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ABSTRACT

We present an overview of a method for
estimating an entire queueing function,
f(M),0<A<c, from a single simulation sam-
ple path, where A is the arrival rate to the sys-
tem and ¢ is the system capacity. For example,
f(A) could be the average sojourn time in a
queueing network as a function of A. Recently
methods have been developed that allow one to
simultaneously estimate f(0), f'(0), f(QA")
F’A\"), and h (the heavy traffic limit of f)
based on the sample path from a single simula-
tion experiment in which the arrival rate to the
system is A°. ‘Standard’ simulation methodol-
ogy has generally focused on obtaining only the
point estimate of f(A") from this one sample
path. The computational costs associated with
obtaining all five estimates (as well as an esti-
mate of the asymptotic covariance of the esti-
mates) is only slightly higher than the costs
associated with obtaining an estimate of f(A")
alone. We propose a regenerative simulation
methodology to construct estimates of f(0),
F'0), f*) f’\"), and h and an approxima-
tion to the joint distribution of the estimates.
We then outline a method for fitting a polyno-
mial t0 a ‘normalized’ version of the estimates.
A reverse normalization of the fitted polynomial
yields an estimate of f(A), 0 <A <c.

1. INTRODUCTION

Often one is interested in a function of the
arrival rate to an open queueing system,
f(A),0< A <c, where ¢ is the capacity of the
system, i.e., ¢ = sup{A: system with arrival
rate A is stable}. For example, f (A) might be
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the average sojourn time in the system or the
variance of the queue length at some node or
the 0.95% quantile of the sojourn time distribu-
tion. Functions of this sort arise, for example,
in models of computer and communication sys-
tems. The class of models for which analytic
results are available is rather restrictive, so one
is often confronted with the task of analyzing
the model via simulation. One of the advantages
of an analytic solution of a model is the ability
to look at the entire function, f (A), 0<A<c.
In this way many questions such as ‘How big
can A be before a design requirement is
violated?’ can be answered easily. Typically, the
same question can be difficult to answer via
‘standard’ simulation methodology, since several
simulation experiments at different arrival rates
will generally be required to provide the answer.

We propose a method that produces an estimate
of f (A), 0 <A < ¢ from the sample path associ-
ated with a single simulation experiment in
which the* arrival rate to the system is some
A',0<)A <c. In this paper we restrict our-
selves to estimating mean sojourn times for
regenerative systems, although higher moments
and quantiles can be estimated as well.

The method can be outlined as follows. A ‘nor-
malized’ version of f(A) (call it g (A)) is chosen
so that a heavy traffic limit for g(A) can be
obtained. For our purposes (mean sojourn times)
the normalized function will always have the
form g(A) = (c-A) f (A), although other normali-
zations are possible. We choose A' and conduct
a simulation experiment in which the arrival
rate to the system is A". Based on this single
simulation experiment we construct estimates of
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2(0), g°(0), gA"), g’A") and h = limg (A), and

an approximation to the large sample distribu-
tion of the estimates. All five estimates and the
approximation to their large sample distribution
are obtained at little additional computational
cost above those associated with simply estimat-

ing f ') .

Using estimates of g(0), g7°(0), gA"), g’A\"),
and h, and the approximation of the large sam-
ple distribution of the estimates, a polynomial
interpolation, g (A), is constructed that ‘best’ fits
the estimates (in the least squares sense). We
choose g(A) to be the smallest degree polyno-
mial that gives a reasonable fit. Once we have
£()), the estimate, f (), of f (A) is obtained by

reversing the normalization, ie.,
oy = LN
foy=--5s.

A ‘simterpolation’ is an interpolation con-
structed from data generated from a simulation.
In this paper we briefly describe the individual
pieces of the simterpolation. In Reiman, Simon,
and Willie (1987) the pieces are described in
more detail and some experimental results will
be presented.

In Sections 2, 3, and 4 we describe certain rela-
tionships that are key to the methodology for
constructing estimates of g(0), g°(0), g(A"),
g’(A") and h. Section 5 briefly addresses the
regenerative simulation methodology for con-
structing the estimates and presents a large sam-
ple approximation to the distribution of the esti-
mates. In section 6 we describe the polynomial
interpolation, g(A), and the approximation,
f (\). We conclude with a short discussion in
section 7.

In all that follows, we fix A*,0 <A" < ¢ and
simulate the system with an arrival rate of A*,
All probabilities and expectations are assumed
to be with respect to A" unless stated otherwise.
Also, we define g (A) = (c—A)f (A). The systems
are assumed to be regenerative and the arrival
processes are Poisson.

