Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds,)

SIMULATION SUPPORT: PROTOTYPING
THE AUTOMATION-BASED PARADIGM

Osman Balci
Richard E. Nance

Department of Computer Science
and
Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

This paper describes our research efforts in prototyp-
ing the automation-based software paradigm to provide
automated support for discrete-event simulation model
development. The automation-based paradigm has been sug-
gested as the software technology in the 1990’s. The technol-
ogy needed to support this paradigm does not yet exist.
However, the benefits to be gained are so significant that, if
achieved, it could profoundly change the way that simula-
tion models are developed. We have been working to
achieve this paradigm in the form of an environment com-
posed of an integrated and comprehensive collection of
computer-based tools. Our prototyping efforts have focused
on the Model Generator, Model Analyzer, and Assistance
Manager tools. The Model Generator tool is crucial for the
realization of the paradigm and three prototypes have been
developed. Our experimentations with the prototypes indi-
cate that the paradigm can be achieved if a small problem
domain is chosen. The problem becomes quite complex in
the domain-independent case; nevertheless, we believe that
the challenge can be met by way of an evolutionary develop-
ment of prototypes.

1. INTRODUCTION

This past decade has witnessed the clear reversal of
roles in computing economics. Human time clearly is more
expensive than computer time, and the differential is
apparently widening. While the cost of simulation program
execution cannot be ignored, the need to utilize modelers
and analysts more effectively is pervasive.

Not only are the simulation modelers the expensive
commodity, there is a shortage of those who are adequately
trained. A simulation study requires multifaceted and mul-
tidisciplinary knowledge and experience. In order to gain
the basic knowledge for using simulation correctly, Shannon
predicts that a practitioner is required to have about 720
hours of formal classroom instruction plus another 1440
hours of outside study (more than 1 man-year of effort)
[Shannon 1988].

Progress in software support for simulation applica-
tions has unfortunately not kept up with the incredible pace
in computing technology. Despite phenomenal advances in
computer hardware and some impressive gains in software

495

technology, simulation still remains a labor intensive, error
prone, and costly technique especially for large complex
simulation studies. Automated support of a simulation
study throughout its entire life cycle is undeniably needed to
confront the problems identified by Balei [1986].

Balzer et al. [1983] have proposed the automation-
based paradigm as the software technology for the 1990%s.
The benefits to be gained in simulation mode! development
are so significant that, if achieved, this new paradigm could
profoundly change the way that simulation models are
developed. We have been prototyping the automation-based
paradigm in the form of a simulation model development
environment (SMDE).

The objective of this paper is to describe these proto-
typing efforts. Section 2 introduces the automation-based
paradigm. The architecture of the current SMDE research
prototype is explained in Section 3. Section 4 provides a
description of the minimal SMDE tools and our prototyping
efforts. Conclusions are given in Section 5.

2. THE AUTOMATION-BASED PARADIGM

Balzer et al. [1983] propose a software life-cycle model,
shown in Figure 1, for incorporating the capabilities of
automatic programming, program transformation, and a
“knowledge-based software assistant.” The technology
needed to support this paradigm does not yet exist, but
recognition of the benefits and the consequent emergence of
component principles, concepts and tools is clearly apparent.

This radically different approach proposes a shift from
the current informal, person-based software paradigm to a
formalized, computer-assisted software paradigm. Today,
maintenance constitutes 80 to 90 percent of software life-
cycle cost and it is a major problem. Under the
automation-based paradigm, maintaining the specification as
opposed to the implementation will significantly reduce this
problem and the software will finally assume its intended
form: “soft” and meodifiable rather than becoming ossified
and brittle with age.

Table 1 [Balzer et al. 1983] compares the automation-
based paradigm with the current paradigm.

Despite the absence of many components of the neces-
sary technology, Balzer [1981] claims to have demonstrated
the feasibility of the automation-based approach to building
software.

