recycler, which after a
short time melts the shavings into new blanks. An employee then
moves those blanks either to a lathe or to the appropriate storage
area.

Trucks come into the loading dock to either pick up a finished
order, or to drop off raw materials. An employee is needed to load
and unload the trucks.

Given a particular set of orders, initial raw materials, and a
delivery/resupply schedule, there is a huge number of different plans
that may be attempted to meet the delivery schedule. In a real
factory, the plan should include a large amount of slop time and
material (as much as practical) so that unexpected situations, such as
equipment failures or an emergency order, may be handled. The
resulting plan must do more than construct the desired number of
gizmos and widgets, and the plan must do more than meet the
delivery and resource constraints. The plan should be one of the
most efficient plans possible (to allow maximum overruns of time
and materials), yet it must not take an exponential amount of time to
construct the plan.

531

3. SEARCH AND SIMULATION

When faced with a constraint optimization problem, the normal
response (at least since the advent of high speed computers) is to
perform a search. In the problem domains that we are concerned
about, the search area is at best exponential. In the domain presented
above, it is, for all practical purposes, infinite. This is due to being
able to put in arbitrarily sized delays (some of which are vital to the
success of the plan) in between the different actions that the factory
employees are to carry out. Since an exhaustive search of the
problem space is impractical for all but the most trivial of problems,
some metric (or set of metrics) must be constructed to be used as a
basis for constraining the search.

Typical forms of best-first search lock at the cost that has been
incurred by the partial solution, and uses that as the metric for
deciding whether or how that particular partial soultion should be
extended. The straightforward implementation of this for automated
planning falls short of what is needed in two major ways.

First, if the least-commitment paradigm of planning is used,
then there will be no transition costs figured into the cost of the
partial solution (because the order of the steps in that partial solution
is not yet defined). The situation-based planning paradigm is simply
not efficient enough for problems of the complexity posed above.

Second, the cost of a partial plan is often the inverse of the cost
of the remainder of the plan. For example, if there are five steps to
be done, three of which take a minute each and two of which take an
hour each, then some partial plans that contain two steps will have a
high cost, yet the total cost will not be much higher, while other
partial plans will have a very misleading low cost so far. In many
cases these differences will far outshadow any inherent efficiencies
or inefficiencies developed in the partial plan.

The solution to the first problem is to perform a simulation of
selected total orderings for the plan that's been created so far. The
simulation will allow a detailed accounting of the transition costs,
and pinpoint areas where the transitions are infeasible. The total
orderings can be selected on the basis of scheduling heuristics. A
wide variety of scheduling heuristics has been developed and are
detailed in the OR literature [Graham77]. Additional heuristics have
been developed for particular planning problems [Fox83],
[Miller87]. It is not necessary at this point in the search process to
locate the best ordering, only to explore in sufficient detail the
probable quality of the best ordering for a particular set of steps.

The second problem also involves simulation in the solution. A
good ordering (derived as described above) is combined with a
high-level description of the remainder of the task. A simulation is
carried out on the partial plan and its overall role in carrying out the
task. The simulation uses the high-level descriptions of the
remainder of the task to project the time and resources required for
completing the task. The simulation can also be used to estimate
what percentage of the solution (along a variety of metrics) has
already been planned out, and how much there is to go. These
calculations can be factored into the rating for that partial plan.

If the rating function is perfect, a best-first search will yield the
optimal solution in time proportional to the length of the solution.
The rating scheme above is not necessarily perfect, but if the
simulations are relatively accurate, and the search is further
constrained by performing some sort of beam search [Lowerre76],
then near-optimal solutions may usually be found in linear-time.

4. SIMULATION-BASED PLANNERS

Two simulation-based planners have been developed using the
basic scheme outlined in the previous section. The BUMPERS
planner [Miller85b] creates sensor plans for a mobile robot system.
The simulations the planner uses allow the system to quickly focus
in on the plans that do not overuse a particular sensor. The
simulations are also used to project the effects of using different
motor speeds on the robot's effectors — to see whether the
increased speed and overall plan effciency leads to unacceptable

D.P.Miller

coordination problems.

The FORBIN planner [Miller85a], [Dean87] works in a
semi-automated factory domain similar to that described in Section
2. FORBIN does a type of hierarchical least-commitment planning.
It uses simulations and task scheduling to rate various plans and as a
filter for partial plans. Unlike NOAH or NONLIN, FORBIN uses
simulations of the partial plans it is working with to check that there
is at least one feasible total ordering. The plan remains partially
ordered until completed — for future flexibility. But the planner is
assured that it will eventually be able to create a totally ordered
working plan, because it has checked the existance of such a plan by
doing the total order simulations each time it makes a refinement o
some high-level portion of the plan.

Simulation-based planners use a more detailed task language
than has been typical of previous planners [Miller86]. The language
used in FORBIN consists of two parts the task expansion library
and the causal theory. The library of task expansions contains the
available methods for doing any particular task (at a certain level in

the hierarchy). There might be several methods of accomplishing a °

particular subtask. The task scheduler in the FORBIN planner runs
simulations on the different methods to predict which would fit in
best with the overall plan that is being constructed.

The causal theory provides the high level descriptions of
subtasks that can be used in the simulations — before particular
methods for those subtasks are chosen. The causal theory contains
procedural information for running the simulations (e.g., the
warm-up function for the factory recycler). The high-level subtask
descriptors take the form of time and resource estimates for
accomplishing the subtasks.

5. RESULTS AND CONCLUSIONS

Simulation-based planners have had success in domains where
more traditional styles of planning have not been able to function. A
Iimited domain simulation-based planner such as BUMPERS is able
to handle virtually all problems that fall within its domain. By
limiting the domain, the BUMPERS planner can use canned
simulation routines which model the robot and its world in great
enough detail to act as an accurate predictor for the planner and task
scheduler.

