Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

SIMULATION ENVIRONMENT OF THE 1990'S (PANEL)

Chair;

Voratas Kachitvichyanukul
Industrial and Management Engineering
The University of Iowa
Iowa City, Towa 52242

Panelists:
James O. Henriksen
Richard E. Nance
C. Dennis Pegden
Charles R, Standridge
Brian W. Unger

Introduction

Integrated Simulation Environment or Ideal Simulation System is
the most talked about topic in the simulation software community in
the past few years, (see for examples, Henriksen (1983,1984),
Nance (1983), and Schoemaker (1986)). Henriksen (1983)
proposed an architecture for the integrated simulation environment
and described how each element of the system interacts among one
another. Since then progress are made in various aspects of the
system and the added features are apparent in the commercially
available software.

Conceptually, the advancement of an integrated simulation
environment can be viewed in terms of layers of user interfaces as
represented in Figure 1 as concentric circles. At the core is the
simulation processor which contains the basic kernel routines for
executing the simulation. This represents the most primitive user
interface outside of the hardware and the operating system. At this
level, the users are required to have the expertise and detailed
knowledge of the way the simulation processor operates. The next
layer contains the simulation languages, database packages,
statistical analysis packages, and graphic packages. At this level,
the tools are procedure-oriented and/or problem-oriented packages
and the users are freed to concentrate on the abstraction of the
system. Converting from the abstract model into a computer model
is straightforward and only required that the abstract model be built
using a particular modeling system. The integration of parts of
this Jayer represent the current state of the art of the simulation
environment today (see for example, Standridge and Pritsker
(1987)). The last layer is the natural interface where the model
builder interacts with the system at the conceptual level. Some
examples for this layer are the natural language modeling
environment by Su (1987), model design language by Balci
(1986), and specification language by Overstreet and Nance
(1985).
In spite of the progress made, criticisms abound from all sides.
Some of the criticisms are :
From a mic puri
1. Current efforts by commercial firms are regressive; i. e., the
firms mostly try to perfect the outdated technology in stead of
seeking new methods or solutions.

2. Most of the commercially available software today do not
include artificial intelligence technique. AI needs to be
included somehow.

3. Statistical tools for input and output analysis are not built in.
Many such tools are published and known for quite sometime
but no commercial firm seems to be interested in including
them in the software.

4. Most of the new features added in new software tools are "gee
whiz" items that do not improve basic simulation
methodology.

455

Model Design
Languages

Simulation
Languages

g
2 g
B Simulation =
S - Processor <
Q 3
= Q @
Es 2
Z 5 Statistical

Analysis packages

Application
Generators

Figure 1. Layers of User Interface for Simulation.

From simulation practitioners
5. Too many claimed features did not live up to the expectation.
6. The new integrated systems cost too much,

7. Not everybody needs integrated system, a toolbox approach is
more appropriate,

8. Optimization and design of experiment tools are not built-in.
Impacts of New Technology

Past advancement in simulation methodology has always been
tightly paced with the advances of hardware and software
technologies. Two emerging new technologies that received a great
deal of attention are the parallel computers and the artificial
intelligence. Some of the research in simulation related issues on
parallel computers are a) concurrent and/or distributed simulation,
(Jefferson and Sowizral (1985), Jones (1986), and Gilmer and
Hong (1986)); b) simulation optimization with paralle] computers,
(Lyu (1987)); and c) statistical analysis of parallel simulation,
(Heidelberger (1986)).

The extent of the impacts that artificial intelligence technique may
have on simulation is yet unclear despite the current "hype”. The
advancement of Al itself is also tied to progress in hardware and
software development. Recent literatures ranged from simulation
support diagnostic (Hill and Roberts (1987)) to model generation
(Hwang (1985)) to programming paradigm (Ruiz-Mier and
'(I‘laglg\(/)z)z)ge (1987) to knowledge based simulation (Klahr and Faught

V. Kachitvichyanukul et al.

References

Balci, O. (1986). Requirements for Model Development
Environments. Computers and Operations Research, 13, 53-
67.

