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ABSTRACT

We previously developed a new modeling
idea for comparing infinite-source,
ample-server models («/«) and
finite-source, finite-server models (f/f).
The comparison provides an efficient
estimate of the error when approximating an
f/f system with an /o system and allows
the analytical solution of the «=/o model
to be used as a control variate. We show
that using «/o models as control variates
for f£/f systems can be an effective
variance reduction technique for
sensitivity estimates (gradients,
Hessians). We also compare this to a
method using concomitant control variates
for the sensitivity estimates. Using these
sensitivity estimates we will be able to
determine more efficiently when «/o models
are good approximations for £/f systems.

1. INTRODUCTION

Ahmed and Miller (1986) presented a
method for efficiently simulating the
difference between the behavior of
finite-source, finite-server (£f/f) and
infinite-source, ample-server (w/w)
models. An example of f/f is the machine
repair model and an example of o/o is the
M/G/» queue. Our purpose is to develop
general guidelines to determine when the
o/ solutions "are acceptable
approximations for the £/f models, and to
correct them when they are not. We want to
learn how the various parameters and
particular structural assumptions affect
the difference between £/f and o/« models.
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A method to estimate simultaneously the
performance measure and all its
sensitivities (derivatives with respect to
various parameters) was recently introduced
by Rubinstein (1986) and Reiman and Weiss
(1986). Although the point estimate of the
derivative is strongly consistent, its
variance is quite large compared to that of
the point estimate of the original
expectation. In light of this it is
desirable to have some means of reducing
of the derivative estimate.

We show that the composite model that
incorporates the behavior of both f£/f and
/o models is an efficient way to estimate
the sensitivities of the difference between
£/f and o/ models.

the variance

In Section 2 we briefly describe the
repairable item system performance.
Section 3 gives the main results for
sensitivity analysis by Rubinstein (1986)
and Reiman and Weiss (1986). Section 4
gives the statistical framework of control
variates as a variance reduction
technique. In Section 5 we review the
composite model and show that it is an
efficient way to estimate the sensitivities
with respect to the arrival and service
rates of machine repair systems. Section 6
gives some concluding remarks.

2. REPAIRABLE ITEM SYSTEM PERFORMANCE

A simple case of a repairable item
system is the machine repair model shown in
Figure 1. The situation modeled has a
population consisting of M items which we
desire to be operational at all times and Y
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spares that support the system. There are

C repair channels. 1If more than C items
require repair, a queue forms at the repair
facility. Operating times until failure
are exponentially distributed random
variables with the mean time to failure of
any item denoted by 1/\. Repair is
generally distributed with mean time to
repair denoted by 1/v [Cooper (1981), Gross
and Harris (1985), Kleinrock (1975)].
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Figure 1: Schematic of a
Machine Repair Model

This system has finite repair capacity
and finite source (calling population). No
analytical solution exists, except for some
special cases with exponential service
times [Gross and Miller (1984); Gross,
Miller, and Soland (1983,1985)]. An
approximate model with the =/ simplifying
assumptions for the machine repair system
would be an M/G/w queue. This model is
attractive because it can be solved
analytically.

Infinite-source, ample-server models
are much more tractable than finite-source,
finite-repair-capacity models; however,
they are only approximations for most
repairagble item systems and hence they
should only be used when they are "good"
approximations, in which case they are
clearly the model of choice. This leads to
the problem of computing or estimating the
difference in performance between infinite-
source, ample-server models («o/«) and
finite-source, finite-server models (f/f).

~

325

Once obtaining an efficient estimation
procedure for the error when approximating
the f£f/f with an «»/« system, we want to
search the parameter space to identify
regions of acceptable approximation error.
We wish to learn how the estimated errors
change if some parameters are changed. 1In
short, we need to efficiently estimate the
derivatives of the estimated errors with
respect to various parameters. We apply
the main results from Rubinstein (1986) and
Reiman and Weiss (1986) for sensitivity
analysis to the composite model that
incorporates the behavior of both £/f and
«/o models.