2. LIGHT TRAFFIC

In Reiman and Simon (1988a), a general
method is presented for analytically determining
the n* derivative of f(A) at A =0 for a large
class of functions and systems. If f(A) is the
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average sojourn time then f (A) = E(y), where
y(w) is the sojourn time of a ‘tagged’ customer
placed in the system at time zero, for the sam-
ple path, . Light traffic derivatives of order
zero and one can be obtained analytically by the
following formulas:

FO) =y(2)),

FO) = JIWE) -v(@)id ,

where \Ilﬁ{@})=E(\y | no arrivals in all of
time ), W({tD=E(y | one arrival in all of
time; at time t). Expressions for higher order
derivatives are given in Reiman and Simon
(1988a). Although f (0) and f’(0) can be expli-
citly computed this way for fairly general sys-
tems (e.g. Markovian networks of priority
queues), there is no obvious way to evaluate or
estimate y({¢]) during the course of a simula-
tion. We therefore seek an alternate approach
for computing light traffic limits.

Clearly, f(0) is the expected sojourn time of a
customer in an empty system. One can deter-
mine the sojourn time that each customer would
have experienced in an empty system by sum-
ming all its service times. Thus, if v; is the
total service time needed by the j* customer in
the i* busy period, then the v;’s are iid and
E(V,'j) =f(0). Also, if v, = Z! Vij and Ni is
the number of customers in the i* busy period
then

E(v;)
0) = ,
O = Fa;
and
g0 =cf(0).
Let
x1-N; AT 2-N;
Vi = A"y e Iy <oy CT2) "W,
VA = T L=y Wi,
and
1 a7
V‘(3) = ..XT e i 1[N.~=2) s

where T; is the length of the i busy period
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and W; =3 ; W;;, where W;; is the sojourn
time of the j* customer of the i* busy period.
In Reiman and Weiss (1987b), the following
formula is derived:

0 = EVY) - EVPHEV®).

It follows that
g’0) = cf'O~-f0O.

For each busy period in the single simulation
experiment at A", it is clear that all the random
variables needed to evaluate V;®), V;@, and V;®
are readily available. Analogous expressions
exist for higher order light traffic limits (sce
Reiman and Weiss (1987b)), aithough the vari-
ance of the estimates will increase rapidly with
the order.

3. HEAVY TRAFFIC

In Reiman (1987) an expression is given for the
heavy traffic limit of the sojourn time distribu-
tion of networks of priority queues with a single
bottleneck node. From this expression, the
heavy traffic limit of the average sojourn time is
easily seen to be

Where M is the expected number of visits a
customer makes to the bottleneck node at lowest
priority;, © is a constant times the second
moment of the total service time a customer
needs at the bottleneck node, and T" is the
expected value of a certain weighted sum of
individual service times at the bottleneck node.
If the routing of the customers in the network is
Markovian then # can be computed explicitly
(see Simon (1987)). In those cases, and in even
more general cases (non-Markov routing), & can
be estimated from the simulation. The j* cus-
tomer of the i busy period generates random
variables, M"j, 8,, and I’,J which are eaSlly
evaluated and are iid, with EM;)=M,
E(©;) =8 and E(T};) = I. In particular,

y - EOn) _ E(®)
T E®) T E®)

and
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where M; = ZMU’ 8‘- = Ze,-,- and I; = ZI‘,-,-.
Jj i j

4. THE DERIVATIVE AT A*

In recent years there has been quite a bit of
work aimed at obtaining sensitivity measures
(i.e., derivatives of the function being estimated)
from a simulation. The method we choose to
use is the likelihood ratio method (Reiman and
Weiss (1987a)). Other alternatives are
infinitesimal perturbation analysis (Suri (1983))
and the light traffic perturbation method (Simon
(1987)). The scope of infinitesimal perturbation
analysis is too restrictive for our purposes at this
time, and the light traffic perturbation method
appears to be too difficult to implement in a
general setting.

The likelihood ratio method is easy to imple-
ment and is widely applicable. For the i** busy
period, let

N;
D,- = :‘i;""Ti‘ W",
and
N} = ¥ T‘N
1] - ‘A'* l‘ -
Then,
ey _ EDi)  EW) EWN)
P& = 5wy "E®) EO)
and

gAY = €-A)f'Q) - FA).

Again, the quantities needed to estimate f’(\")
are easily obtained during the course of the
simulation. Analogous expressions exist for
higher order derivatives (see Reiman and Weiss
(1987a)), although the variance of the estimates
will increase rapidly with the order.

5. LARGE SAMPLE THEORY

In this section we present a large sample
approximation to the joint distribution of the
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estimates of g(0), g’(0), g(A'), g’A") and A
based on a single simulation experiment in
which the arrival rate to the system is A*. Sup-
pose that the sample path from the simulation
experiment is a realization of a regenerative sto-
chastic process and that data for (exactly) n
busy periods is generated. Let
gn(x.) =(c —x.)fno“)- where fu(x') is the
estimate of f (") based on n busy periods and
constructed via standard regenerative simulation
methodology (see, for example Iglehart and
Shedler (1980)), i.e.,

zW

fQ) = 5—.
XN

i=1

Similarly, let g,(0), £,’(0), g,’(A’) and h,
denote the estimates of g(0), g"(0), g’(A") and
h, respectively, constructed from the relation-
ships described in sections 2, 3 and 4.