Henriksen, J. O. (1983). The Integrated Simulation Environment
(Simulation Software of the 1990's). Operations Research,
Vol. 31, no. 6, 1053-1073.

Heidelberger, P. (1986). Statistical Analysis of Parallel
Simulation. Proceedings of the 1986 Winter Simulation
Conference, Washington D, C., 290-295.

Henriksen, J. O. (1984). Discrete Event Simulation Languages :
Current Status and Future Directions. Proceedings of the 1984
Winter Simulation Conference, Dallas, 82-88.

Hill, T. R. and Roberts, S. D. (1987). A Prototype Knowledge-
Based Simulation Support System. Simulation, 48, 4, 152-
161.

Hwang, S. (1985). Automatic Model Building Systems : A
Survey. Proceedings of the 1985 Decision Support Systems
Conference, San Francisco, 22-32.

Jefferson, D. and Sowizral, H. (1985). Fast Concurrent
Simulation Using the Time Warp Mechanism, Distributed
Simulation 1985, The 1985 Society for Computer Simulation
Multiconference, San Diego, California.

Klahr, P. and Faught, W. S. (1980). XKnowledge Based
Simulation. Proceedings of the First AAAI Conference,
Stanford, 181-183.

Lyu, J. (1987). Simulation Optimization on Parallel Computers.
Unpublished Ph. D. Research Proposal, Industrial and
Management Engineering, The University of Iowa.

Nance, R. E. (1984). Model Development Revisited. Proceedings
of the 1984 Winter Simulation Conference, Dallas, 74-80.

Nance, R. E. (1981). Model Representation in Discrete Event
Simulation: the Conical Methodology. Technical Report
CS81003-R, Department of Computer Science, Blacksburg,
VA.

Overstreet, C. M. and Nance, R. E. (1985). A Specification
Language to Assist in Analysis of Discrete Event Simulation
Models. Communications of the ACM, 28, 190-201.

Ruiz-Mier, S. and Talavage, J. (1987). A Hybrid Paradigm for
Modeling of Complex Systems. Simulation, 48, 4, 135-141.

Standridge, C. R. and Pritsker, A. A. B. (1987). The Extended
Simulation Support System. John Wiley and Sons, New
York.

Schoemaker, S. (1986). Simulation Today, in Computer
Networks and Simulation III. Schoemaker (Editor), Elsevier
Science, North-Holland, 27-39.

Su, H. M. (1987). Natural Language Simulation Modeling
Environment. Unpublished Ph. D. Research Proposal,
Industrial and management Engineering, The University of
JTowa.

Author's Biography

Voratas Kachitvichyanukul is an assistant professor in Industrial
and Management Engineering at The University of Jowa. He holds
a BS in Chemical Engineering from National Taiwan University,
an M Eng from the Asian Institute of Technology, and a Ph D in
Industrial Engineering from Purdue University.

456

Dr. Kachitvichyanukul's current research interests are the
development of integrated simulation environment, simulation
optimization on parallel computers, special purpose simulation
language, random variate generation, and industrial applications of
artificial intelligence techniques. His research publications have
appeared in Journal of Statistical Computation and Simulation,
Communications of the ACM, Simulation, and IIE Transactions.
He is member of ACM, TIMS, SCS, and IIE.

Voratas Kachitvichyanukul

Industrial and Management Engineering
The University of ITowa

Towa City, Towa 52242

U.S.A.

(319) 335-5931
aegvorwy@uiamvs.bitnet

POSITION STATEMENT

James O. Henriksen
‘Wolverine Software Corporation
Annandale, Virginia

Historical Perspective

In 1983, I wrote a paper [1] which attempted to identify
"...significant improvements that will be made in simulation
software in the next 10 years.” The paper reviewed trends apparent
in 1983 both inside and outside the simulation community, and it
presented some "blue-sky" speculative opinions, in very broad
terms. It did not attempt to exhaustively catalog pertinent research
and/or commercial software tools. Now that four years' time has
passed, we are approaching the halfway point of the 10-year period
covered by the paper. The purpose of this panel session is to take
stock of the current state of the art in simulation software.