O.Balci and R.E.Nance

INFORMAL I REQUIREMENTS I » FORMAL
REQUIREMENTS > ANALYSIS SPECIFICATION
A

VALIDATION

MAINTENANCE

{ PROTOTYPE)

DECISIONS
AND
RATIONALE
by FORMAL
$ DEVELOPMENT
MECHANICAL gl
OPTIMIZATION
——tp CONCRETE
SOURCE
PROGRAM

Figure 1. The Automation-Based Paradigm.

Table 1. Comparison of the Automation-Based and Current Paradigms.

Automation-Based Paradigm

Current Paradigm

Formal Specification

Prototyping Standard

Specification is the Prototype
Prototype Validated Against Intent
Prototype Becomes Implementation
Implementation Machine-Aided
Testing Eliminated

Formal Specification Maintained

Maintenance by Replay

Development Automatically Documented

Informal Specification
Prototyping Uncommon
Prototype Created Manually
Code Validated Against Intent
Prototype Discarded
Implementation Manual

Code Tested

Concrete Source Code Maintained
Design Decisions Lost
Maintenance by Patching

2.1 Why the Automation-Based Paradigm?

‘We answer this question by way of describing the

major benefits of the automation-based paradigm in com-
parison with the current paradigm under which software is
developed [Balzer et al. 1983].

)

)

Reducing the Cost and Duration of Software Develop-
ment: People are becoming more expensive than com-
puters as hardware costs continue to plummet amidst a
shortage of adequately trained people. Reliance on
software is becoming an economic reality ~— emphasiz-
ing the importance of high quality and less develop-
ment time. The automation-based paradigm offers
the prospect of achieving a reduction both in cost and
development time.

Achieving Maintainability: Maintenance is a major
problem attributable to several flaws in the current
paradigm. The automation-based paradigm switches
the noncreative aspects of maintenance and modifica-
tion from man to machine. Program specification
becomes the prime focus for maintenance rather than
the implementation. By transitioning the focus to a
representational form closer to the problem domain,
the complexities of code maintenance are eliminated
and the intrinsic difficulties are simplified.

496

(4)

Developing Reusable Software: Reusability has been a
major issue under the current paradigm due to the
development of software which is dependenf on a pro-
gramming language and/or an implementation. The
automation-based paradigm enhances reusability since
specifications and their recorded development are cen-
tral rather than implementations. Thus, when a
module is to be reused, the specification can be modi-
fied (or maintained) and its development is changed
accordingly.

Increased User Involvement: Under the current para-
digm systems analysts take the major responsibility for
predicting the behavior of the unimplemented system
to determine if it matches the user’s needs. The ever-
growing complexity and specialization of systems make
this awesome responsibility grow unrealistically. Under
the automation-based paradigm, however, the specifi-
cation is “operational” in the form of a prototype with
which users can experiment to determine the extent to
which it matches their requirements. Such an experi-
mentation leads users to improved perceptions of their
needs resulting in the development of systems which
are more progressively responsive to those needs.

Simulation Support: Prototyping

(5) Reduced Portability Problem: Under the automation-
based paradigm, the machine on which software runs is
just one of the decisions made during the implementa-
tion process. This decision can be changed like any
other decision; therefore, portability disappears as a

problem.

3. SMDE ARCHITECTURE

Since June 1983 the MDE project has addressed a com-
plex research problem: prototyping of a discrete-event
Simulation Model Development Environment (SMDE) fol-
lowing the automation-based software paradigm described in
Section 2. The major research goal has been to provide an
integrated and comprehensive collection of computer-based
tools to (1) offer cost-effective, integrated, and automated
support of model development throughout the model life
cycle, (2) improve the model quality by effectively assisting
in the quality assurance of the model, (3) significantly
increase the efficiency and productivity of the project team,
and (4) substantially decrease the model development time.

