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ABSTRACT

Nonlinear regression-adjusted control variables are inves-
tigated for improving variance reduction in statistical and
system simulations. Simple control variables are transformed
using linear and nonlinear transformations, and parameters of
these transformations are selected using linear or nonlinear
least squares regression. As an example, piecewise power-
transformed variables are used in the estimation of the mean
for the two variable Anderson-Darling goodness-of-fit statistic
WZ. Substantial variance reduction over straightforward
controls is obtained. These parametric transformations are
compared against optimal, additive, nonparametric transfor-

mations from ACE and are shown to be nearly optimal.

1. PRELIMINARIES

This paper investigates the use of possibly nonlinear.
regression-adjusted control variates for variance reduction in
statistical and system simulation.

Let C be a vector of control variables which are corre-
lated to a statistic of interest ¥, and assume that C has
The standard method of obtain-
ing a controlled statistic ¥~ to estimate E(¥), and which has

known mean vector E(C).

less variance than Y, is via the linear, additive combination
v’ = v - fYC- E(C)). o)

The vector f is a vector of unconstrained constants chosen to
minimize the variance of ¥’. Note that some components of
C may be known power transformations of other com-
ponents, so that polynomial control schemes are included in
formulation (1). Explicit expressions for the components of 8
which minimize the variance of ¥’ can be found in terms of
the second order moments of ¥ and C, and with these
parameters, ¥’ is an unbiased estimate of E(Y).

This paper generalizes (1) by letting
Y'=Y-c, (2)

where €7 is any mean-zero linear or nonlinear parametric

function of the
C'=1(C;B)~E(/(C:B)).

additive or multiplicative combinations of power transforma-

components of C, ie..
For example, C’ might involve

tions of the components of the original control vector C.
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Optimal or near-optimal values of the unknown parameters
of these transformations. analogous to g in (1), are obtaineu
by minimizing the variance of ¥’, but the results are not
explicit functions of the joint and higher moments between ¥
and the set of control variables. Before going on to the
details of the general case (2) of regression-adjusted controls,

we review simple linear controls.
.

Consider the case of a single, additive, linear control so
that C’=C~BE(C). Then,

¥’ = Y - §(C - E(C)),

and B is chosen to minimize var(¥”). This variance is
minimized when £ is proportional to the correlation between
C and Y;

effectiveness of the control in obtaining variance reduction.

the greater the correlation, the greater the

Assuming var(Y)= var(C), the result follows from:
var(Y’) = var(¥) + fvar(C) - 2fcov(Y,C)

var(¥)(1 1 8 - 26p(¥,C)).

It

Differentiating with respect to £ and setting the resulting
expression equal to zero yields the optimal value for 8:

8= p(Y,0),

where

var(Y”) 2

— =1 - p(Y,C). 3

var(Y) ol ) ®)
In particular,

100 varY — varY =100[1_ var¥ J (4)
varY var¥Y

measures the percent variance reduction resulting from the

control. Without the assumption of equal variances, we have
6= P( Y’C)UY/UC’
while (3} still holds. Thus, if p(¥,C), 6y and oo are known,

p(Y,C) is a direct measure of the variance reduction which
can be obtained with a single regression-adjusted control.

Now, consider the more general case of multiple, possi-

bly nonlinear, control variables. Using (2). we obtain
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var(Y’) var(C’) oo )
(1) LT ey 2loe/on)e(Y.C7) ()
=1+~ 2kp(¥,C")
and
e Vva:f(?)) = 2kp(¥,C7) - ¥, (6)

where k is positive valued. While this last equation is simple
in form, both p(Y,C’) and k = 0¢-/oy are functions of the
parameters in C°. Thus, it is not true that in order to max-
imize the variance reduction with respect to the parameters
of the control function, one need only maximize the absolute
value of the correlation between Y and C”.

When C° is a linear, additive function of the com-
ponents of C, as in (1), p{Y,C’)} is a quadratic function of
the parameters § whose optimal values are a function of the
correlation matrix of (Y,C}, i.e., the joint and higher
moments between Y and the set of control variables. In fact,
explicit expressions for the optimal values of @ are known
(Rubenstein and Marcus, 1985).

For two independent linear controls with known correla-
tions with Y it follows from (5) that with the optimal values

of 4,

w1 avoyt-avet 0
Choosing control variables with maximum correlations with
Y will, in this case, still maximize the reduction in variance.
In general when the controls are not independent, and
oc-Joy#p(Y,C’), p(¥,C’) does not yield an exact measure
of variance reduction. Note too that in the general case (2},
the allowable range of parameters in the function C’ of the
components of C may be constrained by the requirement
that F(C’) must be known, exactly or approximately, and

must be finite.
2. 'HE SAMPLE ANALOG TO THE VARIANCE

REDUCTION FORMULA

In practice, one has no theoretical information about
properties of ¥ and C, but one has a simulation sample of
size m of independent replications {¥;,C;} from which to
estimate E(Y).

small, one wants to minimize the sample variance of Y~.