Hardware Tools

Improvements in software tools are evolutionary, In contrast,
improvements in hardware tools are revolutionary. We live in a
menu-driven, point-and-click world, in which desktop machines
perform tasks which would have required room-sized equipment
ten years ago. The availability of low cost, high performance,
personal, desktop hardware has given rise to new expectations for
software functionality and ease of use. User expectations create
pressures on software developers to harness these capabilities.

Graphics

The use of graphic display hardware to portray the operation of,
and results from, simulation models has gained widespread
acceptance. For example, in models of manufacturing systems,
animation has gained widespread use, both as a model verification
tool, and as a means of communicating system behavior to non-
simulationists. Similarly, the ability to quickly construct charts and
graphs of model results serves a dual role: it provides the
simulationist tremendous tools for exploring a model, and once
key relationships have been determined, it facilitates
communication with non-simulationists. Desktop graphics and
statistics are a match made in heaven,

Users expect graphics tools to be easy to use. Producing "quick-
and-dirty" displays ought to be easy to do, via non-procedural
specifications. Users are willing, up to a point, to expend
additional effort to clean up their own "quick-and-dirty" displays,
to make them acceptable for presenting results to others (frequently
non-simulationist managers).

Simulation Environment of the 1990's (Panel)

Artificial Intelligence

The impending marriage of artificial intelligence and simulation is
an exciting prospect. Some would maintain that this marriage has
already taken place. I feel that although combined AI-Simulation
applications are increasing in number, as of 1987, such combined
usage has yet to come into widespread use. Therefore, I speak of
the marriage in the future tense.

The need for AI in simulation is virtually provable. As
simulationists model increasingly larger and more complex
systems, the sizes of system decision spaces are exploding.
Simulationists need tools which can offer them inferential
assistance, i.e., well-designed inference engines ought to thrive on
large decision spaces. Unfortunately, Al technology has a long
way to go before it acquires the industrial strength required for use
with simulation. Many examples of the use of Prolog in
conjunction with simulation are beginning to appear in the
literature. While I am encouraged to see such examples, I question
whether the technology which works for small prototype
applications can be readily extended to full-scale, real-world
applications.

Two components of Al technology that are of special interest to
simulationists are goal seeking and backtracking. Simulationists
would like to be able to work with an Al package that was able to
respond to requests like "alter the design parameters of this
assembly line, so as to achieve the least-cost system capable of
producing N widgets per day, and having arrived at the 'solution,’
within a specified confidence interval, show me the parameter
values and the supporting statistical documentation.” Such
technology will probably be available within another five years, but
certainly not tomorrow.

Methodology

Researchers interested in advancing the state of the art of simulation
methodology must come to grips with one unfortunate fact: outside
the government and academic communities, methodology does not
sell. Consumers of technology will always be willing to spend
more money on "gee whiz" items, such as 3D animation, than they
will be willing to spend on methodology, even though the reverse
makes more sense. We all owe a vote of thanks to the small, but
dedicated minority of researchers who are improving our basic
methodology.

Commercially Available Simulation Environments

Since the publication of my 1983 paper, Pritsker & Associates have
developed and brought to the marketplace a package known as
TESS (The Extended Simulation System). To my knowledge,
TESS was the first commercially available simulation environment.
The offering of similar packages by other vendors is inevitable.

Progress to Date - a Report Card

In my 1983 paper, I identified eight components of a simulation
environment. The table which follows expresses my opinion as to
the progress that has been made toward realization of each
component, expressed as a percentage. I am sure that not all
panelists will share this personal assessment.

Component Progress
Model Editor 5%
Input Preparation Subsystem 50%
Statistics Collection Definition Facility 10%
Experimental Design Facility 5%
Output Definition Facility 5%
Program Editor 50%
Compiler 0%
Run-Time Support 60%

457

The Future

Over the past four years, substantial progress has been made in
improving the simulation technology. Some of the "blue sky"
capabilities I wished for in 1983 have already been achieved, but
others seem as far away in 1987 as they were in 1983. Overall, the
10-year time frame I hypothesized in 1983 seems to remain
reasonable.