Guided by the fundamental requirements identified by
Balci {1986}, the Conical Methodology [Nance 1981, 1987]
has furnished the architectural underpinnings of the SMDE
research prototype. Prototypes of SMDE tools have been
developed using the rapid prototyping technique. See [Balel
and Nance 1987] for a description of concepts and principles
employed, experiences gained, and guidelines derived in the
design and creation of the latest SMDE research prototype.

The prototype SMDE is architectured in four layers as
depicted in Figure 2: hardware and operating system, kernel
SMDE, minimal SMDE, and SMDEs. Rach layer is
described in some detail below.

3.1 Layer 0: Hardware and Operating System

A SUN-3/160%1 color computer workstation running
under MC68020 CPU with 4 megabytes of main memory,
380 megabytes of disk subsystem, a 1/4-inch cartridge tape
drive, and a 19-inch monitor with 1152900 pixel resolution
constitute the hardware of the prototype SMDE. A laser
printer and a line printer accessible via an Ethernet local
area network serve the SMDE for producing high quality
documents and hard copies of SUN screens and files.

The UNIXi 4.2BSD operating system and utilities,
multiwindow display manager (SunWindows), device
independent graphies library (SunCore), computer graphics
interface (SunCGI), visual integrated environment (Sun-
View), Sun programming environment (SunPro), and
INGRES relational database management system (Sun-
INGRES) constitute the software environment upon which
the SMDE is built. Nance et al. [1984] have evaluated the
capabilities of UNIX for hosting an earlier prototype SMDE,
noting major and minor deficiencies.

The current prototype, based on the SUN workstation,
eliminates certain deficiencies in an earlier version (utilizing
a VAX 11/785%) and reduces the negative effects of others.

+ SUN-3/160 is a trademark of Sun Microsystems, Inc.
1 UNIX is a trademark of AT&T Bell Laboratories.
* VAX 11/785 is a trademark of Digital Equipment Corporation.

497

3.2 Layer 1: Kernel Simulation Model Development
Environment

Primarily, this layer integrates all SMDE tools into the
software environment deseribed above., It provides Sun-
INGRES databases, communication and run-time support
functions, and a kernel interface. There are three Sun-
INGRES databases at this layer labeled project, premodels,
and assistance, each administered by a corresponding
manager in Layer 2. All SMDE tools are required to com-
municate through the kernel interface. Direct communica-
tion between two tools is prevented to facilitate maintenance
and expansion. The kernel interface provides a standard
communication protocol and a uniform set of interface defin-
itions. Security protection is imposed by the kernel interface
to prevent any unauthorized use of tools or data.

3.3 Layer 2: Minimal Simulation Model Development
Environment

This layer provides a “comprehensive” set of tools
which are “minimal” for the development and execution of a
model. “Comprehensive” implies that the toolset is suppor-
tive of all model development phases, processes, and credibil-
ity assessment stages. “Minimal” implies that the toolset is
basic and general. It is basic in the sense that this set of
tools enables modelers to work within the bounds of the
minimal SMDE without significant inconvenience. It is gen-
eral in the sense that the toolset is generically applicable to
various simulation modeling tasks.

Minimal SMDE tools are classified into two categories.
The first category contains tools specific to simulation
modeling: Project Manager, Premodels Manager, Assistance
Manager, Command Language Interpreter, Model Generator,
Model Analyzer, Model Translator, and Model Verifier. The
second category tools (also called assumed tools, library
tools, or host provided tools) are expected to be provided by
the software environment of Layer 0: Source Code Manager,
Electronic Mail System, and Text Editor.

Figure 3 shows the top-level menu of the current
SMDE research prototype from which current prototypes of
Minimal SMDE tools can be activated.

3.4 Layer
Environments

3: Simulation Model Development

This is the highest layer of the environment, expanding
on a defined minimal SMDE. In addition to the toolset of
the minimal SMDE, this layer incorporates tools that sup-
port specific applications or are needed either within a par-
ticular project or by an individual modeler. If no other tools
were added to a minimal SMDE toolset, a minimal SMDE
would be a SMDE.