The FORBIN system was designed as a more general purpose
planner. All the domain specific knowledge is kept in the plan library
and causal model. This has resulted in the knowledge structures for
these libraries to be complex, and the libraries themselves somewhat
difficult to design, maintain, and expand. To ensure that it is in fact
possible to create these libraries, for a wide variety of domains, the
level of detail with which they model those domains has been
limited, hence limiting the predictive power of the simulation.

The resuit of these limitations sometimes causes FORBIN to fail
to find a plan where a solution exists. The FORBIN planner can
easily be modified to backtrack when it comes across a failure, but
that would be courting the exponential performance that has plagued
previous systems. We believe that FORBIN's power could be
increased by incorporating more detailed domain knowledge for its
simulation engines. To do this, without making the domain
knowledge impossible to program, we are considering making a
library of program modules, each specific to a particular class of
domains. Each module would encode the general simulation
information for a particular class of problems, leaving only the fine
details to be encoded in the plan library and causal model. FORBIN
would no longer be a domain independent planner, but rather a
collection of planners, each capable of handling a small class of
domains.

It has been shown by several researchers that complete
domain-independent planning is NP-hard. To make planning
tractable, completeness must therefore be sacrificed. In order for a
planner to come up with a good plan most of the tife, it must have
some basis for choosing one partially developed plan over another
for further development. The detailed knowledge provided by

532

simulating a partial plan, and simulating some select subset of its
possible completions, has proven a promising method for giving
planners the needed clues to efficiently search their exponential
problem space.

BIBLIOGRAPHY
[Chapman87] Chapman, D., Planning for Conjunctive Goals,

Artificial Intelligence, vol 32 #3, (1987), pp.
333-378.
[Dean87} Dean, T., Firby, R.J., Miller, D.P., The FORBIN
Paper, Yale University Department of Computer
Science Technical Report RR#550, July, 1987.

Ernst, George W. and Newell, Allen, GPS: a Case
Study in Generality and Problem Solving,
Academic Press, 1969.

[Ernst 691

[Fikes 71] Fikes, Richard and Nilsson, Nils J., STRIPS: A
new approach to the applications of theorem
proving to problem solving, Artificial Intelligence,

2 (1971), pp. 189-208.

Fox, Mark S., Constraint-Directed Search: A Case
Study of Job-Shop Scheduling, Technical Report
CMU-RI-TR~83-22, CMU Robotics Institute,
December 1983.

[Fox 83]

[Graham 77] Graham, R.L., Lawler, E.L., Lenstra, J.K., JK.,
Kan, A.H.G., Optimization and Approximation in
Deterministic Sequencing and Scheduling: a
Survey, Proc. of Disctrete Optimization 1977,
Vancouver, B.C., Canada, August 1977.
[Hanks86] Hanks, S., McDermott, D., Default Reasoning,
Nonmonotonic Logics, and the Frame Problem, in
Proceeding of the Fifth National Conference on
Artificial Intelligence, AAAI, Philadelphia, PA,
1986.

Joslin, D.E., Roach, J.W., An Analysis of
Conjunctive Goal Planning, Technical report
TR-86-34, Virginia Tech Computer Science, 1986.

[Joslin86]

[Korf85] Korf, R., Learning to Solve Problems by
Searching for Macro-operators, Pittman
Publishing, 1985.

[Lowerre 76] Lowerre, B., The HARFPY Speech Recognition
System, Ph.D. Thesis, Carnegie—Mellon
University, 1976.

[Miller 85a) Miller, D., Firby, R.J., Dean, T., Deadlines,
Travel Time, and Robot Problem Solving,
Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, IICAI AAAT,
Los Angeles, CA, August 1985, pp. 1052-1054.

Miller, D.P., Planning by Search Through
Simulations, Yale University, Department of
Computer Science, Research Report #423, October
1985.

{Miller 85b]

Miller, D.P., A Plan Langunage for Dealing with the
Physical World, Proceedings of the Third Annual
Computer Science Symposium on Knowledge
Based Systems, Columbia, SC, March 1986.

[Miller86]

Miller, D. P., A Task and Resource Scheduling
System for Automated Planning, in The Annals of
Operations Research: Approaches to Intelligent
Decision Support, Jeroslow, R.G., editor, 1987.

Miller87]

The Role of Simulation in Planning

[Sacerdoti 77] Sacerdoti, Earl, A Structure for Plans and
Behavior, American Elsevier Publishing Company,
Inc., 1977.

[Tate 77] Tate, Austin, Generating Project Networks, Proc.
of the 5thInt. Joint Conf. on Artificial Intelligence,
LCAI Cambridge Ma, U.S.A, August 1977, pp.
888-893.

[Vere 83] Vere, Steven A. Planning in Time: Windows and
Durartions for Activities and Goals, IEEE Trans.
on Pattern Analysis and Machine Intelligence,
PAMI-5/3 May (1983), pp. 246-267.

AUTHOR'S BIOGRAPHY

David P. Miller is an assistant professor of computer science at
Virginia Tech. He received a B.A. in astronomy from Wesleyan
University in 1981, and a Ph.D. degree in computer science at Yale
University in 1985. His research interests include automated
planning, shop scheduling, robotics, and sensor simulation and
interpretation. He has been a consultant to the Jet Propulsion
Laboratory and the NSWC. He is the founder of the Artificial
Intelligence Society of the Mid-Atlantic States and is a member of the
ACM, IEEE, and AAAL

David P. Miller

Department of Computer Science
Virginia Tech

Blacksburg, VA 24061

(703) 961-5605
miller@vtopus.cs.vt.edu

533

