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ABSTRACT

One way to construct a confidence interval for the mean
constant of a stochastic process, is via consistent estimation
of another parameter of the process, namely, the time-average
variance constant. In this paper, we discuss strong consistency
of the variance estimator for several methods of steady-state
output analysis. These are; Batch Means (BM), Overlapping
Batch Means (OBM), Spectral methods, and finally, Standard-
ized Time Series (the area estimator of STS). A characteriza-
tion of the spectral variance estimator is also presented; it is
a generalization of OBM. Another estimator, which might be
called Overlapping Area estimator, connects the area estimator
with-spectral methods.

1. INTRODUCTION

Suppose we observe the output sequence of a stochastic
process {z, : n > 1}, and that there exists an unknown pa-
rameter 4 such that ;1'- iy Ti == j, as n — oo, where “==>"
denotes weak convergence. The natural estimator of the pa-
rameter g is evidently the sample mean, Z(n) = L 3.7 ;.
To assess the accuracy of this estimator, typically, a confi-
dence interval is constructed. For single long run methodol-
ogy, there are two general approaches to this construction; i.)
through consistent estimation of another parameter of the pro-
cess, which is called the variance parameter, or ii.) through a
cancellation method, such as Schruben’s STS (1983).

Confidence intervals constructed via consistent estimation
of the variance parameter, were shown in Glynn and Iglehart
(1988), to have asymptotically shorter expected half-width,
and smaller half-width variance. Furthermore, if the estima-

tor is known to be strongly consistent (i.e. converging with
probability one), then sequential procedures are asymptotically

valid; see Chow and Robbins (1965).

We will discuss here strong consistency for several meth-
ods of steady-state output analysis. The general results were
obtained in Damerdji (1987). In all the methods considered
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here, observations are grouped into batches; in applying one of
these statistical procedures, one should decide, either before-
hand or sequentially, the size of these batches relative to the
total sample size. For simplicity, we will assume here that the
batch size my, is a fraction of the sample size, i.e. m, = n®,
where 0 < a < 1. The conditions we obtain in the theorems,
provide theoretical insight into the relation between batch size
and correlation of the process. A conclusion of our work is
that batch size should be large when the process is heavily cor-
related. For the OBM and Spectral methods, the batch size
cannot be too long though, as our conditions will indicate.
The assumption made on the process, is that it obeys a
strong invariance principle; in Section 2, we discuss that it is a
reasonable assumption in a simulation environment. The BM
(resp. OBM, spectral, Area) method is taken up in Section 3

(resp. 4, 5, 6). Section 7 is the conclusion.

2. THE STRONG APPROXIMATION
Let S, be the partial sum process, i.e. Sp =3 5

i1 Ti, and
Sp = 0. The strong invariance principle (or also strong approx-
imation) states that the centered partial sum process S, — npu,
is close to a Brownian motion, and this with probability one.
Using the tractability of the Brownian motion, one shows first
the result sought for the Brownian motion, and then, by using
the “closeness” from the strong approximation, infer the result

for the original process.

From Philip and Stout (1975), strong approximation holds
for a large class of processes; a brief discussion will be given
below. Philip and Stout’s conclusion is that for these processes,

there exist constants ¢ and A such that,

Sp —np = oB(n) + 0?7y wpl,

with 0 < ¢ < oo and 0 < A < 1/2. The symbol “w.p.1"
stands for “with probability one”, while “O” denotes the clas-

sical big-Oh notation. The condition can be restated; there
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exist constants of the process o and )\, such that for almost
all sample paths w of the pocess, there exists a constant C'(w)

such that for all n,
|Sa(w) — np — oB(n,w)| < Cwn/22,

The constant A will depend on the correlation of the pro-
cess. The “nicer” the process is, in terms of correlation and
moments, the closer it is to 172. If the correlation is high how-
ever, it is closer to 0. A lenghty discussion can be found in
Damerdji (1987).