The SMDE tools at layer 3 are also classified into two
categories. The first category tools include those specific to a
particular area of application. These tools might require

O.Balci and R.E.Nance

Model
Analyzer

Model
Generator

Model
Translator

Command
Language
Interpreter

Model
Verilier

Kernel SMDE
Functions

Assistance Source
Manager Code
Hardware and Manager

Operating System

Electronic
Mail
System

Premodels
Manager

Kernel Interface

Project
Manager

Minimal

SMDE SMDEs

Figure 2. The architecture of the SMDE research prototype.

mdasun.2% 1s

Makefils mddef.c
headar.c mddef .o
Jheader.qc mddef.qe

images mdescreen
Hpdasun.3%

SN A VHANTATTRAYN 1.1 003 Ve S ARV o e VAV P RO

B0 15 TANCE MANARER E ;
§ MDE Assistance Manager ~
2 3
¥ 4
: Uzcompostna Model 1nto submadels 3t Level 1 .
Intro
to MDE LEVEL B: Enter the name of the model: £
MUE Resesrch Project o 8 f
| * £
Tutor e d
H ﬁ Enter the pﬁ'ﬁ'g ”Wg I Project A B g §
is decompoj - Manager TERSA]
the ones a . _ i
_1 i
H @lossary Submo I . CONSOLE 3 j
o1 NIV B
- ‘l Assistance ||| *" i
, Manager 5
: — - i A
U Arsiztince Wodat ;
£ @ -3 I Generator
N i) (etore) Cauit)
Model .
N - Analyzer : »Xcon Cursor
H [0 i |
s . e . Mode? -
N Yirginia Tecl Gomputer Heience Dept. I verstior IO erms worser
% ; T < O Fi11: border
¢ : ENabe Fitn:
o Load: Fill: Proof:
8re src src
PIOLE) e ogoEEN

mdmain.c mdquery.o mdupdate.qc
mdmain.o mdguery,ge maddef
mdmain.qc mdupdate.c newtool
mdguery.c mdupdate.o newtool.c

Figure 3. The SMDE Top-Level Menu and Other Tools.

498

Simulation Support: Prototyping

further customizing for a specific project, or additional tools
may be needed to meet special requirements. The second
category tools (also called assumed tools or library tools) are
those expected to be available due to their availability and
use in several other areas of application. A tool for statisti-
cal analysis of simulation output data, a tool for designing
simulation experiments, a graphies tool, a tool for animation,
and a tool for input data modeling are some example tools of
layer 3.

A SMDE tool at layer 38 is integrated with other SMDE
tools and with the software environment of layer O through
the kernel interface. The provision for this integration is
indicated in Figure 2 by the opening between Project
Manager and Text Editor.

4. MINIMAL SMDE TOOLS

This section describes our research efforts in prototyp-
ing the Model Generator, Model Analyzer, and Assistance
Manager. The other minimal SMDE tools are briefly
explained.

4.1 Model Generator

The Model Generator (the simulation Model specifica-
tion and documentation Generator) (MG) is a tool which
assists the modeler in: (1) creating a formal model specifica-
tion, (2) creating multi-level (stratified) model documenta-
tion, and (3) model qualification.

Based on the system definition and study objectives, a
modeler conceptualizes a model of the system in his or her
mind and then converts the conceptual model into a formal
specification by way of using the MG tool. The creation of
the specification takes place under a conceptual framework.
Three essential attributes characterize this specification: (1)
it lends itself to formal analysis, (2) it is completely translat-
able into executable code, and (3) its conceptual framework
is not domain dependent.

Detecting modeling errors as early as possible within
the development life cycle is extremely important for reduc-
ing the time and cost of model development and for decreas-
ing the probability of type II error — the error of accepting
an invalid model as valid. Therefore, the simulation model
should be specified in a form which is amenable to rigorous
testing. The Model Analyzer tool is intended to perform such
testing described in Section 4.2.