References

1. Henriksen, J. O. (1983) The Integrated Simulation Environment
(Simulation Software of the 1990's), Operations Research,
Vol. 31, no. 6, 1053-1073.

Author's Biography

James O. Henriksen is the president of Wolverine Software
Corporation, located in Annandale, Virginia (a suburb of
Washington, D, C.) Wolverine Software was founded in 1976 to
develop and market GPSS/H, a-state-of-the-art version of the
GPSS language. Since its introduction in 1977, GPSS/H has
gained wide acceptance in both industry and academia. From
1980-1985, Mr. Henriksen served as an Adjunct Professor in the
Computer Science Department of the Virginia Polytechnic Institute
and State University, where he taught courses in simulation and
compiler construction at the university's Northern Virginia
Graduate Center. Mr. Henriksen is a member of ACM, SIGSIM,
SCS, the IEEE Computer Society, ORSA, and SME.

Mr. Henriksen is a frequent contributor to the literature on
simulation. He has given invited presentations at the Winter
Simulation Conference, the Summer Computer Simulation
Conference, and at the Annual Simulation Symposium. He served
as the Business Chairman of the 1981 Winter Simulation
conference and as the General Chairman of the 1986 Winter
Simulation Conference. :

James O. Henriksen

Wolverine Software Corporation
7630 Little River Turnpike, Suite 208
Annandale, Virginia 22003-2653

(703) 750-3910

POSITION STATEMENT

Charles R. Standridge
Pritsker and Associates, Inc.
West Lafayette, Indiana

Recent Advances in Simulation Software

During the 1980's simulation software evolved from simulation
languages which expected textual input and produced standard
textual output to simulation systems which provide for graphical
input of models and produce animations of simulation dynamics
and graphs of variable values. Simulation has become more widely
accepted as results and models can be presented in an
understandable way and simulation software has become easier to
use.

This evolution in simulation software was stimulated by
developments in personal computer technology, graphics terminal
hardware, graphics software, and database management. Personal
computers can simulate a limited but significant number of systems
of interest. Furthermore, the single user personal computer
environment supports graphics capabilities upon which animations,
presentation graphics, and model entry graphics have been
effectively built. The coming of low cost graphics terminals and
graphics software libraries has allowed these same capabilities to be
brought to the minicomputer and mainframe environment. The

V. Kachitvichyanukul et al.

development of database management systems for simulation-
related data has allowed simulation systems to effectively use and
control the data and models related to a simulation project.

Simulation systems have evolved to the point that common
functionality across systems can be observed. This common
functionality includes capabilities such as graphical entry and
editing of process oriented models, post-simulation and simulation-
concurrent animation, graphing and reporting of simulation results,
and statistical analysis.

Simulation systems provide varying degree of integration. Several
types of integration are possible. Database management system
capabilities available in some systems allow simulation results and
simulation inputs to be chosen across scenarios, for selected time
intervals, for multiple performance measures, and/or according to
any logical conditions in the data when preparing reports, graphs,
and animations. Manipulations needed to affect the selection of
simulation results are,performed automatically by the database
management system. Thus, data integration is achieved. Single
languages which allow access to all system capabilities provide
integration of functionality. Users can move between functions in
any sequence as needed. Systems which manage all simulation
project information provide integration of projects. Models (or
portions of models), icons, graphic formats and the like developed
in the course of one project can be-share with other projects.

Future Advances

Future advances in simulation systems will come as new
technology is incorporated and current issues are résolved.

Engineering workstation computers such as those provided by
DEC, SUN, and Apollo will increase in importance as hosts for
simulation systems. These systems provide an easy to use single
user environment and sufficient computing power for the majority
of simulation applications. These machines provide strong
graphics support capabilities for hosting graphical model builders,
presentation graphics and animations. Some workstations, such as
the IRIS, are designed specifically to support animations.
Simulation systems need to take advantage of the iconic user
interface development tools provided on workstations and the
ability to have multiple, concurrent visible processes in windows
on a single workstation screen.