Philip and Stout (1975) showed that, under some more
restrictions on the process, the strong approximation holds for
example for i) regenerative processes (0 < A < 1/4), ii.)
stationary ¢-mixing (0 < A < 1/12), and iii.) Strong mix-
ing (0 < A < 1/264). As mentioned in Glynn and Iglehart
(1985), the regenerative property holds for a large class of pro-
cesses, and so does strong mixing. See the latter reference for
definitions. Note that these two assumptions do not include
stationarity. In light of all this, the strong approximation as-

sumption is then viable in a simulation context. We discussed
above that the constant ) is ideally closer to 1/2 for low corre-

lation processes. However, the bounds on A are very small for
these processes. This is due to mathematical difficulties, and
we believe the true upper-bounds for A are much closer to 1 /2
than these. In all the remaining of the paper, we will assume
that the strong approximation holds for the stochastic process

under study.

3. BATCH MEANS

Batch Means, as discussed in Glynn and Iglehart (1988),
is a cancellation method. The n observations are divided up
into a fixed number k,, of batches, of size mn each. The sample

mean for each batch j = 0,...,%, — 1, is computed, i.e.

I &
Zj(mn) = m—zzjm,.-{-i
n

i=1
If the process is well-behaved, then by some central imit the-
orem, #;(m,) will be asymptotically normal for a large batch
size. Moreover, these values will also become asymptotically
independent. Here, we will let the number of batches k, grow
to infinity as well, with the sample size. BM becomes then a

consistent estimation method. Consider the sample variance
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of each batch, i.e.

kyn—1

2 (Ei(mn) ~ #(n))?

=0

Tom(n) =

1
kn—1

This estimator is strongly consistent, as the following result
indicates; its proof (for the general case) is in Damerdji (1987).

Theorem 1: If @ > 1 — 2), then

Mplym(nR) — o2 w.p.l asn-— oo.

Let us look at the condition of the theorem. For highly cor-
related processes, A is closer to 0. For the theorem to be true
then, & must be close to 1, and hence batches ought to be rel-
atively large. On the other hand, for low correlation processes,
A is closer to 1/2, and hence « is not so restricted. Therefore,
batch size is not crucial to get consistency in the low correlation
case.

We discussed above that for regenerative processes, the
constant A for which the strong approximation holds, is smaller
than 1/4. Hence, for A = 1/4, the condition of the theorem
reduces to @ > 1/2. The condition of the theorem suggests
then, that in order to get strong consistency when applying BM
for a' “nice” regenerative stochastic process, one should take a
number of batches very small compared to v/n. We believe
that one should take an even smaller number than that, as we
discussed that the true A should be closer to 1/2.

To give a flavor of how one uses the strong approximation
assumption to carry out the proofs, we need to introduce some

notation. Let,
- 1 . .
Aj(mn) = m‘—'"(B((J + )m,) — B(]m,,)),

() = ~B(n),

and,
=

Fom(m) = =27 3 (&(ma) - A(m))™.

j=o0

The above quantities are the analogs of respectively, Z;(m,),
Z(n), and Tsm(n), but for the Brownian motion process. The
proof goes in two steps.

i. ) Show that m,Tym(n) — 1, w.p.1, as n — co.

ii.) Using the strong approximation, show that

Malbm(n) — *malpm(n) = 0 wpl as n — oco.
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This of course implies that mal'sm(n) — o2, with probability
one as the sample size gets larger. These proofs can be found

in Damerdji (1987).
4. OVERLAPPING BATCH MEANS

OBM, which was introduced by Meketon (1980), and Meke-
ton and Schmeiser (1984), consists of overlapping the batches,
that is, each observation starts a new batch. The resulting

variance estimator is

Tabm(n) = gt 3 (85(ma) — 2()",

where Z;(mna) is the sample mean over the j’th batch, i.e,
1 =
Zi(ma) = — Y @iy
Mn i=1

In fact, from Meketon and Schmeiser (1984), the OBM
estimator is closely related to the spectral estimator associated
with the so-called modified Bartlett window. Let v,(s) be
the sample covariance of lag s, ie. Ya(s) = L3507 (ze ~
ZF(n))(ze4s — E(n)). We have the following lemma.

Lemma 2: (Meketon and Schmeiser, 1984)

oy i

Tom(n)m D (1-—

i=—(mn—1)

'n;:)’)'n(i)-
In the next section, we generalize the OBM estimator to
include a large class of window kernels. Strong consistency of

the OBM estimator will then follow as a special case.