The second attribute is critical for achieving the
automation-based paradigm. The Model Translator tool is
expected to receive the formal model specification as input
and produce an executable model as output. In our experi-
ence, the automation-based paradigm can be easily achieved
if a restricted problem domain is chosen. For example, if we
choose computer networks as the problem domain, we can
develop a MG based on the known characteristics of com-
puter networks, extract the required information from the
modeler, and create a model specification which can be
translated in total into an executable version (experimental
model).

The third attribute is the most demanding. Our objec-
tive is to build a MG tool which is applicable for any

499

diserete-event simulation problem.

The three attributes of the model specification alto-
gether pose a significant technical challenge. Nevertheless,
we are confident that the challenge can be met by way of an
evolutionary development of MG prototypes.

To date, three prototypes of the MG tool under the
guidance of the Conical Methodology [Nance 1981, 1987]
have been developed. The Conical Methodology advocates a
top-down mode! definition and a bottom-up model specifica-
tion. Prototypes I and II adequately address the definition
phase but offer little support for the specification phase.
Prototype III supports both the definition and specification
phases of the Conical Methodology. A description of Proto-
type I is given by Hansen [1984]. Prototype III is an
improved version of Prototype I and is fully described by
Barger [1986].

4.2 Model Analyzer

This tool is intended to diagnose the model specifica-
tion created by the Model Generator and to effectively assist
the modeler in communicative model verification.

Nance and Overstreet [1986] propose several diagnos-
tics which are based on analysis of graphs constructed from
a particular form of model specification called Condition
Specification [Overstreet 1982; Overstreet and Nance 1985).
The diagnostic assistance is partitioned into three categories:
(1) analytical—determination of the existence of a property
of a model representation, (2) comparative—measures of
differences among multiple model representations, and (3)
informative—characteristics extracted or derived from model
representations. Action cluster attribute graphs, action clus-
ter incidence graphs, and matrix representations extracted
from the original graphieal forms constitute the basis for the
diagnosis.

The analytical diagnosis is conducted by measuring the
following indicators: atiribute utilization, attribute initiali-
zation, action cluster completeness, attribute consistency,
connectedness, accessibility, out-complete, and revision con-
sistency. The comparative diagnosis is done by measuring
attribute cohesion, action cluster cohesion, and complexity.
The third category represents the most difficult diagnostics
to automate. Examples of informative diagnosis inciude:
attribute classification, precedence structure, and decomposi-
tion.

The current research prototype described by Moose
and Nance [1985] provides a subset of the graph-based diag-
nostics and implements a control and transformation metric
for measuring model complexity {Wallace and Nance 1985].

4.3 Assistance Manager

The Assistance Manager (AM) is the on-line help facil-
ity of the SMDE. A prototype has been developed and is
described by Frankel [1987]. The prototype AM has six
components as shown in Figure 4: (1) introduction to the
SMDE, (2) tutorial, (3) glossary, (4) local (tool specific) help,
(8) programmer assistance, and (6) comment facility.

The Introduction to the SMDE component provides
general information about the SMDE for beginning users. It
allows a user to view an on-line document stored in the

0.Balci and R.E.Nance

v NSRRI 0O

{ Protot.pe Mode] nenerazor 11

lecomposing Model into Submodels at
LEVEL 8: Enter the name of the model:
combat
Enter the names of submodels the model
1s decomposed into at level i and identify
the ones at the base level:
Submodal Name{s):
==> under_sea_zons
(A~
==> sea_surface_zons

=w)> 1988_ft_zone

==> 5888_ft_zone

= =

==> 18866_ft_zone ¥

7enscsh

At the base level? (y or n)

Intro
to MDE

Tutor

ﬁ

Glossary

]

Programmer
Assistance

Ve

| ®

MDE Assistance Manager

Introduction to the Model Development Environment (MDE)

Tutorial for the MDE Tools

Glgssary of Technical Terms

Updating the HELP Database

Reporting Bugs and Naking Cosents About the Environment

Figure 4. The Assistance Manager Top-Level Menu.