Artificial intelligence tools show promise in supporting the
development of computer assistance for simulation project tasks
previously performed manually. These tasks include model
conception, model entry, data collection specification, model
simulation, result presentation and animation design, conclusion
drawing, and alternative scenario specification. To be most
effective, the assistance should be cognizant of the particular
system or class of systems of interest.

The role of simulation in overall system design process needs to be
explored. An understanding of this role will allow simulation
software to be integrated with other system design software, such
as CAD/CAM systems, to provide better software support for the
design process.

Author's Biography

Charles R. Standridge is a Senior Systems consultant with Pritsker
& Associates, Inc. He holds a Bachelor of Science in Applied
Mathematics and Computer Science from Washington University in
St. Louis, Missouri, and both Master of Science and Doctor of
Philosophy in Industrial Engineering/Operations Research from
Purdue University.

458

Dr. Standridge has worked in the application of database
management techniques in simulation including the development of
integrated support systems for simulation. He led the development
of the Simulation Data Language (SDL) and The Extended
Simulation System (TESS). Dr. Standridge has been active in the
application of this technology to industrial problems and in research
to extend this technology. Currently, Dr. Standridge is a member
of the software development of at P&A.

Charles R. Standridge
Pritsker and Associates, Inc.
1305 Cumberland Ave

P. O. Box 2413

‘West Lafayette Indiana 47906

317-463-5557

PARADIGMS AND METHODOLOGIES :
ENVIRONMENT BLUEPRINTS

Richard E. Nance
Systems Research Center
and
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

"User friendly"” has been displaced as the most misused buzzword
in computing technology. This piece of news is not so shocking
after all it has had its day and the time has come for new
terminological "hype." The reigning term is "methodology” but
coming on fast is "paradigm”. Unfortunately, both seem destined
to have significant effect, either positively or negatively, on the
simulation support environments envisioned for the 1990'.

Methodology

Henriksen [1] performed a masterful job of separating fact from
fancy in his thoughtful, forward looking description of what was to
face us in eight years or so. Laced throughout with both provoking
thoughts and pivotal guidance, the paper projects several messages.
One which is central is, "Proper integration of software tools into a
software development environment can be achieved only through
consistent adherence to an underlying software development
methodology" [1, p. 1061]. I am in complete agreement with this
assertion, and if the word "model" is substituted for "software" in
the three instances above, I would embrace the sentence
wholebeartedly.

But, where are we five years hence in our understanding or
clarification of the term "methodology"? Certainly, its use is
pervasive, but do we find that fact comforting? Until we can come
to grips with an answer to the question,"What is a methodology?”
how can we hope to utilize the concept as a blueprint for model
(software) development environments.

Paradigm

The term "paradigm" has major significance for the simulation
community, particularly when preceded by either "object oriented"
or "automation based". The object oriented paradigm is traced to
Simula (more specifically Simula 67) [2], and the influence on
future generations of simulation analysts (none of which have ever
written an Algol statement) is likely to be pervasive. For the object
oriented perspective is influencing artificial intelligence modeling
languages and techniques also. Further, the prospect for
reusability is becoming an extremely persuasive economic
argument.

The automation-based paradigm is an expression of the next step in
moving the user further from the details of program execution.
Described by Balzer, Cheatham and Green [3], the forerunners of
the specification-centered approach to program development and

Simulation Environment of the 1990's (Panel)

maintenance are already apparent in the numerous design languages
populating the marketplace. What effect will this paradigm have on
the simulation environment architecture proposed by Henriksen
[1]? How will it affect the architecture proposed by Balci [4]7

References

1. Henriksen, J. O. (1983), "The Integrated Simulation
Environment (Simulation Software of the 1990's),”
Operations Research, 31, 6 (Nov-Dec), 1053-1073.

2. Goldberg, A. (1983), "The Influence of an Object-Oriented
Language on the Programming Environment,” In Proceedings
of the 1983 ACM Computer Science Conference, Orlando, FL.
(Feb), pp. 35-54.