5. SPECTRAL METHODS

To use a spectral estimator, one must choose a threshold
value my, and a function wn(.) called window kernel. To be
consistent with the other sections, we will call the threshold
value (or also truncation point) my, the batch size. The spec-
tral estimator, that we call 27 £,(0), is given by,

ma—1

2mfa(0)= >

i=—(my—1)

Wa(D)1a(?)-

From Priestley (1981), in order to get consistency (in the
mean square sense) of the spectral estimator, the truncation
point must be such that m, — oo, and also n/m, — oo, as
n — oo. The class of window kernels we consider here, will be
large enough to include most of the windows available in the
literature. Suppose that the window function is such that, i.)

it is an even function between 0 and 1, ii.) wa(0) = 1, and iii.)
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wp(s) =0 for |s| > mn.
We now present a characterization of this estimator, but
before that, we need to introduce some more notation. For

k=1,...,my, let

an(k) = mak? (wn(k — 1) — 2wa(k) + wa(k + 1))

and consider the following variance estimator,

n—mny my

. — . 2
r,(n)=;t—n > Zan(k)(-s—’t%—i——i:(n)> .

=0 k=1
Note that an(.) is a second difference,
Example 3: For the modified Bartlett window, i.e. wn(s) =
1—|s|/mq, we have that an(k) =0fork=1,...,m, —1, and
an(my,) = mZ. Hence,

n—my

L) = 22 37 (5i(ma) = 5(n)) & Tosm(n).

j=0
We have the following proposition.
Proposition 4: For any window kernel from the class consid-
ered here,

Ts(n) = 27 f1(0).

It is only approximate, due to some end-effects, as ex-
plained in the OBM case for example, in Meketon and Schmeiser
(1984). Using this characterization, strong consistency of the
general spectral estimator can be shown. See Damerdji (1987)
for the proofs, and for the exact end-effects.

As an example, for the spectral estimator associated with
the modified Bartlett window, the condition on the batch size
is that @ > 1 — 2}, and @ < 1/2. The first condition forces
the batches to be large if the correlation is high, while the
second condition tries to keep the batches relatively small, so
that the end-effects remain asymptotically negligible. See the

latter reference for the general case.

6. THE AREA ESTIMATOR

By modifying Schruben’s area estimator (Schruben, 1983),
that is by letting the number of batches grow to infinity with
the sample size, one can show strong consistency of the result-
ing variance estimator. For0 < j < k,—land1<i < mp—1,

let

. 7
Ej(2) = (Sjma+i = Simn) — m—"(S(,-+1)m,. — Sjm,)

and also

mp—1

Fi(n)= 3 Bj(i).
i=1
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From the latter reference, the area estimator is given by,

12 1R
Ta(n) = ) e ; Fi(n).
The conditions obtained for strong consistency will be
identical to those of BM.

Theorem 5: If m, =n%, and @ > 1 — 2), then
Ta(n) = 0 w.plasn— oco.

The same discussion about correlation and batch size, as in
the BM case, follows. Finally, one can overlap the batches for
the area estimator. For j =0,...,n—myg,andi =1,...,my—
1, let )

Us(8) = (S5+i — 53) - i:(sﬁmn - S5,

and, .
ny, -

Vi(n) = 3" Uj(i).
i=1
The variance estimator will be given by,

n—my

12 1

Poa(n) = (mn — 1)(17731 —2my, -+ 3) ; ]Z=% I,.‘12(17’)'

In fact, as in the OBM case, this estimator is almost iden-
tical to a spectral variance estimator. See Damerdji (1987) for

the kernel window and the computations.

7. CONCLUSION

Strong consistency of the variance estimator for several
methods of steady-state output analysis was discussed. The
conditions obtained showed that batch size may be critical for
consistency. When the process is heavily correlated, batches
must be large enough. For low correlation however, batch size
is not so crucial. For “nice” regenerative processes, we saw that
for the BM and Area methods, the number of batches should

be much smaller than /7. The characterization of the spectral
variance estimator opens some interesting computational and

numerical questions.
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