Assistance Database. A user can obtain information about
the tools available in the SMDE and how to invoke a partic-
ular tool.

The Tutorial component is intended to teach a user:
(1) how to use an SMDE tool, (2) how to apply a particular
methodology or procedure, and (3) some concepts of model-
ing and simulation. A user can activate the Tutorial in one
window and a specific tool of interest in another. This way,
the user can employ the step-by-step instructions and wit-
ness the results as the instructions are applied to the tool in
the other window.

The Glossary component provides the definitions of
technical terms. A project member can query the meaning
of a term encountered in a project document. The Glossary
is intended to alleviate the communication problem among
the people involved in the simulation project.

The Local Help component provides assistance to a
user with regard to the current state of a running tool in the
SMDE. The AM provides this capability by giving tool
developers the ability to include a help package directly in
their code.

The Programmer Assistance component allows author-
ized programmers to embed help packages within their pro-
gram through the use of the AM and to update and main-
tain the help database. The AM assists the authorized pro-
grammers in terms of updating: (1) documents for the Intro-
duction to the SMDE, (2) tutorials, (3) terms in the Glos-
sary, (4) diagnostic messages, and (5) help text.

500

The Comment Facility component is included for
recording user observations and suggestions about the SMDE
and its tools. The information gathered by this facility is
used for the improvement of tools.

4.4 Other Tools

Project Manager is a tool which (1) administers the
storage and retrieval of items in the project database, (2)
keeps a recorded history of the progress of the project, (3)
triggers messages and reminders (especially about due dates),
and (4) responds to queries in a prescribed form concerning
project status.

Premodels Manager is a tool which (1) implements a
query language, (2) administers the premodels database, (3)
provides information on previous modeling projects, and (4)
provides a stratified description and several representational
forms of models or model components developed in the past.

Command Language Interpreter (CLI) is the language
through which a user invokes an SMDE tool. Early in our
project, the CLI was prototyped based on the proposal of
Moose [1983] and was fully described by Humphrey [1985].
Later, after the acquisition of the SUN workstation, the CLI
was replaced by SUN's window management system.

Model Translator translates the model specification
into executable version after the quality of the specification

Simulation Support: Prototyping

is assured by the Model Analyzer. During this translation,
code optimization is performed to improve the performance
of the executable model.

Model Verifier is intended for the programmed model
verification. Applied to the executable representations, it
provides: (1) assistance in incorporating diagnostic measures
within the source program, (2) a cross-reference map to iden-
tify where a particular variable is referenced and where its
value is changed, (3) a chart of the programmed model con-
trol topology to indicate subprogram invocation relation-
ships, and (4) dynamic analysis procedures for snapshots,
traces, breaks, statement execution monitoring, and timing
analyses.

Source Code Manager is a tool which configures the
run-time system for execution of the programmed model,
providing the requisite input and output devices, files, and
utilities.

Electronic Mail System facilitates the necessary com-
munication among people involved in the project. Primarily,
it performs the task of sending and receiving of mail through
(local or large) computer networks. The SUN workstation’s
MailTool (icon shown in the upper right of Figure 3) is used
to communicate with other nodes in the local area network
from which large computer networks (e.g., ARPANET,
CSNET, BITNET, etc.) can be accessed.

Text Editing is provided by the VI editor and the SUN
workstation’s TextEditor. Both of these tools are used for
preparing technical reports, user manuals, system documen-
tation, correspondence, and personal documents.

