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ABSTRACT

In many practical cases in time series analysis, marginal
distributions in stationary situations are not Gaussian. If is
therefore necessary to be able to generate and analyze non-
Gaussian time series. Several non-Gaussian time series mod-
els are discussed in this paper. The marginal distributions are
Laplace or I-Laplace distributions, and the correlation struc-
ture of the processes mimics that of the standard additive,
linear, constant coefficient ARMA(p,q) models.

1. INTRODUCTION.

Random coefficient time series models and ordinary linear
time series models with non-Gaussian marginal distributions
have been developed for a variety of interesting situations in
time series analysis to offer viable alternatives to the stan-
dard Gaussian assumptions. A problem with the ordinary
linear models with non-Gaussian error structure is that the
marginal distributions change with the correlation structure,
and in particular tend to become Gaussian as the correlation
in the processes gets large (Mallows, 1967).

There are, however, important exceptions to this result,
and these exceptions lead to important alternatives. Gast-
wirth and Wolff (1965) developed a linear first order auto-
gressive process with a Laplace marginal distribution (called
LAR(1)). Although it is a linear model, the marginal dis-
tributions are Laplace for all values of the correlation. This
is because the distribution of the errors in the model is not
absolutely continuous, which is a condition for the Mallows’
results to hold. Independently Gaver and Lewis (1980) devel-
oped a linear first order autoregressive process with a Gamma
marginal distribution, called GAR(1). Again the distribu-
tion of the errors in the model are not absolutely continuous.
Subsequently both of these processes have been shown to be
special cases of more general linear additive discrete-random-
coefficient autoregressive models (Dewald and Lewis, 1985
and Lawrance and Lewis, 1981 and 1985). Other time se-
ries models using continuous-random-coefficients and having a
specified marginal distribution are, for Gamma distributions,
due to Lewis (1981), Hugus (1982} and Lewis, McKenzie and
Hugus (1987), and, with Beta distributions, due to McKenzie
(1985).

The Gamma models in particular provide a broad class of
time series models for use in fields such as Operations Analysis,
Hydrology and Meteorology. Nicholls and Quinn (1982) dis-
cuss general random coefficient autoregressive processes with-
out reference to a particular marginal distribution; their re-
sults have applications in assessing statistical and asymptotic
properties of all the models discussed here.
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2. THE LAPLACE LAR(1) MODEL.

The Laplace LAR(1) model, and its generalization to higher
order autoregressive and moving average correlation struc-
tures, was put forward as a model where two-sided symmetri-
cal random variables had larger kurtosis and longer tails than
could be expected from Gaussian time series. A particular
example is that of position errors in a large navigation system
which were found by Hsu (1979) to have Laplace distributions.
Again the N-S or E-W components of wind velocity data are
often symmetric and long-tailed, especially in the tropics. For
a summary of these applications and a summary of methods
of generating the LAR(1) and its generalizations, see Dewald
and Lewis (1985). In particular we note that generalizations
to NLAR(1) and NLAR(2) models which are the analogs of
the NEAR(1) and NEAR(2) processes of Lawrence and Lewis
(1981 and 1985) are available and are discussed in that pa-
per. All of these models are diserete-random-coefficient linear
models.

The random coefficient linear process approach is not the
only way to generate Laplace variables with a specified cor-
relation structure. The literature contains numerous articles
on the generation of random sequences. One approach put
forward in several papers (Gujar and Kavanagh, 1968; Had-
dad and Valisalo, 1970; Li and Hammond, 1975, and Sondhi,
1983) involves passing white noise through a linear filter fol-
lowed by a zero-memory nonlinear transformation. This is a
general procedure that produces exactly the required marginal
distribution and a good approximation to the autocorrelation
structure. However, the scheme lacks the simplicity of the
methods proposed for Laplace processes, which are just a ran-
dom linear combination of Liaplacian random variables. More-
over, the filtering approach produces, for example, in the first
order autoregressive case, only one process. It is important
to note in non-Gaussian time series there are infinitely many
processes with the given marginal and autocorrelation struc-
ture. This dictates perhaps the use of higher order moments
and an approach to this using a higher order residual analysis
has been proposed by Lawrance and Lewis {1987).

3. THE [-LAPLACE MODELS.

Another application of the Laplace models arises in those
cases where positive-valued time series are differenced to re-
move trends. The resulting marginal random variables are
two-sided and, in particular, differenced Gamma variables re-
sult in the [-Laplace family of distributions which we now con-
sider.

The [-Laplace family of distributions is a natural general-
ization of the Laplace distribution, this being the /-Laplace
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distribution when /=1. The I-Laplace distribution is infinitely
divisible, additive, symmetric and has extremely thick tails for
small values of the parameter {. This case would be appro-
priate for modelling components of wind velacity data. These
data often exhibit very sporadic, long-tailed behavior. On the
other hand, as ! approaches infinity, the [-Laplace distribu-
tion approaches a Gaussian distribution. Thus if the data is
Gaussian, no loss of generality arises from using the I-Laplace
distribution.

A square-root-Beta-Laplace transform is infroduced which
allows one to transform one member of the [-Laplace fam-
ily into another in a simple way. As a result one can obtain
an [-Laplace process with first-order autoregressive structure,
the continuous-random-parameter just being the square root
of an appropriate Beta variable. These [-Laplace processes
are Markovian processes with the geometrically decaying au-
tocorrelation function which is typical of the Gaussian, first
order autoregressive (AR(1)) process. The basic structure is
a random coefficient autoregression, and we generalise the
structure of this model to encompass moving average (MA)
and mixed autoregressive moving average (ARMA) processes.
Again, both the structure of the process and their autocorrela-
tion functions mirror those of the Gaussian ARMA processes.
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