3. SENSITIVITY ANALYSIS VIA LIKELIHOOD

RATIOS (SCORE FUNCTION)

Rubinstein (1986), and Reiman and Weiss
(1986) showed that while simulating a
single sample path from the underlying
system, one can estimate simultaneously
both the performance measure and its
sensitivities (gradients, Hessian, etc.).
if A is the rate of a Poisson
process that occurs somewhere in the
system,

For example,

N is the number of Poisson events
in (0,T], and ¥ is & performance measure
with expectation over (0,T] denoted by
EX[W] to emphasize the dependence of the
expectation upon the parameter N\, then
subject to some technical conditions,
Reiman and Weiss (1986) showed that

_dE [v] =E [{N - T}ey]
an M LAY
and
2 2
4 _E [¥] = E [{N(N-1) - 2 NT + T Jey].
2 LS LS N Y

It is important to note that, since
E[(N/\)-T]} = 0, dEx[w]/dk can be written as

-4 E [¥] =

Cov[N - T, #¥].
a > Y

To obtain derivatives of expectations
with respect to parameters of continuous
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probability distributions, Rubinstein
(1986) showed that

.8 E [¥]
dv Vv

and

n
= E“[w-{E% en 121 E(xi,v)}]

2
9 E [¥]
v
dv

2 n
=B [¢e{8_on I F£(x ,v)
v v i=1 i

(8 R Ex vl
n i=1 xi,\) -

_a
dv
Here n is the number of instances of the
random variable X which has density £(x,v)
depending on a parameter v.

For the sensitivity estimates of
transient performance measures of a
stochastic system, we now consider a
modification of the Rubinstein results. In
such situations the data are said to be
Type I (or "time") censored, while
Rubinstein's results assume that we have a
complete sample available [see Lawless
(1982)].

Proposition. Let X ., X be i.i.d.
random variables with p.d.f. E?x,v)
depending on a parameter v, and survivor
function %(x,v). Suppose that associated
with each X , 1 =1,... there is a
fixed censoring time Li’ then

s e

’n’

.8 E {¥]
dv Vv

1-8
=E [ye_3 n 13
v 3v i

[f=ta]

§. -

i
1 f(ti,v) F(Li,v)
(2.1)

where ti = min(Xi,Li) and éi =1 1if
Xi s Li’ and 0 otherwise.

of t, and §

Proof. i :

The joint p.d.E.
is

5, _ 1-8
£(t ,v) i F(L,,v) i

To see this, note that the distribution of
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(ti,6i) has components

t =L ,5 =0 Pr(s =0
Pr(t =L .5 =0) (6,20

Pr(T > L.) = F(L ,v)
(T > Ly) = By

Pr(t, ,8 =1
( % )

t |6 =1) Pr(s =1 t <L
Pr( il i ) Pr( N ) : ‘

Pr(tilti < Li) Pr(8i=1)

[E(ti)/(l - F(Li))][l - F(Li)]

E(ti).

These expressions can be combined into the
single expression

& 1-6i

i -
= t , (L, , ’
Pr(ti,ﬁi) £( " v) ( . v)

and if pairs (ti,ai) are independent, the
likelihood is

51_ 1'81
f(ti,V) F(Lisv) -

[k =%=]

-\t
Example. Let £(t) = \e for t >0
let T be the time between events i
i+l. Then the likelihood is

and
and

s
-\t
(e i)

i

c
]
e}l

r ~-A\T
A e

and &nL = rgnh - AT so that

- T

L]

ainL = ¢
an r

where r is the observed number of arrivals
in (0,T]. Hence from (2.1),

8 E (¥)
a

N = Ek[(% = T)ey],

which is the result of Reiman and Weiss for
the Poisson process.

It was pointed out by Rubinstein (1986)
and Reiman and Weiss (1986) that the
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variance of the estimator for the
derivative can be prohibitively large. To
obtain more accurate estimators, one can
use efficient variance reduction
techniques. We will use the control
variate technique for variance reduction.

4. CONTROL VARIATES

A random variable C is a control
variate for Y if its expectation, oo is
known and if it is correlated with Y. For
any fixed value of the control coefficient,
a, the controlled estimator

Y(a) = Y - a(C~uc)

is an unbiased estimator of Ry
Furthermore,

Var{Y(a)] = Var[Y] + a2

Var[C] - 2a Cov[Y,C]
so that Y(a) has a smaller variance than Y
{f and only if 2a Cov[Y,C] > a2 Var[C].