5. CONCLUSIONS

The need for automated support in simulation model
development is undeniable. The benefits to be gained from
the automation-based paradigm are so significant that, if the
paradigm is achieved, the development of simulation models
could be profoundly changed. Our experience gained by
experimenting with the prototype SMDE tools indicate that
the automation-based paradigm can be achieved within the
context of a very restrictive problem domain. However, the
paradigm becomes extremely difficult to achieve in the
domain-independent case. Nevertheless, we believe that the
challenge can be met by way of an evolutionary development
of prototypes.

ACKNOWLEDGMENTS

This research was sponsored in part by the Space and
Naval Warfare Systems Command and Naval Research
Laboratory under contract N60921-83-G-A165-B030 through
the Systems Research Center at VPI&SU. The contributions
of the following people to the MDE project are greatfully
acknowledged: Lynne F. Barger; Charles W. Box; E. Joseph
Derrick; Valerie L. Frankel; Robert H. Hansen; Matthew C.
Humphrey; David P. Maynard; Robert L. Moose, Jr.; and
Jack C. Wallace.

REFERENCES

Balei, O. (1986), “Requirements for Model Development
Environments,” Computers & Operations Research 13,
1 (Jan.-Feb.), 53-67.

Balei, O. and Nance, R.E. (1987), “Simulation Model
Development Environments: A Research Prototype,”
To appear in Journal of the Operational Research
Society.

Balzer, R. (1981), “Transformational Implementation: An
Example,” IEEE Transactions on Software Engineering
SE-7, 1 (Jan.), 3-14.

Balzer, R., Cheatham, T.E. and Green, C. (1983), “Software
Technology in the 1990’s: Using a New Paradigm,”
Computer 16, 11 (Nov.), 39-45.

Barger, L.F. (1988), “The Model Generator: A Tool for
Simulation Model Definition, Specification, and Docu-
mentation,” M.S. Thesis, Department of Computer Sci-
ence, Virginia Tech, Blacksburg, Va., Aug.

Frankel, V.L. (1987), “A Prototype Assistance Manager for
the Simulation Model Development Environment,”
M.S. Thesis, Department of Computer Science, Vir-
ginia Tech, Blacksburg, Va., July.

Hansen, R.H. (1984), “The Model Generator: A Crucial Ele-
ment of the Model Development Environment,” M.S.
Project, Department of Computer Science, Virginia
Tech, Blacksburg, Va., July.

Humphrey, M.C. (1985), “The Command Language Inter-
preter for the Model Development Environment:
Design and Implementation,” Technical Report TR-
85-17, Department of Computer Science, Virginia
Tech, Blacksburg, Va., Mar.

Moose, R.L. (1983), “Proposal for a Model Development
Environment Command Language Interpreter,” Techn-
ical Report CS83032-R, Department of Computer Sci-
ence, Virginia Tech, Blacksburg, Va., Dec.

Moose, R.L. and Nance, R.E. (1985), “Model Analysis in a
Model Development Environment,” Technical Report .
TR-85-27, Department of Computer Science, Virginia
Tech, Blacksburg, Va.

Nance, R.E. (1981), “Mode] Representation in Discrete Event
Simulation: The Conical Methodology,” Technical
Report CS81003-R, Department of Computer Science,
Virginia Tech, Blacksburg, Va., Mar.

Nance, R.E. (1987), “The Conical Methodology: A Frame-
work for Simulation Model Development,” In Proceed-
ings of the Conference on Methodology and Validation
(1987 ESC, Orlando, Fla., Apr. 6-9). Published as
Simulation Series 19, 1 (Jan. 1988), 38-43. SCS, San
Diego, Calif.

Nance, R.E. and Overstreet, C.M. (1986), “Diagnostic Assis-
tance Using Digraph Representations of Discrete Event
Simulation Model Specifications,” Technical Report
TR-86-8, Department of Computer Science, Virginia
Tech, Blacksburg, Va., Mar.