Regardless of whether the sample is large or

Minimizing the sample variance involves, after subtracting Y

from both sides of (2), minimizing

DY-7)  n(¥-Y-¢)?
— = — (8)
n(Y;-Y)? . $CE 2(Y-Y)C

m m m

The left-hand side of (8) is the quantity to be minimized
since E(Y)=E(Y")=E(Y) if E(C’) is known. Equation (8)
shows that this quantity is equal to the residual sum of
squares of the least squares regression of Y,——? on C’. Equa-
tion (9) involves, in its first term, the total sum of squares,
which estimates the variance of Y¥; in its second term the
sample variance of the zero mean C’; and in the last term
the sample covariance of ¥ and C’. Rearranging terms in
(9), we have

NP p(r-7?

N(Y-Y)C nCP

m m m m

or

S(Y-Y)-n(-7)  en(v-Y)c; ne?
T 7 7 TP 7 LT sehay

The left-hand side of (10) is the usual R® regression measure
and the equation may be rewritten as
S¢S R R
R =21(Y,C) - - 22 = 2kr(¥,07) - B (11)
Sy SY
As the sample analog to (6), (11) indicates that maximizing
R? through nonlinear least squares regression methods is
equivalent to maximizing variance reduction when the

optimal parameters are unknown.

Thus, for maultivariate C, this maximization can be
accomplished through multiple least squares regression of

Y'-Y on C’. With linear controls, linear least squares
regression will provide a global minimum for the residual ~um

of squares, in turn maximizing the variance reduction fr.r the
sample. Using the regression-derived # in the control equa-
tion (2) maximizes the correlation between ¥ and C~ for the

particular sample. When the control function is nonlinear,
nonlinear least squares regression will not necessarily deter-

mine parameter values which globally minimize the residual
sum of squares since nonconvexity of the control function
may create suboptimal local minima. With a control func-
tion C’=f(C;p)~E(f(C;B)) that is nonconvex, the choice of
initial values for the parameters # in the nonlinear regression
may significantly affect the amount of variance reduction
obtained. In both the convex and nonconvex cases, bounds
on the values of the parameters may be necessary to ensure
valid transformations. One must also be careful that while
multiple regression can be computationally useful, the distri-
bution theory behind multiple regression, which assumes
fixed independent variables, does not apply. Consequently,
confidence intervals on parameter estimates cannot be deter-

mined.
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3. ESTIMATING CONTROL PARAMETERS:

In the case of the single linear control with a fixed
Y” is an unbiased estimator of Y since
E(C~E(C))=0. This is also true for multiple linear controls
when g is fixed. When p(¥,C’), oy and o4 are not known,

parameter £,

they must be estimated from data. Such estimates can then
be used to compute 8 for a single control. For multiple con-
trols, the optimal 8 can be estimated using additive, least
squares, multiple regression on a data sample. ¥ the data
sample from which the estimates are derived is the one to be
controlled, the estimates of the control parameters may be
biased and the effectiveness of the contro! may be reduced
when used with other samples. Using a data sample other
than the one to be controlled, such as a small test sample,
will eliminate the bias that arises from the lack of indepen-
dence between the control parameters and the sample. How-
ever, the problem of small sample bias may then arise. For
any sized sample, there is the additional problem of estimat-
ing the variance of the regression-adjusted estimate of E(Y).

4. PIECEWISE LINEAR TRANSFORMATIONS OF
CONTROLS

Statistics are often nonlinear functions of the random
variables from which they are derived. Therefore one might
expect some nonlinear controls to have a higher correlation
with Y than linear controls, and therefore, roughly, to be
able to better "control" than the linear controls. Omne type of
nonlinear control can be formed from an initial guess at a
viable control by the use of indicator functions and "cut-
points" to form piecewise linear transformations of controls.
For example a control variable C is split into two control
variables about a cutpoint § as follows:

{85 ]

By judicious choice of the cutpoint or perhaps multiple cut-

Cif X<é
0 otherwise,

Cif X>6

0 otherwise. (12)

points, least squares multiple regression can achieve a better
fit without the use of additional original variables. Of course,
care must then be taken in determining the form of the con-
trol function to ensure it has mean zero. Note also that the
regression is still linear if § is given, but it is nonlinear other-
wise. Then, finding an optimal § becomes, in general, a non-

convex, nonlinear, mathematical programming problem.

5. POWER TRANSFORMATIONS OF CONTROLS

Power transformations of controls, in addition to piece-
wise transformations of controls, introduce nonlinearity into

the controlled estimate of E(Y). The power transformation
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used initially in this study is of the form (CP-1)/p, for
p>=1. This scaled power transformation is equal to InC

when p=0. Using, for example, the single control variable C,
the resulting control function is

- fea-me)

which has two parameters, p and B. Of course, piecewise

cP-1  B(CP-1)
P p

transformations of power transformations are also possible,
and it is this combination of nonlinear controls which is the
main thrust of this paper. One hopes to come close to the
maximum theoretical variance reduction which could be
obtained.