The control variate methods with which
we are concerned involve the simultaneous
use of simulation with an analytically
tractable model that approximates the
system under study, and uses the
corresponding output C from the simulation
of this second model as a control variate.
By "analytically tractable" we mean
specifically that E[C] can be computed
exactly, and we hope that the "similarity"
of the simpler model to the original one
will induce positive correlation between C
and Y. This method of obtaining control
variates is referred to as an external
control variate technique. We also apply
the method of concomitant control variates
to the sensitivity estimates, using the
likelihood ratio, and compare it to the
external control variate technique.

We now turn to the question of how the
control coefficient, a, should be
specified. The special case a = 1 (if it
is believed that Cov[Y,C] > 0) requites
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that Cov[Y,C] > Var{C]/2 for variance
reduction; by allowing other values for a4,

we can do better. The optimum control

coefficient, a%, is given by (see Wilson

1984)

a¥* = Covi{Y,C] (4.1)
Var[C]

and Var[Y(a*)] = Var[Y](1l - p%c), where
Pyc is the correlation coefficient between
Y and C. From this, it is clear that the
greater the correlation between the
variable to be estimated and the control

variate, the greater the variance reduction

5. COMPUTATIONAL EXPERIENCE
5.1 Review of the Composite Model

The composite model is an efficient way
to estimate the difference in behavior
between finite-source, finite-server models
(£/f) and infinite-source, ample-server
models (w/w). The 1dea is to simulate an
open queuing network which incorporates the
behavior of both £/f and »/o models. The
composite model simulates the common
behavior of the two systems once and the
special behavior of each system once. For
more details on the composite model, see
Ahmed and Miller (1986).

To clarify these ideas, suppose we are
interested in estimating one of the
performance measures of the machine repair
system, E[wF]. We select an M/G/» queue as
an approximate model for which it is
possible to calculate analytically its
performance measure E[wm]. We then use the
composite model to estimate the difference
between these two processes, E[wD].
estimate E[wF] as follows:

We may

El¥ ] = Elv_] + E[¥].

It is easy to verify that a reduction in
variance over a stralightforward simulation
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has been achieved if

Variy 1 < 2 Cov[¢ ,¥ 1.
o o F

In Ahmed and Miller (1986) the control
coefficient was chosen to be one. An
extension was made to those experiments
using the optimal control coefficient given
by (4.1) and better results were obtained
(see Table 2). We are interested in four
different performance measures of the
machine repair system. They are:

My = avg. no. items in or awaiting repair
n, = avg. no. busy repair channels

ng = avg. no. operating machines

Ty = probability that M machines operating.
We estimate these performance measures for

Some of the
The

a transient system at t = 30.
cases considered are shown in Table 1.
répair times are gamma with mean 1/v and
shape parameter 2. The results for the
test cases of Table 1 are given in Table 2.

Table 1: Some Test Cases
Case Traffic
No. M Y C Intensityf kN v
1 24 6 7 .27 0.1 1.25
2 24 6 4 .48 0.1 1.25
3 24 3 4 .48 0.1 1.25
4 24 0 4 .48 0.1 1.25
5 24 6 3 .64 0.1 1.25
6 24 3 3 .64 0.1 1.25
7 24 0 3 .64 0.1 1.25
8 24 6 2 .96 0.1 1.25
9 24 3 2 .96 0.1 1.25
10 24 0 2 .96 0.1 1.25
1'We define traffic intensity as MA/Cv.

5.2 Sensitivity Estimates

We consider the average number of items
in or awaiting repair as one of the
performance measures of the machine repair
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system. We estimate the sensitivity of
this performance measure with respect to
the arrival rate as well és the service
rate for a transient system at time t = 30
(Poisson arrival process with rate M\, the
service times are gamma with mean 1/v and
shape parameter 2). We use three
approaches. The first is simply to
simulate an £f/f (machine repair) model of
the system. The second is to simulate the
composite model, which uses an «/o (M/G/w
queue) model of the system as a control
variate for the £/f model. 1In order to
estimate the sensitivity of the performance
of the f£/f system using the composite
simulator, we must compute the sensitivity
of the behavior of the =/w system
analytically. This can be done using the
basic properties of the transient M/G/=
queue; see the appendix.