3. Balzer, R., Cheatham, T.E. and Green, C. (1983), "Software
Technology in the 1990's: Using a New Paradigm,”
Computer, 16, 11 (Nov), 39-45.

4. Balci, O. (1986), "Requirements for Model Development
Environments," Computers & Operations Research, 13, 1
(Jan-Feb), 53-67.

Author's Biography

Richard E. Nance is the Director of the Systems Research Center
and Professor of Computer Science at Virginia Polytechnic Institute
and State University. He serves as Principal investigator for the
Navy-funded project in Model development Environment. He has
chaired the TIMS College on Simulation and Gaming and has held
editorial positions involving simulation publications in Operations
Research and IIE Transactions. Dr. Nance is a former member of
the WSC Board and the past Chairman of the ACM Special Interest
Group on Simulation (SIGSIM).

Richard E. Nance

Department of Computer Science
Virginia Tech

Blacksburg, Virginia 24061

(703) 961-6144
Nance@vtcs1.bitnet

POSITION STATEMENT

C. Dennis Pegden
Systems Modeling Corporation
State College, Pennsylvania

Dramatic changes are taking place in the simulation environment
Ieading up to the 1990's and beyond. These changes have been
driven by i) the development of the engineering workstation, ii) the
incorporation of animation in simulation software, and iii)
improved software for modeling.

In the 1970 simulation were mostly performed in a batch mode
on mainframe or mini computers. In the 1980's there has been a
rapid transition in simulation from the use of mainframe and mini
computers to desktop microcomputers and engineering
workstations. Although most of the current popular desktop
computers are limited by their memory address space, these
limitations will soon disappear as improved operating systems and
hardware become available in the next year or two. As a result,
believe that in the 1990's the vast majority of simulations will be
performed on desktop engineering workstations. The mainframe
computer and simulation software will be reserved for only very
large scale models.

The animation capability of simulation software has dramatically
improved in the last part of the 1980's. The effort required to

459

generate a highly detailed animation of a system using currently
available simulation languages is minor compared to the modeling
effort itself. Although animation is currently viewed as an extra
and is currently used on a minority of simulation applications, this
situation is rapidly changing. The rapid transition towards the
common everyday use of animation in simulation is being driven
by a number of forces. These include the improved graphics
capabilities on the standard desktop engineering computers and a
growing appreciation by both modelers and management of the
value of animation. I believe that animation will become a routine
andostandard part of most simulation applications during the
1990's.

Although the use of simulation has been increasing during the
1980's, 1 believe the real key to its rapid growth in use during the
1990's is the development of improved simulation software.
Although there has been improvements in simulation software in
the 1980's, the development of a simulation model remains a time
consuming and expensive undertaking. What is needed is some
dramatic improvements in the way we build models. I believe that
a departure from the conventional methods of modeling is needed
to reduce the reliance of simulation projects on simulation experts.
I expect to see the availability of dramatically improved modeling
systems towards the later part of the 1980's and I expect that these
will become widely used during the 1990's.

Author's Biography

Dr. C. Dennis Pegden is an Associate Professor in the Industrial
and Management Systems Engineering Department at The
Pennsylvania State University and President of Systems Modeling
Corporation. Prior to his current position, he taught at the
University of Alabama in Huntsville where he led the development
of the SLAM simulation language. Dr. Pegden received his Ph. D.
in 1979 in Industrial Engineering from Purdue University where he
studied optimization. His current research interests include both
optimization and simulation.

C. Dennis Pegden

Systems Modeling Corporation
248 Calder Way

State College Pennsylvania 16801

(814) 238-5919

‘SIMULATION ENVIRONMENTS & PARALLELISM

Brian W. Unger
Computer Science Department
University of Calgary
Calgary, Alberta

Parallelism in the execution of simulations may make substantial
performance improvement possible. The emerging multicomputer
architectures that consist of hundreds to thousands of powerful
node computers have tremendous potential for speeding up
simulations. Faster simulations will expand the kinds of problems
to which simulation can be applied. The ability to speed up
execution by several orders of magnitude would make interactive,
faster than real time, simulation possible for problems in urban and
transportation planning, for example, which have not previously
been feasible.