501

0O.Balci and R.E.Nance

Nance, R.E., Balci, O. and Moose, R.L. (1984), “Evaluation
of the UNIX Host for a Model Development Environ-
ment,” In Proceedings of the 1984 Winter Simulation
Conference (Dallas, Tex., Nov. 28-30). IEEE, Piscata-
way, N.J., pp. 577-584.

Overstreet, C.M. (1982), “Model Specification and Analysis
for Discrete Event Simulation,” Ph.D. Dissertation,
Virginia Tech, Blacksburg, Va., Dec.

Overstreet, C.M. and Nance, R.E. (1985), “A Specification
Language to Assist in Analysis of Discrete Event Simu-
lation Models,” Communications of the ACM 28, 2
(Feb.), 190-201.

Shannon, R.E. (1986), “Intelligent Simulation Environ-
ments.” In Proceedings of the Conference on Intelligent
Simulation Environments (San Diego, Calif., Jan. 23-
25). Published as Simulation Series 17, 1 (Jan. 1986),
150-156. SCS, San Diego, Calif.

Wallace, J.C. and Nance, R.E. (1985), “The Control and
Transformation Metric: A Basis for Measuring Model
Complexity,” Technical Report TR-85-15, Department
of Computer Science, Virginia Tech, Blacksburg, Va.,
Mar.

AUTHORS’ BIOGRAPHIES

OSMAN BALCI is an assistant professor of Computer
Science at Virginia Polytechnic Institute and State Univer-
sity. He received B.S. and M.S. degrees from Bogazigi
University (Istanbul, Turkey) in 1975 and 1977, and M.S.
and Ph.D. degrees from Syracuse University (N.Y.) in 1978
and 1981. He is currently the simulation and modeling
category editor of ACM Computing Reviews, the program
chairman of the SCS conference on Credibility Assessment,
and the principal investigator for the U.S. Navy-funded
research project in simulation model development environ-
ments. He has served as the viee-chairman of ACM SIGSIM
(7/85 — 6/87), the program chairman and proceedings edi-
tor of the SCS conference on Methodology and Validation,
and an associate editor of Simuletter (10/83 — 3/86). He
has been a consultant for Planning Research Corporation,
VM Software Inc., and Central Intelligence Agency. His
current research interests center on simulation model
development environments, credibility assessment of simula-
tion results, performance evaluation, and software engineer-
ing. Professor Balci is a member of Alpha Pi Mu, ACM,
IEEE CS, ORSA, and SCS.

Professor Osman Baleci

Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

(703) 961-4841

502

RICHARD E. NANCE is a professor of Computer Sci-
ence and the director of the Systems Research Center at Vir-
ginia Polytechnic Institute and State University. He received
B.S. and M.S. degrees from N.C. State University in 1962
and 1966, and Ph.D. degree from Purdue University in 1968.
He has served on the faculties of Southern Methodist Univer-
sity and Virginia Tech, where he was Department Head of
Computer Science, 1973—1979. Professor Nance has held
research appointments at the Naval Surface Weapons Center
and at the Imperial College of Science and Technology (UK).
Within ACM, he has chaired two special interest groups:
Information Retrieval (SIGIR), 1970—71 and Simulation
{SIGSIM), 1983—85, He has served as Chair of the External
Activities Board, the Outstanding Service Awards Subcom-
mittee, the ad hoc Conference Procedures Committee and
the ad hoc Film Committee that produced “Computers In
Your Life.”

He currently serves on the Editorial Panels of Com-
munications of the ACM for research contributions in simu-
lation and statistical computing, and Journal of Operations
Research and Computer Science for contributions in simula-
tion. The author of papers on discrete event simulation,
performance modeling and evaluation, and computer net-
works, Professor Nance has served as Area Editor for Com-
putational Structures and Techniques of Operations
Research, 1978—82, and as Department Editor for Simula-
tion, Automation and Information Systems of IIE Transac-
tions, 1976—81.

Professor Richard E. Nance, Director

Systems Research Center

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

(703) 961-6144