The third approach is to simulate the
£/f model using the method of concomitant
(internal) control variates. The control
variates that we use arise naturally from
likelihood ratios. We suggest here a class
of random variables with 0 mean that can be
used as internal control variates. For the
derivatives with respect to the Poisson
rates, we choose

C =

1 [% - T]

as a control variate. For the derivatives
with respect to the service rates, we

choose, as a control variate,

1-6i

[te= =]

C = 4n

61_
2 f(t F(L
2 .5;. n ( i")) ( in")

1

which appears in equation (2.1).

The efficiency measure of a procedure
is taken as inversely proportional to the
product of the variance of the estimator
and the CPU time required to execute the
procedure:

Efficiency = 1 .
variance ¢ CPU time
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Table 2: Comparisons of Composite Model and Straight Simulation of
Machine Repair Systems for a = 1 and Optimal a (a%)

Ratios for Estimator of Variance

Case ™ 2 3 Ny
No.
a=1 a*x a=1 ax a=1 a%* a=1 a%

1 .000 .000 .000 .000 .000 .000 .000 .000
2 .058 .056 .133 .101 .500 .440 .462 462
3 .055 .055 .128 .094 .156 .156 .098 .097
4 .107 .096 .191 .131 .107 .096 .149 .147
5 .327 .326 .668 .355 .853 .837 .800 .800
6 .279 .279 .629 .327 - 496 .493 .404 .398
7 .237 .233 .552 .288 .237 .233 .273 .252
8 .873 .871 8.408 .872 .993 .993 .991 .987
9 .812 .808 6.047 .820 .895 .894 .988 .872
10 .728 .718 3.808 .735 .728 .718 -850 .540

Note: Entries correspond to Var(composite)/Var(finite/finite), and a
is the control coefficient.

Table 3: Results of Composite and Concomitant Variance Reduction Procedures
and Direct Simulation for Sensitivity Estimates

c Straightforward Simulation Composite Approach Concomitant Control

ase

No. d, dv ng Ugv dA dv ng Gév dA dv OEA va
1 .404 - .952 .070 .492 .800 - 1.534 .000 .000 .800 - 1.272 .024 .182
2 .576 -1.089 .082 .574 .999 - 1.709 .002 .014 .999 - 1.431 .030 .234
3 .512 - .960 .077 .506 .921 - 1.541 .002 .014 .926 - 1.300 .027 .193
4 .449 - ,857 .063 .386 .819 - 1.342 .002 .043 .824 - 1.277 .022 144
5 .923 -1.398 117 .716 1.399 - 2.655 .016 .095 1.420 - 1.916 .045 .279
6 774 -1.142 .105 .632 1.228 - 1.752 .013 .090 1.252 - 1.522 .038 .239
7 .644 -1.104 .082 . 464 1.052 - 1.614 .007 .085 1.064 - 1.551 .030 177
8 4.825 -9.555 .561 3.448 5.744 -10.677 .184 1.613 6.005 -10.643 .154 1.017
9 2.873 -6.311 .367 2.040 3.622 ~ 7.199 .116 .891 3.809 - 7.192 .111 .611

10 1.627 -4.301 .204 1.119 2.202

4.968 .057 .469 2.315 - 5.099 .066 .363

We estimate the efficiency by observing the compare the different simulation
CPU time for each execution and estimating approaches. Some of the cases considered
the variance of the estimators of the are shown in Table 1. Each case was
gradient of the performance measures of simulated for 1000 replicates. For each
interest [Hammersley and Handscomb (1964)]. case we looked at the estimated mean number
of items in or awaiting repair, My and
We used various cases as tests to its variance; and the estimated
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derivative of m_ with respect to the
§rriva1 rate, & , and the service rate,

d , and their variances. The results for
tgst cases of Table 1, showing point
estimates and variances of the derivatives
of the three methods, are given in Table 3.