V. Kachitvichyanukul ez al,

However, three issues must be addressed before substantial
speedup via parallelism can be achieved with real simulation
problems. The first involves the synchronisation of simulation time
in the concurrent, distributed, asynchronous execution of system
model components. The second involves the development of
models in a way which identifies potential parallelism. The third
issue is whether sufficient inherent parallelism exists within
modelled systems to make distributed, concurrent execution
practical.

In a multicomputer that consists of large numbers of computing
nodes it is difficult to provide a globally available clock. This
implies asynchronous execution on different nodes and thus a
requirement to synchronise simulation time across nodes. Recently,
a new "optimistic" synchronisation technique has been described
by Jefferson that makes greater parailelism possible for models of
arbitrary structure [Jefferson 85]. Past approaches have been based
on "conservative’ mechanisms which appear to restrict both model
structure and the extent of parallelism achievable. An approach
based on Jefferson's optimistic mechanism that enables the
development of simulation components in multiple programming
languages is currently under development at the University of

Calgary [Unger 86].

The second model development issue is closely related to the
general distributed software development problem. Distributed,
parallel programs can be orders of magnitude more difficult to
design, implement and test than sequential programs. One reason
for this is that a distributed program is non-deterministic and thus
errors, in general, cannot be reproduced. Our approach to
distributed simulation is based on a programming environment
called "Jade" that supports the development of distributed systems
of simulations [Joyce 87].

The third issue, whether there exists sufficient inherent parallelism
within simulation models to enable substantial speedup, cannot be
resolved without further experimental research. Even when there is
substantial parallelism in the system being modelled it is not clear
that speedup via parallelism is possible during model execution.
The key unknown is the ratio of computation overhead required for
the synchronisation of simulation time to the computation required
to mimic model behavior. Very preliminary performance results
are presented in [Berry 86] and further results will be presented at
the Multi'88 Distributed Simulation Conference [Unger 88].

Simulation environments of the future must build on traditional
object oriented methods and the new logic program paradigms in a
way which does not hide the parallelism inherent in models.
Distributed operating system kernels and language run-time
systems must then be able to exploit this parallelism to support
concurrent execution of simulations on multicomputer. Finally,
these simulation kernels must support this parallelism
transparently, that is, without modification at the model source
code levels. Without this transparency models will have to be
continually re-written when moving from model development,
testing and validation on sequential hardware to parallel hardware
for simulation experiments.

460

References

Berry, O. (1986) "Performance Evaluation of the Time Warp
Distributed Simulation Mechanism", Ph.D. Dissertation,
University of Southern California, May.

Jefferson, D.(1985) "Virtual Time" ACM Transactions on
Programing Languages and Systems 7(3) p.404-425, July.

Joyce, J., Lomow, G., Slind, K., and Unger, B. (1987)
"Monitoring Distributed Systems", ACM Transactions on
Computer Systems, 5(2), pp 121-150, May.

Unger, B., General Chairman, & Jefferson D., Program
Chairman, (1988) SCS Multi'88 Distributed Simulation
Conference, San Diego, February.

Unger,B., Cleary, J., Lomow, G., Slind, K. and Li, Xining,
(1986) "Jade Virtual Time-Implementation Manual”.
Research Report #86/242/16, computer Science, University
of Calgary, October.

Author's Biography

Brian Unger is a Professor of Computer Science at the University
of Calgary, Alberta, Canada. He is also Director of the Software
Research and Development Group of the University and was
Principle Investigator of Project Jade. Jade is a prototyping and
simulation environment that was released in 1985 which supports
the development of distributed software and simulations. Dr.
Unger received his Ph.D. in Computer Science from the University
of California at San Diego in 1972 and has published widely in the
field of simulation since that time.

Brian W. Unger

Computer Science Department
2500 University Drive, N. W,
University of Calgary

Calgary, Alberta Canada T2N1N4

(403) 220-6038
unger@calgary.