Based on the theory of regenerative stochastic
processes, it can be shown that under quite gen-
eral conditions, as n — o the asymptotic distri-
bution of the vector

£,(0) - g0
8,'(0) — g’(0)
| (M) - g, %)
g&'A") - g'\")
h, —h

is S-variate normal with mean vector zero and
covariance matrix C = (0;;). Furthermore, con-
sistent estimates of the elements of C can be
constructed from the simulation experiment.
Details of the large sample theory will be
presented in Reiman, Simon, and Willie (1987).

6. INTERPOLATION METHODOLOGY

In this section we describe the construction of
the estimate of the functon f(A), 0<A<c,
based on the estimates g,(0), g,(0), g.(A"),
g.’(X"), and h, of the previous section. The
methodology described here is, in a sense, a
generalization of the interpolation methodolo-
gies described in Reiman and Simon (1988b)
and Simon, and Willie (1986).

Suppose that for0 <A < ¢,
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d
g = ¥ b AF
k=0

for some integer, d, and coefficients
by, + -+, by. In other words, we assume that
the normalized f(A) can be sufficiently well
approximated by a polynomial of (hopefully
low) order, d. Empirical evidence suggests that
a properly normalized f (A) can be well approxi-
mated by quadratic or cubic polynomial in
many cases of interest (see Reiman and Simon
(1988b), Simon, and Willie (1986)). Thus, the
problem of estimating f (A), 0 < A < ¢ is one of
determining the order, d, and coefficients,
by, ..., by of the polynomial approximation to
g () and then performing a reverse normaliza-
tion.

Before proceeding further, we introduce some
notation: Let

- » T
Yo = (80,80 800808,

b = (bo’bli T ’bd)T )

and let C, denote the estimate of the asymptotic
covariance matrix of Y, from the previous sec-
tion (ie.,, C, is the 5x5 matrix with elements
8, /n, where §;; is a consistent estimate of o;;
based on n busy periods). The matrix X will
denote the 5x(d+1) matrix, which for d <4 is
given by the first d+1 columns of the matrix

10 0 0 0
01 0 0 0
1A Q7P Y o
0 1 22" 3" 40°)
1 ¢

2 3 4

c c c

Suppose for the moment that the order, d, of
the polynomial approximation of g()),
0 <A < ¢ is known, Here, the results presented
in section 5 strongly suggest (see Lewis and
Odell (1971)) that for sufficiently large n, the
coefficient vector be chosen so that

Y» - XB)C,7H (Y, ~ Xb)T

is minimized. From the classical form of the
Gauss-Markov Theorem (again, see Lewis and
Odell (1971)), the minimum is attained when
b = b, where
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b=&X'C,'X7'X7C,Y,.

Our estimate of the function f(A), 0 <A <c is
obtained by a reverse normalization of the fitted
polynomial, i.e.,

2 b7 A
F&) ==,
where A= (1,1, 2% ..., A%)T. The variance
of f (A) is given by
ATXTC,I1X)A
(c - AP

Unfortunately, the order of the polynomial,
g(\), is generally unknown (except for a few
simple systems) and must be inferred from the
data. Techniques for choosing d will be dis-
cussed in Reiman, Simon, and Willie (1987).

In many cases, some of the quantities being
estimated in the simulation can be determined
exactly by analytic means. For example, in the
cases we are considering here (average sojourn
times), f (0) can often be determined by inspec-
tion. As was pointed out in sections 2 and 3, if
the system is Markovian, it might be possible to
compute f°(0), and if the customer routing is
not too complex, it might be possible to com-
pute h. When some of the data is known
exactly, the problem of estimating g(A),
0 <A <c becomes a constrained least squares
problem. The constrained least squares problem
is treated in Lewis and Odell (1971). A few of
the most common cases (e.g. when f(0) and A
arc known exactly) will be worked out in detail
in Reiman, Simon, and Willie (1987).

7. DISCUSSION

Simterpolations can be constructed for any func-
tion of any system for which it is possible to
simultaneously estimate f(0), f'(0), f(A"),
f'A"), h and C from a single simulation. As
we have shown, average sojourn times in net-
works of priority queues with a single
bottleneck node can be handled easily. The
jump to estimating higher moments is straight-
forward.

Initially, one might think that since the simula-
tion is run at A = A", the simterpolation’s accu-
racy will deteriorate as A moves away from A".
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The estimate of £ (0) and & typically have lower
variance than the estimates of f(A*), so the
simterpolation is in fact more accurate near the
endpoints than it is in the middle. This will
obviously be the case when f (0) and % can be
determined exactly,

There are numerous interesting problems that
come up in the implementation of the simterpo-
lation method that we have not fully addressed.
Among them are:

1. What is the best A" to simulate at?

2. How many derivatives (in light traffic and at
A") should be estimated?

3. How should one normalize f (A)?

4. How does one choose the order of the poly-
nomial approximation of g (A)?
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