Table 4 presents comparisons of
variances of the estimated derivatives, CPU
times, and efficiencies for three
approaches: the composite model (C),
direct simulation of the £/f model (F), and
the internal (concomitant) control variate

Table 4:

approach (I). The composite approach, when,
compared with direct simulation of the £/f
model (C/F), produces a significant
decrease in the variance of all estimators;
but it also increases the CPU time.
Nevertheless, the efficiency of the
composite approach is superior to the
straightforward approach of simulating the
f/f system. Furthermore, the composite
gpproach achieves a reduction in the
variance of the performance estimate, as
well as of its derivative, of up to 100%.
For example, from Tables 2 and 4 we see for

Comparisons of Composite Model vs. £/f, Internal Control

Variable vs. f/f, and Composite vs. Internal Approaches

Ratios for Estimators of Performance

Case
No. Variance Average CPU Time Efficiency
C/F I/F C/T C/F I/F C/I C/F I/F c/1
dk = derivative with respect to the arrival rate
1 .000 .344 .000 1.019 1.010 1.009 © 2.878 ©
2 .027 .364 .074 1.053 1.013 1.039 35.173 2.712 13.006
3 .024 .345 .070 1.042 1.011 1.031 39.987 2.867 13.856
4 .034 .352 .097 1.042 1.012 1.030 28.226 2.807 10.056
5 .136 .383 .355 1.075 1.010 1.064 6.840 2,585 2.646
6 .123  .363 .339 1.096 1.012 1.083 7.418 2.722 2.725
7 .091 .368 . 247 1.095 1.015 1.079 10.036 2.692 3.748
8 .328 .273 1.201 1.145 1.014 1.129 2.663 3.612 .737
9 .317 .301 1.053 1.155 1.013 1.140 2.729 3.280 .820
10 .278 .322 .863 1.162 1.016 1.144 3.096 3.057 1.013
dv = derivative with respect to the service rate
1 .000 .369 .000 1.019 1.010 1.009 ] 2.683 ©
2 .025 .408 .061 1.053 1.013 1.039 37.987 2.420 15.700
3 .027 .381 .071 1.042 1.011 1.031 35.544 2,596 13.691
4 111 .373 .298 1.042 1.012 1.030 8.646 2.649 3.264
5 .133  .390 . 341 1.075 1.010 1.064 6.994 2.539 2.755
6 .143 .378 .378 1.096 1.012 1.083 6.380 2.614 2.441
7 .185 .381 .486 1.095 1.015 1.079 4.936 2.586 1.909
8 469 295 1.590 1.145 1.014 1.129 1.862 3.343 .557
9 .438 .300 1.460 1.155 1.013 1.140 1.977 3.291 .601
10 420 .324  1.296 1.162 1.016 1.144 2.049 3.038 .674
Note: Entries for X/Y correspond to Var(X)/Var(Y), CPU(X)/CPU(Y), and

Efficiency(X)/Efficiency(Y).
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the first test case that the variances of
the performance estimate and their
derivatives are 0.0. The first test case
means that the =/« model is an exact
solution for the f/f model. Now,
considering C vs. I (C/I), for light and
medium traffic intensity, the composite
model is superior to the internal control
For heavy traffic, where
there is little overlap between «/o and
£/£, the internal control variate approach
is better.

variate approach.

6. CONCLUSIONS

This preliminary study shows that the
composite model is an efficient way to
estimate the sensitivities of the behavior
of finite-source, finite-server models. We
plan to use this method to determine when
wfw models are good approximations for £/f
systems. An efficient estimator of the
gradient will help us search the parameter
space to identify regions of acceptable
approximate error.
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APPENDIX: M/G/» QUEUE

Let N(t) denote the number of items in
repair at time t when arrivals occur
according to a Poisson process with rate
Mh. Then N(t) has a Poisson distribution
with mean [see Gross and Harris (1985)]

E[NCE)] = Mh [° F(s,t)ds,
0
where

%(s,t) = Pr{a unit entering repair at
time s is still in repair at
time t}.
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When the service time distribution
functions are gamma with mean 1/v and
integer shape parameter 2, the expected
number of items 1in repair is

E[{N(t)]
t -2vx 1 3
=MNJ e ¥ (2vx)” dx
0 =0 Ty
-2vt
= M\ - MAM(L + t)e
v v
and
~2vt
BE[N(t)] = 1 - (1 + t)e
M\ v v
~2vt
QE[N(E)] = - MA + 2MAE(l + t)e
dv 2 v
v
~2vt
+ M\ e .
2
v
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