6. THE ACE PROGRAM

"The ACE (Alternating Conditional Expectation) pro-
gram (Breiman and Freidman, 1985) provides a method for
estimating the minimum variance obtainable by regressing a
variable ¥ on an additive combination of arbitrary transfor-
mations of another set of variables such as C. It uses an
iterative algorithm to do this. The procedure is non-
parametric, with the transformations selected solely on the
basis of the data sample. Minimal assumptions about the
distribution of the sample or allowable transformations
enable ACE to produce an estimate of the minimum mean
square error between the transformed Y variable and the sum
of the transformed components of C. When C has only one
component, this is equivalent to maximizing the correlation
between a transformed Y and a transformed C.

Unfortunately, the transformations ACE uses cannot be
used to develop control variables as they are non-parametric
and the true means of the transformed variables cannot be
determined. However, one can use the minimum mean
square error from ACE to obtain an upper bound on the vari-
ance reduction that can be achieved between ¥ and C“ in a
Thus, ACE may be
used to gauge the effectiveness of any control function using a

parametric control function such as (2).
fixed set of control variables.

7. AN EXAMPLE

Estimating the mean of the Anderson-Darling goodness-
of-fit statistic (Anderson and Darling 1952) provides a good
example of the benefits of piecewise controls and power
transformations. The statistic W2 can be determined as a
function of n independent unit exponential random variables
E, (Lewis and Orav, 1987). The independence of these ran-
dom variables makes them ideal for controlling WZ. The
case n=2 is presented here, for which (7) holds with C\=E;
and Cp=E,.
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Five different control functions were evaluated using a
single sample of 500 pairs of unit exponentials and their asso-
ciated W} values. The following control functions were com-
pared:

C’ = Bi(E,~1) + B Ep~1); {13a)

C’ = By(Ey—1)+B(Ey—1)+B5(Ef —2) +B,(Ef —2); (13b)

c f;ﬂ B E 51 (13¢)
5=1 pj Py
oz Bjf-1 Efp-1
c’'=Y Eﬂjk -E , (13d)
j=1k=1 Pok Pjk
where
E; i E;<5; [0 EEss
1= 0 otherwise 72~ | B; otherwise I=1.2
.z 3 Eif-1 Eff-1
C = 2 Zﬁﬂf "‘E —_— ) (139)
F=lk=1 Py Pjk
where
E; if B;<6; E; if 6,<E;<6;5
By = 0 otherwise ~ 72 {0 otherwise
B B8,
Ei3=10 otherwise 1%

The experimental, APL-based GRAFSTAT, from IBM
Research, was used for all of the computing. Controls (13a)
and {13b) were developed using straightforward least squares
regression. Controls {13¢), (13d), and (13e) were developed
using the nonlinear regression segment of GRAFSTAT. For
nonlinear regression, GRAFSTAT uses a form of the Mar-
quadt algorithm (Marquads, 1963) which allows bounds to be
placed on the parameters. For controls (13c), (13d), and
(13e}, which have powers as parameters, lower bounds of

—.99 were necessary on the power parameters P since
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expected values of the truncated exponential variables
(involving the gamma function) are not defined for p;<-1.
A reasonable upper bound on each py was found useful in

speeding convergence.

The cutpoints for (13d) and (13e) were fixed at quantiles
such as the .5 or .33 and .66 quantiles and were not included
as parameters in the optimization. Although the two cut-
points employed on (13e) could be used to divide the plane
into nine regions, the six marginal variables were used for
control. The control function thus contained two indepen-
dent sets of three controls with simple distributions, versus
nine controls whose expected values involve multivariate dis-

tributions.

As expected, the simplest control was the least effective.
Control (13a) achieved an R? of .2265, which is hardly
worthwhile. Control (13b), which is a "standard" control in
that the powers are fixed, gave an R? of .5629. The most
complex control, (13e), had the highest R? at .8354. The R*
value derived by ACE was .8560 showing that control (13e) is

nearly optimal for the control variables used.

8. SUMMARY AND CONCLUSIONS

This study demonstrates the potential effectiveness of
nonlinear regression-adjusted controls in reducing variance in
simulations. Various piecewise linear and power transforma-
tions were shown to be useful in developing control functions.
Other topics to be studied include:

(a) Finding controls for the variance, percentiles and quan-
tiles of WZ;

(b) Finding controls for W2 for n>2, perhaps using meas-
ures of influence or leverage to reduce the size of the

control function;

(¢) Using other transformations such as
@ (e¥-1)/7,
(2} (XPe"™-1)/py,or
(8) (¥ /r-1)yy,
(d) Using similar controls for gamma family statistics such
as those encountered in queuning problems.
(e) Investigating problems of estimating the variance of the
variance-reduced estimate of E(Y).
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